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A COMPARISON THEOREM FOR SIMPLICIAL RESOLUTIONS

JULIA GOEDECKE and TIM VAN DER LINDEN

(communicated by Walter Tholen)

Abstract
It is well known that Barr and Beck’s definition of

comonadic homology makes sense also with a functor of co-
efficients taking values in a semi-abelian category instead of
an abelian one. The question arises whether such a homology
theory has the same convenient properties as in the abelian
case. Here we focus on independence of the chosen comonad:
conditions for homology to depend on the induced class of pro-
jectives only.

Introduction

Given two comonads G and K on an arbitrary category C, when do they induce
the same comonadic homology theory? In their paper [2], Barr and Beck gave a
sufficient condition for this to happen: when G and K generate the same class of
projective objects. More precisely, they showed that Hn(−, E)G ∼= Hn(−, E)K as
functors C −→ A, for any n ∈ N and for any functor E : C −→ A to an abelian
category A.

With this paper, we extend their result to the semi-abelian case, i.e. the situation
where the homology theory takes coefficients in a functor E : C −→ A to a semi-
abelian category A. To obtain the same conclusion, we need a condition on C (or
on the comonads G and K): homming from a (G- or K-) projective object into a
(G- or K-) simplicial resolution gives a Kan simplicial set.

The examples reveal that this condition is not unreasonably strong. For instance,
if C is additive then homming from any object into any simplicial object gives a
Kan simplicial set, and if C is a regular Mal’tsev category—for instance, C could be
semi-abelian—then the requirement holds as soon as the G-projective objects are
also regular projectives. Further examples are given in Section 5.

The technique we use to obtain our result is necessarily different from the one
employed by Barr and Beck. Since their coefficient functors take values in an abelian
category, they can extend the homology theory on C to a homology theory on the
free additive category over C; then this additive structure takes part in the proof that
Hn(−, E)G depends only on the class of G-projectives. As a semi-abelian category
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is only additive when it is abelian, this approach is bound to fail in the semi-abelian
case.

However, our strategy is still simple and straightforward: we show that, given
a projective class P, any two P-resolutions of an object X are homotopically
equivalent—hence they have the same homology. The advantage of our method
is that it shows that any P-resolution will give the same homology of X; thus it is
possible to use resolutions not coming from a comonad, if this turns out to be easier.
The only subtlety is in the definition of a P-resolution of X: this is an augmented
simplicial object A = (An)n>−1 such that A−1 = X, An ∈ P for n > 0, and for ev-
ery object P ∈ P the augmented simplicial set Hom(P,A) is Kan and contractible.
It is here that the relative Kan condition on C emerges: we have to know whether,
when P is the class of G-projectives, a G-resolution is always a P-resolution.

In Section 1 we give an overview of the required results from the theory of
semi-abelian categories, and the basics on homology in this context. The definition
of a P-resolution is further explained in Section 2. Section 3 is devoted to the
Comparison Theorem 3.3: if P is a simplicial object over X with each Pi ∈ P, and
A is a simplicial object over Y where all augmented simplicial sets Hom(Pi, A) are
contractible and Kan, then any map f : X −→ Y extends to a semi-simplicial map
f : P −→ A, and any two such extensions are simplicially homotopic. In this section
we also relate our comparison theorem to that of Tierney and Vogel [12], which
uses a different definition of resolution, in a category with finite limits.

The Comparison Theorem is used in Section 4 to prove the main point of our pa-
per, Theorem 4.11: under the condition on C mentioned above, any two comonads G
and K that generate the same class of projectives induce isomorphic homology the-
ories. We obtain it as an immediate consequence of Corollary 4.9 which states that,
in a semi-abelian category, simplicially homotopic maps have the same homology:
if f ' g then, for any n ∈ N, Hnf = Hng.

1. The semi-abelian context

1.1. Semi-abelian categories

It is well known that the homological diagram lemmas like the Five Lemma and
the Snake Lemma can be proved in any abelian category, but are also true in the
category of groups, and in other categories ‘sufficiently close’ to it. Semi-abelian
categories were invented to capture this more general context.

Definition 1.2. A category A is called Barr exact [1] when it is regular (i.e.
finitely complete with coequalizers of kernel pairs and pullback-stable regular epi-
morphisms) and every equivalence relation in A is a kernel pair.

A pointed and regular category A is called Bourn protomodular [5] when the
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(regular) Short Five Lemma holds: for every commutative diagram

K[f ′] � ,2ker f
′
,2

u

��

X ′ f ′ � ,2

v

��

Y ′

w

��
K[f ] � ,2

ker f
,2 X

f

� ,2 Y

such that f and f ′ are regular epimorphisms, u and w being isomorphisms implies
that v is an isomorphism.

Definition 1.3. [11] A semi-abelian category is a category A which is pointed,
Barr exact and Bourn protomodular, and has binary coproducts.

All finite limits and colimits exist in a semi-abelian category, and as A is pointed,
there is a zero object: an initial object which is also terminal. Thus we can form
kernels and cokernels. The kernel ker f : K[f ] −→ X of a map f : X −→ Y is the
pullback of 0 −→ Y along f , and dually the cokernel coker f : Y −→ Q[f ] is the
pushout of X −→ 0 along f . It can be shown that K[f ] = 0 iff f is a monomorphism,
and Q[f ] = 0 iff f is a regular epimorphism. Also, any regular epimorphism is the
cokernel of its kernel.

The zero object also gives us zero maps, which are maps that factor through 0.

