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Abstract
Kasparov KK-groups KK(A,B) are represented as homo-

topy groups of the Pedersen-Weibel nonconnective algebraicK-
theory spectrum of the additive category of Fredholm (A,B)-
bimodules for A and B, respectively, a separable and σ-unital
trivially graded real or complex C∗-algebra acted upon by a
fixed compact metrizable group.

dedicated to Hvedri Inassaridze

Introduction

In noncommutative topology and differential geometry some of the useful and
powerful tools are methods of algebraic K-theory, Kasparov’s KK-theory, spectra
and so on. Therefore a comprehensive study of relationships between them may be
considered as an interesting task. The main goal of this paper is characterization of
Kasparov KK-groups as algebraic K-groups of an additive category. On first view,
calculation of the KK-theory by algebraic K-theory seems to be highly improbable,
as algebraic K-theory and KK-theory are independent, highly nontrivial, theories,
having almost no connections with each other. The key is thus to find suitable
objects which make sense for both algebraic K-theory and KK-theory. In this
paper we concentrate on the additive C∗-category Rep(A,B), namely the category
of Fredholm modules, where A is a separable and B is a σ-unital real or complex
C∗-algebra with action of a fixed compact second countable group. Our main result
claims the natural isomorphisms

Ka
n(Rep(A;B)) ' KKn−1(A;B),

where Ka
n denote the algebraic K-functors isomorphic to Quillen’s K-functors in

nonnegative dimensions, and isomorphic to Pedersen-Weibel K-functors in negative
dimensions.

There are already several papers dedicated to interpretations of KK-theory, each
with their own advantages. Let us point out in brief some fundamental papers of this
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sort which are sources of further research. These are G. Kasparov’s interpretation
of KK-theory in terms of extensions of C∗-algebras [24]; J. Cuntz’s result in [6],
based on the homotopy category of C∗-algebras; N. Higson’s approach, considering
KK-theory as an universal enveloping additive category of the category of separable
C∗-algebras [6]; the interpretation of the KK-theory with the aid of the category
of C∗-algebras and asymptotic homomorphisms, due to A. Connes and N. Higson
[4], and R. Meyer’s and R. Nest’s joint paper [25], where Kasparov category KK
turned into a triangulated category.

Let us shortly review some known results in KK-theory established by methods
of topological K-theory and spectra.

In [29] E. K. Pedersen and C. Weibel showed that values on finite CW -complexes
X of the homology theory associated with the nonconnective algebraic K-theory
spectrum of a unital ring R may be interpreted as the algebraic K-groups (up to a
shift in dimension) of a suitably constructed additive category CO(X)(R). According
to this result, in [31] J. Rosenberg showed that

K1(CO(X)(R)) ' KK(C(X), R)

for a unital C∗-algebra R. He also constructed algebraic KK-theory spectra, de-
noted by KK(A,B), having the property

π0(KK(A,B)) ' KK(A,B).

The similar question for nonzero dimensions has been left open in that paper.
In [12], there have been constructed KKtop(C0(X), B)-spectra, related to Kas-

parov groups KKn(C0(X), B), which were used to construct the splitting assembly
map

A : KKtop(C0(X), B) → Ktop(C∗(X)),

where C∗(X) is the C∗-algebra of the coarse space X. A large number of results on
the Novikov conjecture can be included under this scheme [12].

More general approaches to non-equivariant KK-theory as homotopy groups of a
spectrum can be found in the following papers. These are, [13], where
T. G. Houghton-Larsen and K. Thomsen, utilizing spaces of C∗-extensions, have
constructed KK-theory spectra; and [26], where P. Mitchener, using methods of
topological K-theory, symmetric spectra and C∗-categories has defined KK-theory
spectra, too.

Let us make few remarks concerning our approach. In [16], [19] we have calcu-
lated topological and Karoubi-Villamayor K-groups of the C∗-category Rep(A,B)
which are related to KK-groups by the equalities

Kt
n(Rep(A,B)) = KKV

n (Rep(A,B)) = KKn−1(A,B), n > 0, (0.1)

where A and B are G-C∗-algebras, separable and σ-unital respectively. Thus the
additive C∗-category Rep(A,B)) is a good object for our purposes at first sight.

