There exist natural generalizations of the real moduli space of Riemann spheres based on manipulations of Coxeter complexes. These novel spaces inherit a tiling by the graph-associahedra convex polytopes. We obtain explicit configuration space models for the classical infinite families of finite and affine Weyl groups using particles on lines and circles. A Fulton-MacPherson compactification of these spaces is described and this is used to define the Coxeter operad. A complete classification of the building sets of these complexes is also given, along with a computation of their Euler characteristics.
Journal of Homotopy and Related Structures, Vol. 4(2009), No. 1, pp. 83-109