Example 1.4. Any abelian category is semi-abelian, as is the category Gp of groups.
More generally, any variety of Ω-groups is semi-abelian: for instance, the categories
of non-unital rings, Lie algebras, (pre)crossed modules.

As hinted above, the basic homological diagram lemmas can be proved in any
semi-abelian category (see [3, 4]). But many other things that are true in an abelian
category do not hold in a semi-abelian one: the Hom-sets need not be abelian groups,
binary products do not coincide with binary coproducts in general, and maps cannot
in general be factored into a cokernel followed by a kernel. But as a semi-abelian
category is regular, we can factor any map f : X −→ Y into a regular epimorphism
(in fact, a cokernel) X −→ Im[f ] followed by a monomorphism im f : Im[f ] −→ Y .
This monomorphism is called the image of f . If it is a normal monomorphism, i.e.
the kernel of another map, f is called proper. This factorisation is unique up to
isomorphism, and it allows us to define exact sequences in a semi-abelian category.

Definition 1.5. A sequence of morphisms

X
f ,2 Y

g ,2 Z

is called exact (at Y ) if im f = ker g.

A sequence 0 −→ X −→ Y is exact iff the map X −→ Y is a monomorphism,
and X −→ Y −→ 0 is exact iff X −→ Y is a regular epimorphism. Note that a
non-proper map can never occur as the first map of an exact sequence.
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1.6. Homology in semi-abelian categories
As usual a chain complex is a sequence of maps (dn : Cn −→ Cn−1)n∈Z with

dn−1 ◦ dn = 0 for all n. A chain complex is called proper when all the maps dn are
proper maps.

Definition 1.7. [10] Let C be a proper chain complex in a semi-abelian cate-
gory. The n-th homology object HnC is the cokernel of d′n+1 : Cn+1 −→ K[dn], the
factorisation of dn+1 : Cn+1 −→ Cn over ker dn.

It is easy to see from the definition that C is exact at Cn if and only if HnC = 0.
Thus the homology gives us the usual detection of exactness. When talking about
homology, we only consider proper chain complexes, because otherwise this property
is false. Consider, for instance, the following example in the category of groups. In
Gp a monomorphism is normal iff it is the inclusion of a normal subgroup. Define a
chain complex by taking d1 to be the inclusion of A4 into A5, and all other objects
to be zero. Since A5 is simple, d1 is not proper, and all objects HnC are zero, but
clearly C is not exact at C0.

Given a simplicial object A = (An)n>0 (with face operators ∂i : An −→ An−1 for
i ∈ [n] = {0, . . . , n} and n ∈ N>0, and degeneracy operators σi : An −→ An+1, for
i ∈ [n] and n ∈ N, subject to the simplicial identities) in a semi-abelian category
A, we can define the homology of A by going via the Moore complex of A.

Definition 1.8. Let A be a simplicial object in a semi-abelian category A. The
Moore complex N(A) has as objects N0A = A0, N−nA = 0 and

NnA =
n−1⋂
i=0

K[∂i : An −→ An−1] = K[(∂i)i∈[n−1] : An −→ Ann−1],

for n > 1, and boundary maps dn = ∂n ◦
⋂
i ker ∂i : NnA −→ Nn−1A for n > 1.

The object of n-cycles is ZnA = K[dn] =
⋂n
i=0 K[∂i : An −→ An−1] for n > 1.

We write Z0A = A0.

The Moore complex of a simplicial object is always a proper chain complex [10,
Theorem 3.6]; thus we can define

HnA = HnN(A)

for a simplicial object A. In the abelian case, the homology of the Moore complex is
the same as the homology of the unnormalised chain complex C(A) of A, where
CnA = An and dn = ∂0 − ∂1 + · · ·+ (−1)n∂n.

Notice that the Moore complex and thus the homology of a simplicial object
only involve the face maps ∂i, and not the degeneracies σi. Thus in this context it is
enough to consider semi-simplicial maps between simplicial objects, i.e. maps that
commute with the ∂i but not necessarily with the σi.

1.9. Comonadic homology
Let C be an arbitrary category and

G = (G : C −→ C, δ : G =⇒ G2, ε : G =⇒ 1C)



Journal of Homotopy and Related Structures, vol. 2(1), 2007 113

a comonad on C. Given an object X in C, G gives rise to an augmented sim-
plicial object over X, where the objects are Gn+1X, and the maps are ∂i =
GiεGn−iX : Gn+1X −→ GnX and σi = GiδGn−iX : Gn+1X −→ Gn+2X. We write
GX for this simplicial object.

· · ·
,2,2,2,2 G

3X ,2 ,2,2 G2X
,2,2 GX ,2 X

Given a functor E : C −→ A into a semi-abelian category, it is then possible to form
the homology of the resulting simplicial object EGX. This naturally generalises
Barr-Beck comonadic homology [2] to the semi-abelian context:

Definition 1.10. [10] Let C be a category equipped with a comonad G and A a
semi-abelian category. Let E : C −→ A be a functor. For n > 1, the object

Hn(X,E)G = Hn−1NEGX

is the n-th homology object of X (with coefficients in E) relative to the
comonad G. This defines a functor Hn(−, E)G : C −→ A, for every n > 1.

The dimension shift here is not present in Barr and Beck’s original definition,
but was introduced in [10] to make it better adjusted to the non-abelian examples
(homology of groups, Lie algebras, crossed modules) which traditionally have a
shifted numbering. Definition 1.10 is consistent with the Hopf formulae [9] which
exist in the non-abelian case.

1.11. Technical lemmas
We now give some technical lemmas that hold in our context, which we will need

later on. The next lemma is true already in regular categories, and is taken from [8].
It will be used to show that a particular morphism is regular epic.