In the article [17] it was announced that an isomorphism similar to 0.1 for alge-
braic K-groups also holds, as well. The present paper is an attempt to explain in
detail the results announced in [17]. As a consequence construction of a nonconnec-
tive algebraic KK-theory spectrum KKalg(A,B) = K(Rep(A,B)) arises, where the
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right hand side is the Pedersen-Weibel nonconnective algebraic K-theory spectrum
of the idempotent-complete additive category Rep(A,B). This spectrum has the
property

πn(KKalg(A,B)) ' KKn−1(A,B),

for all n ∈ Z. In a further paper we hope to apply the algebraic KK-theory spectra,
in particular, to problems related to the Novikov conjecture. Our approach is mainly
based on the author’s unpublished preprint [20].

1. The main Theorem and an outline of the proof

The purpose of this section is to summarize some of the concepts that are needed
for the formulation of the main theorem, and then to give an outline of the proof.
First, we recall the definitions of a C∗-category and an idempotent-compete C∗-
category; and in Subsection 1.1 an idempotent-complete C∗-category Rep(A,B) is
constructed that we will need later on.

Let A be a category such that for any pair (a, b) of objects in A, the set hom(a, b)
is equipped with the structure of a Banach space in such a way that composition
is a continuous k-bilinear map. Such a category is said to be a Banach category
over k, or simply a Banach category. A Banach category A is called a C∗-category
if it is equipped with a family of anti-linear maps ∗ : hom(a, b) → hom(b, a) for any
a, b ∈ Ob(A) such that

1. (f∗)∗ = f ;
2. (fg)∗ = g∗f∗, if fg exists;
3. ‖f∗‖ = ‖f‖;
4. ‖f∗f‖ = ‖f‖2, if k is the complex numbers; and ‖f‖2 6 ‖f∗f + g∗g‖2, if k is

the real numbers.
5. For any morphism f : a → b in A the morphism f∗f is a positive element of

the C∗-algebra hom(a, a).
Let A and B be C∗-categories. A functor F : A→ B is said to be a ∗-functor if
• F(f + g) = F(f) + F(g);
• F(λf) = λF(f);
• F(f∗) = F∗,

where λ ∈ k, and f and g are morphisms in A. (cf. [3], [16], [18]).
We say that a ∗-functor is faithful if it is injective on both objects and morphisms.

Any ∗-functor is norm-nonincreasing. Moreover, a faithful ∗-functor preserves norms
[3].

The category H(k) of separable Hilbert spaces and bounded linear maps has
a natural structure of a C∗-category. There exists a faithful ∗-functor from every
C∗-category into H(k).

Let A be a C∗-category and I ⊂ homA. Put homI(a, b) = hom(a, b)∩I. Then I is
called a left ideal if homI(a, b) is a linear subspace of hom(a, b) and f ∈ homI(a, b),
g ∈ hom(b, c) imply gf ∈ homI(a, c). A right ideal is defined similarly. I is a two-
sided ideal if it is both a left and a right ideal. An ideal I is closed if hom(a, b)I
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is closed in hom(a, b) for each pair of objects. A closed two-sided ideal I is called
a C∗-ideal if I = I∗. Every C∗-ideal determines an equivalence relation on the
morphisms of A: f ∼ g if f − g ∈ I; the set of equivalence classes A/I can be made
into a C∗-category in a unique way by requiring that the canonical map f 7→ f̂ gives
rise to a ∗-functor A → A/I. Arguing as for C∗-algebras, one can show that every
closed ideal is a C∗-ideal [3]. Among the C∗-categories containing I as a C∗-ideal
there exists a universal one, the so called multiplier C∗-category. We will denote by
M(I) the multiplier C∗-category of a C∗-ideal I [3].