Lemma 1.12. Let A be a regular category. A map y : Z0 −→ Y factorises through
the image of a map f : X −→ Y if and only if there is a regular epimorphism
z : Z −→ Z0 and a map x : Z −→ X with yz = fx.

Remark 1.13. Of course, if we can show that every map y : Z0 −→ Y factorises
through the image of a given map f : X −→ Y , this map f is a regular epimor-
phism. Hence we can use Lemma 1.12 to show that a map f : X −→ Y is regular
epic by proving that, for every map y : Z0 −→ Y , there is a regular epimorphism
z : Z −→ Z0 and a map x : Z −→ X with yz = fx. Thus an argument which would
otherwise involve the use of projective objects (proving that f is a regular epimor-
phism by showing that every map y with a projective domain Z0 factors over f)
can be replaced by an argument which uses regular epimorphisms only, and thus
the requirement that enough projectives exist may be avoided. We use this in the
proof of Proposition 4.7.

Lemma 1.14. Let A be a pointed category. Consider the diagram

X ′ f ′ ,2

��

Y ′ � ,2

��

Q[f ′]

��
X

f
,2 Y

� ,2 Q[f ]
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where Q[f ] and Q[f ′] are the cokernels of f and f ′ respectively. If the left square is
a pushout, then the induced map between the cokernels is an isomorphism.

The next definition is slightly more general than the usual definition of a regular
pushout, where all the maps are demanded to be regular epimorphims [7, 8]. We
will need it in this more general form.

Definition 1.15. Let A be a semi-abelian category. A square in A with horizontal
regular epimorphisms

X ′ f ′ � ,2

x

��

Y ′

y

��
X

f

� ,2 Y

is called a regular pushout when the comparison map (x, f ′) : X ′ −→ X ×Y Y ′

to the pullback X ×Y Y ′ of y along f is a regular epimorphism. (The maps x and
y are not demanded to be regular epimorphisms.)

A regular pushout is always a pushout, but a pushout need not be a regular
pushout.

2. Simplicial resolutions

2.1. Projective classes
We need to consider simplicial resolutions relative to a chosen class of projectives.

Here we recall the definition of a projective class and give some examples.

Definition 2.2. Let C be a category, P an object and e : X −→ Y a morphism of
C. Then P is called e-projective, and e is called P -epic, if the induced map

Hom(P, e) = e ◦ (·) : Hom(P,X) −→ Hom(P, Y )

is a surjection. Let P be a class of objects of C. A morphism e is called P-epic if
it is P -epic for every P ∈ P; the class of all P-epimorphisms is denoted by P-epi.
Let E be a class of morphisms in C. An object P is called E-projective if it is
e-projective for every e in E ; the class of E-projective objects is denoted E-proj. C
is said to have enough E-projectives if for every object Y there is a morphism
P −→ Y in E with P in E-proj.

A projective class on C is a pair (P, E), P a class of objects of C, E a class of
morphisms of C, such that P = E-proj, P-epi = E and C has enough E-projectives.
Since, given a projective class (P, E), P and E determine each other, we will some-
times abusively write the projective class P or the projective class E .

It is easy to see that any retract of a projective object is also projective, as is
any coproduct of projectives.

Example 2.3. If E is the class of regular epimorphisms, P is called the class of
regular projectives. In a variety, the class of regular projectives is generated by
the free objects, hence there are enough projectives.
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2.4. The projective class generated by a comonad
The regular projectives in a variety C are also generated by the values of the

canonical comonad C, induced by the forgetful functor to Set. More generally, any
comonad on a category C generates a projective class:

Definition 2.5. Let G = (G, ε, δ) be a comonad on a category C. An object P in
C is called G-projective if it is in the projective class (PG, EG) generated by the
objects of the form GY . A map in EG is called a G-epimorphism.

The X-component εX : GX −→ X of the counit ε is always a G-epimorphism.
Indeed, any map f : GY −→ X factors over εX as Gf ◦ δY , because εX ◦Gf ◦ δY =
f ◦ εGY ◦ δY = f . It is now clear that C has enough projectives of this class, since
for any X we have εX : GX −→ X.

This definition coincides with the definition of G-projectives in [2]. There a G-
projective object is an object X which admits a map s : X −→ GX such that εXs =
1X . Indeed, if X ∈ P, then the identity on X factors over the P-epimorphism εX ,
which gives the splitting s.

2.6. The relative Kan property
A classical technical property simplicial sets may have is the Kan property. Kan

simplicial sets are exactly the fibrant ones (in the usual model structure on SSet)
and may be described as follows. Let S be a simplicial set and n > 1, k ∈ [n]
natural numbers. An (n, k)-horn in S is a sequence (si)i∈[n]\k of elements of Sn−1

satisfying ∂i(sj) = ∂j−1(si) for all i < j and i, j 6= k. A filler of an (n, k)-horn (si)i
is an element s of Sn satisfying ∂i(s) = si for all i 6= k. A simplicial set S is Kan
when every horn in S has a filler.

We need the simplicial objects in the category C to satisfy a similar property, but
relative to a chosen projective class P on C. We will say that a simplicial object A
is Kan (relative to P) when for every object P ∈ P the simplicial set Hom(P,A)
is Kan.

Example 2.7. If C is regular with enough regular projectives and P the induced
projective class, saying that A is Kan relative to P is the same as saying that the
simplicial object A is Kan, in the internal sense of [8]. Every simplicial object of
C has this Kan property if and only if C is a Mal’tsev category [8, Theorem 4.2].
Every semi-abelian category is Mal’tsev [6, 4]. Thus when C is semi-abelian, every
simplicial object is Kan with respect to the class of regular projectives.