Let A be an additive category. Idempotent completion of A is an additive category
Â whose objects have the form (a, q), where a is an object in A and q is an idem-
potent in hom(a, a), and a morphism f : (a, q) → (a′, q′) is a morphism f : a → a′

such that fq = q′f = f . There is a natural functor A→ Â, defined by assignments
a 7→ (a, 1a) and f 7→ f . An additive category B is said to be idempotent-complete
if there are an additive category A, and an additive functor F : B → Â which is an
equivalence of categories.

Note that for an additive C∗-category A the category Â is not necessarily a
C∗-category. Below we will adapt the above construction to the case of additive
C∗-categories.

Recall that a projection p in a C∗-category is a morphism with the properties
p∗ = p and p2 = p, i. e., a projection is a selfadjoint idempotent.

Let A be an additive C∗-category. Consider the additive C∗-category Ã with
objects of the form (a, p), where a ∈ Ob(A) and p ∈ hom(a, a) is a projection. A
morphism from (a, p) to (b, q) is a morphism f : a→ b in A such that fp = qf = f .
Composition of morphisms is the same as in A. The sum is given by (a, p)⊕ (b, q) =
(a⊕b, p⊕q), and the norm of morphisms is inherited from A [16]. There is a natural
functor ν : Ã→ Â defined by identity maps on objects and morphisms.

Let us show the following simple lemma.

Lemma 1.1. Let A be an additive C∗-category. Then Ã is an idempotent-complete
C∗-category.

Proof. Consider the natural additive functor ν : Ã→ Â, which is, of course, faithful.
Let us show that ν is a full functor. Indeed, if q ∈ hom(a, a) is an idempotent then

p = ((2q∗ − 1)(2q − 1) + 1)
1
2 · q · ((2q∗ − 1)(2q − 1) + 1)−

1
2

is a projection and the pairs (a; q) and (a; p) are isomorphic in Â via the morphism

p((2q∗ − 1)(2q − 1) + 1)
1
2 q.

Now, we define examples of additive C∗-categories which are used in the remain-
ing part of paper.

1.1. On additive C∗-categories Rep(A,B) and Rep(A,B)
Let HG(B) be the additive C∗-category of countably generated right Hilbert B-

modules equipped with a B-linear, norm-continuous G-action over a fixed compact
second countable group G [23]. Note that the compact group acts on the morphisms
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by the following rule: for f : E → E′ the morphism gf : E → E′ is defined by the
formula (gf)(x) = g(f(g−1(x))).

The category HG(B) contains the class of compact B-homomorphisms [23]. De-
note it by KG(B). Known properties of compact B-homomorphisms imply that
KG(B) is a C∗-ideal [3] in HG(B).

Objects of the category Rep(A,B) are pairs of the form (E,ϕ), where E is an
object inHG(B) and ϕ : A→ L(E) is an equivariant ∗-homomorphism. A morphism
f : (E, φ) → (E′, φ′) is a G-invariant morphism f : E → E′ in HG(B) such that

fφ(a)− φ′(a)f ∈ KG(E,E′)

for all a ∈ A. The structure of a C∗-category is inherited from HG(B). It is easy to
see that Rep(A,B) is an additive C∗-category, not idempotent-complete.

Now, we are ready to construct our main C∗-category, that is Rep(A,B). Objects
of it are triples (E, φ, p), where (E, φ) is an object and p : (E, φ) → (E, φ) is a
morphism in Rep(A,B) such that p∗ = p and p2 = p. A morphism f : (E, φ, p) →
(E′, φ′, p′) is a morphism f : (E, φ) → (E′, φ′) in Rep(A,B) such that fp = p′f = f .
In detail, f must satisfy

fφ(a)− φ′(a)f ∈ K(E,F ) and fp = p′f = f. (1.1)

So, by definition

Rep(A,B) = ˜Rep(A,B).

The structure of a C∗-category on Rep(A,B) comes from the corresponding struc-
ture on Rep(A,B).

Let SG denote the category of trivially graded separable C∗-algebras over k with
an action of the compact second countable group G and equivariant ∗-homomor-
phisms. Functors Ka

n are defined by

Ka
n(A) = πnK(A), n ∈ Z,

where K(A) is the Pedersen-Weibel nonconnective algebraic K-theory spectrum
[28] of an idempotent-complete additive category A. Functors Kt

n are the topologi-
cal K-functors on idempotent-complete additive C∗-categories, defined by Karoubi
[22],[21]. For simplicity, Kasparov’s groups KK−n

G (A,B) will be denoted by
KKn(A,B).

Now, we present our main result in the following theorem.

Theorem 1.2. Let B be a σ-unital trivially graded C∗-algebra with an action of a
second countable compact group G. There are natural isomorphisms

Ka
n(Rep(−;B)) ' Kt

n(Rep(−;B)) ' KKn−1(−;B) (1.2)

of functors on the category SG, for all n ∈ Z.

Outline of proof. Theorem 1.2 is a consequence of the argument presented below.
A family H = {Hn}n∈Z of contravariant functors from SG to the category of

abelian groups and homomorphisms is said to be a stable cohomology theory on the
category SG if
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1. H has the weak excision property. Namely, for any exact proper sequence

0 → I → B → A→ 0

(which means that the involved epimorphism admits an equivariant completely
positive contractive section) of algebras in SG there exists a natural homomor-
phism δn : Hn(I) → Hn−1(A), for any n ∈ Z, such that the resulting natural
sequence of abelian groups (extending in both directions)

· · · → Hn(A) → Hn(B) → Hn(I)
δn→ Hn−1(A) → · · ·

is exact.
2. H is stable. This means that if eA : A → A ⊗ K is a homomorphism defined

by the map a 7→ a⊗ p, where p is a rank one projection in K, then Hn(eA) :
Hn(A⊗K) → Hn(A) is an isomorphism, where K is the C∗-algebra of compact
operators on a separable Hilbert space H over k, with the trivial action of the
group G.

Denote by Ck(S1) the C∗-algebra of continuous complex functions on the stan-
dard unit circle S1 of modulus one complex numbers, in case k is the field of complex
numbers; while if k is the field of reals, let it be the subalgebra of the former consist-
ing of functions invariant under the conjugation defined by the map f(z) 7→ f(z̄).
It is clear that any continuous complex function f : S1 → C may be represented in
the form

f(z) =
f(z) + f(z̄)

2
+ i

(−if(z)) + (−if(z̄))
2

,

which means that CC(S1) is the complexification of the real C∗-algebra CR(S1).
Let Tk be the Toeplitz C∗-algebra—the universal C∗-algebra over k generated

by an isometry v. There is a conjugation on TC defined by the equality v̄ = v on
the generator v of TC. According to the universal property of the Toeplitz algebra,
one gets a natural homomorphism TR → TC so that the induced homomorphism
TR ⊗R C → TC is an isomorphism, so that there is a short exact sequence

0 → Kk → Tk
t→ Ck(S1) → 0.

where Kk is the C∗-algebra of compact operators on a separable Hilbert space over
k.

Let τ : Ck(S1) → k be the homomorphism given by f 7→ f(1). Denote by fk
the kernel of τ . It is clear that fR is naturally isomorphic to the algebra CR

0 (iR)
defined in [5], and fC is isomorphic to ΩC, where Ωk = {f : I = [0, 1] → k | f(0) =
f(1) = 0}. The actions of G on the algebras considered above are trivial.

It follows from the Higson’s theorem (see [10], and [15] for the real case) that the
functor Hn is homotopy invariant for any n ∈ Z. Now, the proofs of the following
proposition and theorem coincide (up to trivial changes) with the proofs of suitable
results in [5].

Proposition 1.3. Let H be a stable cohomology theory and let g : Tk → k be the
homomorphism defined by v 7→ 1. Then the homomorphism

Hn(idA ⊗ g) : Hn(A) '−→ Hn(A⊗Tk)
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is an isomorphism, for any A ∈ SG and n ∈ Z.