Note, however, that C need not have enough projectives for the internal Kan
condition of [8] to make sense. Following Remark 1.13, the projective objects in the
definition of the relative Kan property given here may be replaced by an enlargement
of domain as in [8]. In case there are enough projectives, of course the two notions
do coincide.

Example 2.8. It is well known that the underlying simplicial set of a simplicial
group is always Kan. This may be seen as a consequence of the previous example, be-
cause the category Gp is a Mal’tsev variety and the forgetful functor U : Gp −→ Set
is represented by the group of integers Z.
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2.9. Simplicial resolutions
Since C is an arbitrary category (without any extra structure) and A is just semi-

abelian (rather than abelian), we have to be careful when considering simplicial
resolutions of objects of C. Definition 2.11 seems to suit our purposes.

Definition 2.10. Let A = (An)n>−1 be an augmented simplicial object. A con-
traction of A is a family of maps hn : An −→ An+1, for n > −1, which satisfy
∂0hn = 1An

and ∂ihn = hn−1∂i−1 for i > 0. A simplicial object that admits a
contraction is called contractible.

Definition 2.11. Let P be a projective class. A P-resolution of X is an aug-
mented simplicial object A = (An)n>−1 with A−1 = X, where An ∈ P for n > 0,
and for every object P ∈ P the augmented simplicial set Hom(P,A) is Kan and
contractible.

In this paper, we focus on simplicial resolutions in a category C which are
generated by a comonad G on C. For any G-projective object P , the simplicial
set Hom(P,GX) is contractible: choose a splitting s for εP : GP −→ P ; given a
map f : P −→ Gn+1X, define hn(f) = Gf ◦ s : P −→ Gn+2X. The morphisms
hn : Hom(P,Gn+1X) −→ Hom(P,Gn+2X) then satisfy ∂0hn = 1Hom(P,Gn+1X) and
∂ihn = hn−1∂i−1 for i > 0. Thus they give a contraction of the simplicial set
Hom(P,GX). Later we assume that the category C and the projective class P gen-
erated by G are such that GX is Kan relative to P for any object X, so that GX
is a P-resolution of X.

In the case when C is a category with finite limits, there exists another definition
of simplicial resolution, using simplicial kernels. We give the definition of simplicial
kernels here so that we can relate our Comparison Theorem of the next section with
that of Tierney and Vogel [12].

Definition 2.12. [12] Let

(fi : X −→ Y )06i6n

be a sequence of n + 1 morphisms in the category C. A simplicial kernel of
(f0, . . . , fn) is a sequence

(ki : K −→ X)06i6n+1

of n + 2 morphisms in C satisfying fikj = fj−1ki for 0 6 i < j 6 n + 1, which is
universal with respect to this property. In other words, it is the limit for a certain
diagram in C.

For example, the simplicial kernel of one map is just its kernel pair. If C has finite
limits, simplicial kernels always exist. We can then factor any augmented simplicial
object through its simplicial kernels as follows:

· · ·
,2 ,2,2,2

�%B
BB

BB
BB

B A2
,2,2,2

�%B
BB

BB
BB

B A1
,2,2

�%B
BB

BB
BB

B A0
,2 A−1

K3

9C||||||||

9C||||||||

9C||||||||

9C||||||||
K2

9C||||||||

9C||||||||

9C||||||||
K1

9C||||||||

9C||||||||
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Here the Kn+1 are the simplicial kernels of the maps (∂i)i : An −→ An−1. This gives
a definition of P-exact simplicial objects:

Definition 2.13. [12] Let P be a projective class. An augmented simplicial object
A = (An)n>−1 is called P-exact when the comparison maps to the simplicial kernels
and the map ∂0 : A0 −→ A−1 are P-epimorphisms.

Remark 2.14. It can be shown that for any P-exact simplicial object A, the
simplicial set Hom(P,A) is contractible for any P ∈ P. We will call this property
of A relative contractability.

A resolution in the Tierney-Vogel sense is then a P-exact augmented simplicial
object A in which all objects An for n > 0 are in the projective class P. For their
definition they need the presence of simplicial kernels, so they have to assume for
example that the category C has finite limits. In our definition all assumptions are
on the comonad G or rather the induced projective class P, and not on the category
C. In the next section we will make clear the connections between our definition and
theirs.

3. The Comparison Theorem

Let P be a projective class on C.

Lemma 3.1. Let P ∈ P, and let A be an augmented simplicial object for which
the augmented simplicial set Hom(P,A) is contractible and Kan. Let n > 0. Given
a sequence of maps (ai : P −→ An−1)i∈[n] satisfying ∂iaj = ∂j−1ai for i < j, there
is a map a : P −→ An with ∂ia = ai.

Proof. Define the maps bi+1 = hn−1(ai), where (hn)n>−1 is the contraction of
the simplicial set Hom(P,A). These maps satisfy ∂0bi+1 = ai, and also ∂jbi+1 =
∂i+1bj+1 for i < j 6 n, since (∂jhn−1)(ai) = hn−2(∂j−1ai), and ∂j−1ai = ∂iaj for
i < j.

a2

a0

a1

Thus they form an (n+1, 0)-horn in the simplicial set Hom(P,A), and since we are
assuming that this simplicial set is Kan, this horn has a filler b : P −→ An+1. This
gives the required map a = ∂0b.

Remark 3.2. This lemma shows that in the presence of finite limits our P-
resolutions are also simplicial resolutions in the sense of Tierney and Vogel [12];
that is, the comparison maps to the simplicial kernels are P-epimorphisms. To-
gether with Remark 2.14 we see that P-exactness and relative contractibility are
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equivalent in the situation when we have finite limits and any simplicial object is
Kan relative to P. So if C has finite limits, the Comparison Theorem 2.4 from [12]
is more general than the one following in this section, but in the absence of finite
limits our Comparison Theorem still works.

We now prove our Comparison Theorem using the above lemma.

Theorem 3.3 (Comparison Theorem). Let P be a simplicial object over X with
each Pi ∈ P, and let A be a simplicial object over Y , for which all the augmented
simplicial sets Hom(Pi, A) are contractible and Kan. Then any map f : X −→ Y
can be extended to a semi-simplicial map f : P −→ A, and any two such extensions
are simplicially homotopic.

Proof. We construct this semi-simplicial map inductively, using Lemma 3.1.

· · ·
,2 ,2,2,2 P2

f2

��

,2,2,2 P1

f1

��

,2,2 P0

f0

��

,2 X

f−1=f

��
· · ·

,2,2,2,2 A2
,2,2,2 A1

,2,2 A0
,2 Y

Suppose the maps fj : Pj −→ Aj are given for −1 6 j < n, and commute appropri-
ately with the ∂i. This gives us n+1 maps ai : Pn −→ An−1, where i ∈ [n], by com-
posing the ∂i : Pn −→ Pn−1 with fn−1. These maps satisfy ∂iaj = ∂j−1ai for i < j,
since ∂ifn−1 = fn−2∂i, and the ∂j in P satisfy the simplicial identities. Thus we can
use Lemma 3.1 to obtain the map fn : Pn −→ An such that ∂ifn = ai = fn−1∂i.

Now suppose f : P −→ A and g : P −→ A are two semi-simplicial maps commut-
ing with f : X −→ Y . We construct a homotopy hni : Pn −→ An+1 for n > 0 and
0 6 i 6 n, which satisfies ∂0h

n
0 = fn, ∂n+1h

n
n = gn and

∂ih
n
j =


hn−1
j−1 ∂i for i < j

∂ih
n
i−1 for i = j 6= 0

hn−1
j ∂i−1 for i > j + 1.

h0
0 can be constructed using Lemma 3.1. Suppose the hkj exist for k < n and com-

mute appropriately with the ∂i. Then hn0 must satisfy ∂0h
n
0 = fn, ∂1h

n
0 = ∂1h

n
1 and

∂ih
n
0 = hn−1

0 ∂i−1 for i > 1. Of these maps, all are known except for ∂1h
n
1 . Setting

a0
0 = fn and a0

i = hn−1
0 ∂i−1 for i > 1, we form an (n + 1, 1)-horn in Hom(Pn, A).

A filler for this horn gives hn0 , and also a0
1 = ∂1h

n
1 , which is needed for the next

step. Now suppose hnj are given for j < l, and we have al−1
l = ∂lh

n
l = ∂lh

n
l−1.

Then ali = hn−1
l−1 ∂i for i < l, all = al−1

l and ali = hn−1
l ∂i−1 for i > l + 1 form an

(n + 1, l + 1)-horn. A filler for this gives hnl and all+1 = al+1
l+1 for the next step. In

the last step we have ani = hn−1
n−1∂i for i < n, ann = an−1

n = ∂nh
n
n−1 and ann+1 = gn.

Then we use Lemma 3.1 again to get hnn.



Journal of Homotopy and Related Structures, vol. 2(1), 2007 119

4. Comonads generating the same projective class

4.1. Homotopy equivalence
In this section we will assume that the category C and the projective class P

generated by the comonad G are such that any augmented simplicial object A
which is relatively contractible is also Kan relative to P. In particular the simplicial
object GX is Kan relative to P for any object X. We will call such a projective
class P a Kan projective class on C. Thus when G generates a Kan projective
class, and K is a second comonad which generates the same projective class, the
simplicial object KX is automatically also Kan relative to P.

Lemma 4.2. Let G and K be two comonads on C which generate the same Kan
projective class P. Then the simplicial objects GX and KX are homotopically equiv-
alent for any object X.

Proof. Our assumptions on C and P imply that for any object X, the simplicial
objects GX and KX are both P-resolutions of X. Thus we can use the Comparison
Theorem 3.3 to get semi-simplicial maps f : GX −→ KX and g : KX −→ GX which
commute with the identity on X.

· · ·
,2,2,2,2 G

3X

f2

��

,2,2,2 G2X

f1

��

,2,2 GX

f0

��

,2 X

1X

��
· · ·

,2,2,2,2 K
3X

g2

��

,2,2,2 K2X

g1

��

,2,2 KX

g0

��

,2 X

1X

��
· · ·

,2,2,2,2 G
3X ,2 ,2,2 G2X

,2,2 GX ,2 X

Using the second part of the Comparison Theorem we see that both fg and gf
are homotopic to the identity on KX and GX respectively. Thus GX and KX are
homotopically equivalent.

Remark 4.3. In this case we don’t actually need the full strength of the second
half of Lemma 3.3. For any semi-simplicial map f : GX −→ GX which commutes
with the identity on X, we can use the homotopy hni = (Gi+1fn−i)σi to see it is
homotopic to the identity on GX.