Theorem 1.4. Let H be a stable cohomology theory, fA = A⊗fk and ΩA = A⊗Ωk.
Then there are natural isomorphisms

Hn+1(A) ' Hn(fA) and Hn−1(A) ' Hn(ΩA). (1.3)

for any A ∈ SG and n ∈ Z.

As a consequence we have the following working principle: two stable cohomology
theories are isomorphic if and only if they are isomorphic in some fixed dimension.
Thus in the remaining sections of the paper we show that the families of functors in
Theorem 1.2 are stable cohomology theories and they are isomorphic when n = 0.

In more detail, in section 2 we study an interpretation of algebraic and topological
K-theories of C∗-categories. Our definition is an adaptation to our cases of some
arguments from [1], [9], [30]. Let A be a C∗-category and let I be a C∗-ideal in A; let
a and a′ be objects in A. We write a 6 a′ if there exists a morphism s : a→ a′ such
that s∗s = 1a (such a morphism is said to be an isometry). Denote by L(a) (resp. by
I(a)) the C∗-algebra homA(a, a) (resp homI(a, a)). We have a well-defined inductive
system of abelian groups {Ka

n(L(a)), σaa′}a and {Kt
n(I(a)), σaa′}a. We suppose that

Ka
n(A) = lim−→aKa

n(L(a)) and Ka
n(I) = lim−→aKa

n(I(a))). (1.4)

Thanks to the results of A. Suslin and M. Wodzicki on the excision property of
algebraic K-groups on C∗-algebras [33], the right hand side of the second equation
is well-defined. Algebraic K-groups obtained in this way are naturally isomorphic to
Quillen’s K-groups KQ

n (A) when n > 0; and are isomorphic to the Pedersen-Weibel
K-groups in negative dimensions. Note that a new interpretation of algebraic K-
groups implies existence of a simple flexible technical tool. Namely, any element of
an algebraic K-group of an additive category may be represented as an element
of an algebraic K-group of the endomorphism algebra of an object, and such an
interpretation is unique up to a manageable equivalence. Throughout the paper,
this principle will be used repeatedly.

In section 2, according to the excision property of algebraic K-groups on the
category of C∗-algebras [33], we establish the excision property for a short exact
sequence associated to a C∗-ideal in an additive C∗-category (see Proposition 2.4).
In section 3 this property is used to prove Theorem 3.1 about the excision property
of functors

{Ka
n(Rep(−;B))}n∈Z . (1.5)

In addition to the excision property, proof of Theorem 3.1 uses two nontrivial results.
These are theorem 3.5 and Theorem 3.8.

In section 4, the stability property of the functors 1.5 will be shown.
Now, since the family of Kasparov’s functors KKn(−;B), n ∈ Z is a stable coho-

mology theory [7], the proof of Theorem 1.2 boils down to showing the isomorphism

K0(Rep(A,B)) ' KK1(A,B),

which is done in section 5.
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Remark 1.5. Discussions for topological K-groups are omitted, because they literally
coincide with the considered case of algebraic K-groups.
Remark 1.6. The main result (with essential changes in definitions and theorems) is
also true for a locally compact group G. We hope to discuss this case independently,
not in this paper.

2. Some remarks on the algebraic K-theory of additive C∗-
categories

We will use the Pedersen-Weibel interpretation of algebraic K-groups [28], de-
noted here by Ka

n, instead of Quillen’s definition of algebraic K-groups in [30] which
was given through homotopy groups of certain space. In this section we review
some properties of algebraic K-groups of idempotent-complete additive categories,
based on Pedersen-Weibel’s nonconnective spectra (in this context there are defined
negative K-groups, too). Then, we reinterpret algebraic K-groups of idempotent-
complete additive C∗-categories and, with the aid of results from [33], generalize
them to C∗-ideals in additive C∗-categories. This material plays auxiliary role in
this paper.

In the following lemma we list some simple properties of algebraic K-groups
which suffice for our purposes.