4.4. Simplicially homotopic maps in semi-abelian categories
Given a functor E : C −→ A, the simplicial objects EGX and EKX are still

homotopically equivalent. We now show that, when A is a semi-abelian category,
two simplicially homotopic semi-simplicial maps induce the same map on homology
(see also [13]). For this we need to define a special simplicial object, so that all the
maps that form a simplicial homotopy are taken together to form a single semi-
simplicial map. We do this by defining the following limit objects AIn.

Notation 4.5. Suppose that A has finite limits and let A be a simplicial object
in A. Put AI0 = A1 and, for n > 0, let AIn be the limit (with projections pr1,. . . ,
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prn+1 : AIn −→ An+1) of the zigzag

An+1

∂1
�$?

??
??

??
??

An+1

∂1
z���

��
��

��
�

∂2
�$?

??
??

??
??

· · ·
z� �$

An+1

∂n
z���

��
��

��
�

An An An

in A.
Let ε0(A)n, ε1(A)n : AIn −→ An and s(A)n : An −→ AIn denote the morphisms

respectively defined by

ε0(A)0 = ∂0

ε0(A)n = ∂0pr1,
ε1(A)0 = ∂1

ε1(A)n = ∂n+1prn+1,
and s(A)n = (σ0, . . . , σn).

Proposition 4.6. Let A be a simplicial object in a finitely complete category A.
Then the faces ∂Ii : AIn −→ AIn−1 and degeneracies σIi : AIn −→ AIn+1 given by

∂I0 = ∂0pr2 : AI1 −→ AI0

∂I1 = ∂2pr1 : AI1 −→ AI0

σI0 = (σ1, σ0) : AI0 −→ AI1

prj∂
I
i =

{
∂i+1prj if j 6 i

∂iprj+1 if j > i
: AIn −→ An

prkσ
I
i =

{
σi+1prk if k 6 i+ 1
σiprk−1 if k > i+ 1

: AIn −→ An+2,

for i ∈ [n], 1 6 j 6 n and 1 6 k 6 n + 2, determine a simplicial object AI . The
morphisms mentioned in Notation 4.5 above form simplicial morphisms

ε0(A), ε1(A) : AI −→ A and s(A) : A −→ AI

such that ε0(A) ◦ s(A) = 1A = ε1(A) ◦ s(A). In other words, (AI , ε0(A), ε1(A), s(A))
forms a cocylinder on A.

Two semi-simplicial maps f, g : B −→ A are simplicially homotopic if and only
they are homotopic with respect to the cocylinder (AI , ε0(A), ε1(A), s(A)): there ex-
ists a semi-simplicial map h : B −→ AI satisfying ε0(A) ◦ h = f and ε1(A) ◦ h =
g.

Using a Kan property argument, we now give a direct proof that homotopic
semi-simplicial maps have the same homology.

Proposition 4.7. Let A be a simplicial object in a semi-abelian category A; con-
sider

ε0(A) : AI −→ A.

For every n ∈ N, Hnε0(A) is an isomorphism.

Proof. Recall that in a semi-abelian category every simplicial object is Kan, relative
to the class of regular epimorphisms. Using the Kan property, we show that the



Journal of Homotopy and Related Structures, vol. 2(1), 2007 121

commutative diagram

Nn+1A
I

Nn+1ε0(A) � ,2

d′n+1

��

Nn+1A

d′n+1

��
ZnAI Znε0(A)

� ,2 ZnA

is a regular pushout (see Definition 1.15); then it is a pushout, and Lemma 1.14
implies that the induced map HnA

I −→ HnA is an isomorphism. Consider mor-
phisms z : Y0 −→ ZnAI and a : Y0 −→ Nn+1A that satisfy d′n+1 ◦ a = Znε0(A) ◦ z.
It is enough to show that there exist a regular epimorphism y : Y −→ Y0 and a
morphism h : Y −→ Nn+1A

I satisfying d′n+1 ◦ h = z ◦ y and Nn+1ε0(A) ◦ h = a ◦ y:
this implies that the comparison map to the pullback is a regular epimorphism, by
Lemma 1.12 and the fact that the morphisms of a limit cone form a jointly monic
family.

We first sketch the geometric idea of this in the case n = 0. Consider a = a0 and
z = z0 as in Figure 1; then (up to enlargement of domain) using the Kan property
twice yields the needed (h0, h1) in N1A

I .

a

z

0

Z0ε0(A) ◦ z = d′
1 ◦ a

0

h1

h0

Figure 1: Using the Kan property twice to obtain (h0, h1) in N1A
I .

For arbitrary n, write

a0 =
⋂
j

ker ∂j ◦ a : Y0 −→ An+1,

and (z0, . . . , zn) =
⋂
j ker ∂j ◦ z. Note that as z : Y0 −→ ZnAI , we have ∂Ii z = 0 for

i ∈ [n], which implies ∂izj−1 = 0 for i < j − 1 and i > j, where 1 6 j 6 n+ 1. We
also have ∂jzj−1 = ∂jzj for 1 6 j 6 n from the definition of the objects AIn. The
map a0 in turn satisfies ∂ia0 = 0 for i ∈ [n], and ∂n+1a0 = ∂0z0. This last equality
follows from d′n+1 ◦ a = Znε0(A) ◦ z.