Lemma 2.1. Let A be an idempotent-complete small additive category. Then
1. if A = A1 ×A2, then Ka

n(A) = Ka
n(A1)×Ka

n(A2), n ∈ Z;
2. if {Aα} is a direct system of full additive subcategories in A such that lim−→Aα =

A. Then Ka
n(A) = lim−→ Ka

n(Aα), n ∈ Z.

In the remaining part of this section we give an interpretation of the groups
Ka
n(A), n ∈ Z for additive C∗-categories. This interpretation will convenient for our

purposes.
Let a be an object in an idempotent-complete C∗-category A. Consider the full

sub-C∗-category Aa in A consisting of all those objects a′ of A which admit an
isometry s : a′ → a⊕n . It is clear that Aa is an idempotent-complete C∗-category
equivalent to the category P(L(a)) of f. g. projective modules over L(a).

Now, consider a direct system of abelian groups for A based on subcategories
Aa. It is evident that if there exists an isometry s : a′ → a then one has a natural
additive inclusion ∗-functor (not depending on s) ia′a : Aa′ → Aa and thus we have
the direct system {Aa, ia′a}(obA,6) of idempotent-complete C∗-categories. Because
of the continuity property of algebraic K-groups (property (2) in Lemma 2.1) and
the isomorphism of categories A = lim−→Aa, one has an isomorphism

Ka
n(A) = lim−→ Ka

n(Aa)

n ∈ Z.
This suggests that Ka

n(A) can be interpreted in the form

Ka
n(A) = lim−→ Ka

n(L(a)). (2.1)

Below it is done in detail.
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2.1. Algebraic K-functors of C∗-ideals
Let us make some comments on the results of A. Suslin and M. Wodzicki in

algebraic K-theory before we introduce our view on algebraic K-theory of C∗-ideals.
One of their main results is, by Proposition 10.2 in [33], that C∗-algebras have the
factorization property (TF)right. Thus any C∗-algebra possesses the property AHZ.
These results have many useful consequences in algebraic K-theory of C∗-algebras,
which are listed below. (Recall that if A is a C∗-algebra and A+ is the C∗-algebra
obtained by adjoining a unit to A, then

Ka
n(A) = ker(Ka

n(A+) → Ka
n(k)), (2.2)

n ∈ Z).
1. Ka

i is a covariant functor from the category of C∗-algebras and ∗-homomor-
phisms to the category of abelian groups for any i ∈ Z;

2. For every unital C∗-algebra R containing the C∗ algebra A as a two-sided
ideal, the canonical map Ka

n(A) → Ka
n(R,A) is an isomorphism;

3. The natural embedding into the upper left corner A ↪→ Mk(A) induces, for
every natural n, an isomorphism Ka

n(A) ' Ka
n(Mk(A));

4. Any extension of C∗-algebras

0 → I → B → A→ 0

induces a functorial two-sided long exact sequence of algebraic K-groups

· · · → Ka
i+1(A) → Ka

i (I) → Ka
i (B) → Ka

i (A) → · · · (i ∈ Z). (2.3)

5. Let A be a C∗-algebra and let u be a unitary element in a unital C∗-algebra
containing A as a closed two-sided ideal. Then the inner automorphism ad(u) :
A→ A induces the identity map of algebraic K-groups.

Below we define algebraic K-groups for C∗-ideals. These groups possess all prop-
erties similar to those represented above.

Let A be an additive C∗-category and let J be its closed C∗-ideal. Let LA(a) =
homA(a, a) and LA(a, J) = L(a)A ∩ J for any object a ∈ A. The latter is a closed
ideal in the C∗-algebra LA(a). Let us write a 6 a′ if there is an isometry v : a→ a′,
i.e v∗v = 1a. The relation “a 6 a” makes the set of objects of A into a directed
system. Any isometry v : a→ a′ defines a ∗-homomorphism of C∗-algebras

Ad(v) : LA(a) → LA(a′)

by the rule x 7→ vxv∗. It maps LA(a, J) to LA(a′, J).
Let v1 : a → a′ and v2 : a → a′ be two isometries. Then Adv1 and Adv2 induce

the same homomorphisms

Ad∗v1 = Ad∗v2 : Ka
n(LA(a)) → Ka

n(LA(a′))

and
Ad∗v1 = Ad∗v2 : Ka

n(LA(a, J)) → Ka
n(LA(a′, J)).

The similar result for topological K-theory is in [9]. This means that the homo-
morphism νaa

′

∗ = Ka
n(νaa

′
) is independent of choosing an isometry νaa

′
: a → a′.

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 1(1), 2006 204

Therefore one has a directed system {Ka
n(LA(a, J)), νaa

′

∗ )}a,a′∈obA of abelian groups,
for all n ∈ Z.

Definition 2.2. Let A be an additive C∗-category and let J be its closed C∗-ideal.
Define

Ka
n(A, J) = lim−→Ka

n(LA(a, J)) and Ka
n(J) = Ka

n(M(J), J) (2.4)

where M(J) is the so called multiplier C∗-category of J [18].

Lemma 2.3. Let J be a C∗-ideal in an additive C∗-category A. Then

1. Ka
n(J) = Ka

n(A, J);

2. if A′ is a cofinal subcategory in A then Ka
n(A

′) ' Ka
n(A);

3. if A is idempotent-complete, then Ka
n(A) ' Ka

n(A).

Proof. 1. The natural ∗-functor ρ : A → M(J) induced from the identity on J by
the universal property of M(J) obviously preserves the relation “6”. This implies
that there is a natural morphism of directed systems

{Ka
n(LA(a, J)), νaa

′

∗ )}a,a′∈obA
{ρa

n}−−−→ {Ka
n(LM(J)(a, J)), νaa

′

∗ )}a,a′∈obM(J),

where the homomorphism ρan : Ka
n(LA(a, J)) → Ka

n(LM(J)(a, J)) is induced by the
above ∗-functor ρ : A→M(J). In view of the isomorphism Kn(A) → Kn(R,A) [33]
one concludes that the homomorphism ρan is an isomorphism for all n ∈ Z a ∈ A.
This morphism is cofinal, since if “a 6 a′” in M(J) then “a 6 a ⊕ a′” in A and
“a′ 6 a⊕ a′” in M(J). Therefore, {ρan} is an isomorphism of direct systems.

2. This is an easy consequence of Definition 2.2.
3. This results from comparison of Definition 2.2 and isomorphism 2.1.

Now, we prove the excision property of algebraic K-theory which will be used in
the next section.

Proposition 2.4. Let A be an additive C∗-category and let J be a C∗-ideal in A.
Then the two-sided sequence of algebraic K-groups

...→ Ka
n+1(A/J) → Ka

n(J) → Ka
n(A) → Ka

n(A/J) → ..., (2.5)

n ∈ Z, is exact.

Proof. Consider the exact sequence of C∗-algebras

0 → L(a, J) → L(a,A) → L(a,A)/L(a, J) → 0.

By the excision property of algebraic K-theory on C∗-algebras [33], one has a two-
sided long exact sequence of algebraic K-groups

· · · → Ka
n(L(a,A)/L(a, J)) →
Ka
n−1(L(a, J)) → Ka

n−1(L(a,A)) → Ka
n−1(L(a,A)/L(a, J)) → · · · (2.6)
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According to the exact sequence 2.6 and the fact that directed colimits preserve
exactness, one obtains the following long exact sequence of abelian groups:

· · · → lim−→Ka
n+1(L(a,B)/L(a, J)) →

Ka
n(J) → Ka

n(B) → lim−→Ka
n(L(a,B)/L(a, J)) → · · · (2.7)

There is a natural morphism of directed systems

{ωa} : {Ka
n(L(a,A)/L(a, J)} → {Ka

n(L(a,A/J)}

so that ωa is the identity map for any object a in A. It is clear that this morphism
is cofinal. Thus the induced homomorphism

ω : lim−→Ka
n(L(a,A)/L(a, J)) → lim−→Ka

n(L(a,A/J)) = Ka
n(A/J)

is an isomorphism.