Suppose we have regular epimorphisms yk : Yk −→ Yk−1 for 1 6 k 6 n + 2, and
morphisms hk−1 : Yk −→ An+2 satisfying ∂i ◦ hk−1 = 0 for 1 6 k 6 n + 2 and
i /∈ {k − 1, k, n + 2}, and ∂n+2hk−1 = zk−1y1 · · · yk for 1 6 k 6 n + 1, and also
∂0h0 = a0y1. We set y = y1 ◦ · · · ◦ yn+2. This gives us the required map

h = (h0 ◦ y2 ◦ · · · ◦ yn+2, . . . , hn+1) : Yn+2 −→ Nn+1A
I

which satisfies d′n+1 ◦ h = z ◦ y and Nn+1ε0(A) ◦ h = a ◦ y.
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We construct these maps yk and hk inductively. To get h0 we form an (n+ 2, 1)-
horn (bi : Y0 −→ An+1)i of A by setting b0 = a0, bn+2 = z0 and bi = 0 for 1 <
i < n+ 2. A filler for this horn gives y1 : Y1 −→ Y0 and h0 : Y1 −→ An+2 satisfying
∂0h0 = a0y1. Now suppose for 1 6 k 6 n + 1 we have ak = ∂khk−1 : Yk −→ An+1

with ∂i ◦ ak = 0 for i ∈ [n], and ∂n+1ak = ∂kzk−1y1y2 · · · yk. Then we can form an
(n + 2, k + 1)-horn by setting bk = ak, bn+2 = zky1 · · · yk and bi = 0 for i < k and
k + 1 < i < n+ 2, which induces yk+1 and hk with the desired properties.

Remark 4.8. A homology functor Hn involves an implicit choice of colimits: the
cokernels involved in the construction of the HnA. We may, and from now on we
will, assume that these colimits are chosen in such a way that Hnε0(A) is an identity
instead of just an isomorphism. This gives us the equality in the next corollary.

Corollary 4.9. If f ' g then, for any n ∈ N, Hnf = Hng.

Proof. Proposition 4.7 states that Hnε0(A) is an isomorphism; by a careful choice of
colimits in the definition of Hn, we may assume that Hnε0(A) = 1HnA = Hnε1(A).

A

B
h ,2

g
.4

f *0

AI
ε1(A)

4<ppppppppppppp

ε0(A)

"*NNNNNNNNNNNNN As(A)lr

A

If now h is a homotopy f ' g, then Hnf = Hnε0(A) ◦ Hnh = Hnε1(A) ◦ Hnh =
Hng.

4.10. Isomorphism between the homology functors
Using the above, we can now prove our Main Theorem.

Theorem 4.11. Let G and K be two comonads on C which generate the same Kan
projective class P. Let E : C −→ A be a functor into a semi-abelian category. Then
the functors Hn(−, E)G and Hn(−, E)K from C to A are isomorphic for all n > 1.

Proof. It follows from Lemma 4.2 that the simplicial objects EGX and EKX are
homotopically equivalent. Thus Corollary 4.9 implies that Hn(X,E)G ∼= Hn(X,E)K.
Given a map f : X −→ Y , the two semi-simplicial maps

GX ,2 KX
Kf ,2 KY and GX

Gf ,2 GY ,2 KY
are both semi-simplicial extensions of f , so they are homotopic by the Comparison
Theorem 3.3. Again using Corollary 4.9, we see that the square

HnGX
HnGf ,2

∼=
��

HnGY

∼=
��

HnKX
HnKf

,2 HnKY
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commutes, which proves that the isomorphisms are natural.

Remark 4.12. In fact, the above isomorphism is also natural in the second variable.
If α : E =⇒ F is a natural transformation, then the square

Hn(X,E)G
∼= ,2

Hn(X,α)G

��

Hn(X,E)K

Hn(X,α)G

��
Hn(X,F )G ∼=

,2 Hn(X,F )K

also commutes, since

EGX ,2

αGX

��

EKX

αKX

��
FGX ,2 FKX

already commutes.

Remark 4.13. We could define homology just using a projective class instead of
a comonad, since the Comparison Theorem and Corollary 4.9 imply that any P-
resolution of X will give the same homology. Consider for example the following
(Tierney-Vogel) resolution in a category with finite limits:

Given an object X, there is a P-projective object X0 with a P-epimorphism
∂0 : X0 −→ X, since there are enough P-projectives. We can call this a presentation
of X. Take the kernel pair of ∂0, and take the presentation of the resulting object to
get X1. Composition gives two maps ∂0 and ∂1 to X0, and we can take the simplicial
kernel of these and the presentation of the resulting object to get X3 and so on.
This gives a resolution in the Tierney-Vogel sense [12]. When P is a Kan projective
class, it is also a P-resolution in our sense and thus gives the same homology. This
resolution is often easier to work with than the functorial GX.

5. Examples

We first give some examples of categories C and comonads G which generate a
Kan projective class, and then give a specific example in the category of R-modules
of two comonads giving the same projective class.

5.1. Some valid contexts
If C is an additive category, our condition on the projective class P is easily

satisfied by any comonad on C, since then for any simplicial object A and any object
P , the simplicial set Hom(P,A) is actually a simplicial group and thus Kan (cf.
Example 2.8). This includes many of the examples in Barr and Beck’s paper [2], for
example the comonad G on the category R-Mod of (left) R-modules generated by the
forgetful/free adjunction to Set, the forgetful/free comonad on the category Comm
of commutative rings, and also the comonad on the category K-Alg of associative
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K-algebras generated by the forgetful functor to K-Mod. See [2] for more additive
examples.

When C is a regular category and the projective class P is the class of regular
projectives, as remarked in Section 2.6 saying that a simplicial object A is Kan
relative to P is the same as saying A is internally Kan in C. Thus when C is also
Mal’tsev, every simplicial object is Kan [8, Theorem 4.2], and GX is a P-resolution.
This includes the forgetful/free comonads on the category Gp of groups, Rng of non-
unital rings, XMod of crossed modules, etc.

Given a comonad G on a category C which comes from an adjunction

C

U �$?
??

??
??

G ,2 C

D
F

:D�������

we can determine the class of morphisms of the projective class (P, E) generated by
G in the following way:

Given an object A and a morphism e : B −→ C in C, the diagram

GA

f

��
B

e ,2 C

corresponds via the adjunction to

UA

��
UB

Ue ,2 UC

If e is in E , by choosing A = C and f = εC , we see that Ue must be split in
D, since εC corresponds under the adjunction to 1UC . Conversely if Ue is a split
epimorphism in D, we can factor any map UA −→ UC over Ue, which implies that
we can factor any map f : GA −→ C over e in C, thus e ∈ E . Therefore the class E
is exactly the class of morphisms whose images under U are split in D. Thus when
C is a variety and U is the forgetful functor to Set, we will always get the class of
regular projectives on C.

5.2. Two comonads on R-Mod

Given a ring homomorphism φ : S −→ R, every R-module can also be considered
as an S-module by restricting the R-action to S via φ. This gives rise to an adjunc-
tion R⊗S (−) a HomR(R,−) between the categories of modules, where R is viewed
as an S-module.

We now consider the following situation: Let S1 and S2 be Morita-equivalent
rings, where the equivalence between S1-Mod and S2-Mod is induced by a ring
homomorphism ψ : S1 −→ S2. Let R be another ring, with ring homomorphisms as
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below which make the diagram commute:

S1
φ1

!*MMMMMMMM

ψ

��

R

S2

φ2
4=qqqqqqqq

For each i = 1, 2 this gives us a comonad on R-Mod using the adjunction above:

R-Mod

Ui  )KKKKKKKKKK
Gi ,2 R-Mod

Si-Mod

R⊗Si
(−)

5>ssssssssss

We write Ui for the forgetful functor HomR(R,−) from R-modules to Si-modules.
As seen above the projective class generated by Gi is given by the class of maps in

R-Mod which are split as Si-module maps. Since ψ induces an equivalence between
S1-Mod and S2-Mod, any R-module map e has the property that U1(e) is split if
and only if U2(e) is split. Thus the comonads G1 and G2 induce the same projective
class, and thus give rise to the same homology on R-Mod. As mentioned in [2] this
homology is Hochschild’s S-relative Tor; so we see we get the same relative Tor
functor for two Morita equivalent rings when the equivalence is induced by a ring
homomorphism.

6. Acknowledgements

We would like to thank Tomas Everaert, Alexander Frolkin, Martin Hyland,
Peter Johnstone and Alexander Shannon for useful comments and suggestions.

References

[1] M. Barr, Exact categories, Exact categories and categories of sheaves, Lecture
notes in mathematics, vol. 236, Springer, 1971, pp. 1-120.

[2] M. Barr and J. Beck, Homology and standard constructions, Seminar on
triples and categorical homology theory, Lecture notes in mathematics,
vol. 80, Springer, 1969, pp. 245-335.

[3] F. Borceux, A survey of semi-abelian categories, Galois Theory, Hopf Alge-
bras, and Semiabelian Categories (G. Janelidze, B. Pareigis, and W. Tholen,
eds.), Fields Institute Communications Series, vol. 43, American Mathemat-
ical Society, 2004, pp. 27-60.

[4] F. Borceux and D. Bourn, Mal’cev, protomodular, homological and semi-
abelian categories, Mathematics and its Applications, vol. 566, Kluwer Aca-
demic Publishers, 2004.

[5] D. Bourn, Normalization equivalence, kernel equivalence and affine categories,
Category Theory, Proceedings Como 1990 (A. Carboni, M. C. Pedicchio, and



Journal of Homotopy and Related Structures, vol. 2(1), 2007 126

G. Rosolini, eds.), Lectures notes in mathematics, vol. 1488, Springer, 1991,
pp. 43-62.

[6] D. Bourn, Mal’cev categories and fibration of pointed objects,
Appl. Categ. Struct. 4 (1996), 307-327.

[7] D. Bourn, The denormalized 3×3 lemma, J. Pure Appl. Algebra 177 (2003),
113-129.

[8] A. Carboni, G. M. Kelly, and M. C. Pedicchio, Some remarks on Maltsev and
Goursat categories, Appl. Categ. Struct. 1 (1993), 385-421.

[9] T. Everaert, M. Gran, and T. Van der Linden, Higher Hopf formulae for
homology via Galois Theory, preprint math.AT/0701815, 2007.

[10] T. Everaert and T. Van der Linden, Baer invariants in semi-abelian categories
II: Homology, Theory Appl. Categ. 12 (2004), no. 4, 195-224.

[11] G. Janelidze, L. Márki, and W. Tholen, Semi-abelian categories, J. Pure
Appl. Algebra 168 (2002), 367-386.

[12] M. Tierney and W. Vogel, Simplicial resolutions and derived functors,
Math. Z. 111 (1969), no. 1, 1-14.

[13] T. Van der Linden, Homology and homotopy in semi-abelian categories,
Ph.D. thesis, Vrije Universiteit Brussel, 2006.

This article may be accessed via WWW at http://jhrs.rmi.acnet.ge

Julia Goedecke
julia.goedecke@cantab.net

DPMMS
University of Cambridge
Wilberforce Road
Cambridge CB3 0WB
United Kingdom

Tim Van der Linden
tvdlinde@vub.ac.be

Vakgroep Wiskunde
Vrije Universiteit Brussel
Pleinlaan 2
1050 Brussel
Belgium