3. Excision Property of Ka
n((Rep(−; B))

In this section we will prove that the contravariant functors Ka
n((Rep(−;B)),

n ∈ Z, have the weak excision property. The similar result for topological K-theory,
in a particular case, has been proved in [9].

Remark 3.1. From now on for convenience of calculations the functors
Ka
n((Rep(−;B)) are considered instead of Ka

n((Rep(−;B)) and Ka
n((Rep(−;B)).

Since Rep(A;B) is a cofinal full subcategory in Rep(A;B), by Lemma 2.3 (2),(3)
these functors are isomorphic.

For any closed invariant ideal J in a separable C∗-algebra A from SG there is
a C∗-ideal D(A, J ;B) in Rep(A;B) which is defined in the following manner. Let
(E, φ) and (E′, φ′) be objects in Rep(A,B). A morphism α : (E, φ) → (E′, φ′) in
Rep(A,B) is in D(A, J ;B) if

αφ(x) ∈ K((E, φ), (E′φ′)) and φ′(x)α ∈ K((E, φ)), for all x ∈ A.

The space of all morphisms from (E, φ) to (E′, φ′) in the C∗-ideal D(A, J ;B) will
be denoted by Dφ,φ′(A, J ;E,E′;B) (if (E′, φ′) = (E, φ) then it is also denoted by
Dφ(A, J ;E;B)) (cf. [9]) .

Theorem 3.2. Let B be a σ-unital C∗-algebra and let 0 → I → A
p→ A/I → 0 be

a proper sequence of separable C∗-algebras in SG. Then the sequence of groups

...→ Ka
n(Rep(A/J,B)) → Ka

n(Rep(A,B)) → Ka
n(Rep(J,B)) ∂−→
∂−→ Ka

n−1(Rep(A,B)) → ... (3.1)

is exact, for all n ∈ Z.

Proof. Consider the short exact sequence of C∗-categories and of a C∗-ideal

0 → D(A, J ;B) → Rep(A,B) → Rep(A,B)/D(A, J ;B) → 0.
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According to Proposition 2.4, one has a two-sided long exact sequence

...→ Ka
n(D(A, J ;B)) → Ka

n(Rep(A,B)) →

→ Ka
n(Rep(A,B)/D(A, J ;B)) ∂→ Ka

n−1(D(A, J ;B)) → ... (3.2)

of abelian groups. According to Theorems 3.5 and 3.8, replacements

Ka
n(Rep(A;B)/D(A, J ;B)) by Ka

n(Rep(J ;B))

and
Ka
n(D(A, J ;B) by Ka

n(Rep(A/J ;B)),

ensure exactness of the two-sided long exact sequence (3.1). Thus it suffices to prove
Theorems 3.5 and 3.8, which will be done in the next part of this section.

3.1. On the Isomorphism Ka
n(Rep(A;B)/D(A, J ;B)) ≈ Ka

n(Rep(J ;B))
Let (E, φ) be an object in Rep(A,B) and let j : J → A be the natural equivariant

inclusion. There is a ∗-functor induced by the natural inclusion j

j : Rep(A;B) → Rep(J ;B) (3.3)

defined by the assignments (E, φ) 7→ (E, φj) and x 7→ x.
The following trivial lemma is used in the next proposition.

Lemma 3.3. Let A and B be additive C∗-categories and let F : A → B be an
additive ∗-functor. Then F is a ∗-isomorphism if and only if F is bijective on
objects and the induced ∗-homomorphisms of C∗-algebras Fa : L(a) → L(f(a)) are
∗-isomorphisms for all objects a in A.

The following proposition is a slight generalization of the similar result in [9]).

Proposition 3.4. The canonical ∗-functor 3.3 maps D(A, J ;B) to D(J, J ;B) and
the induced ∗-functor

ξ : Rep(A;B)/D(A, J ;B) → Rep(J ;B)/D(J, J ;B) (3.4)

is an isomorphism of C∗-categories.

Proof. (cf. [9]) By lemma 3.3 it suffices to show that for any object (E, φ) the
∗-homomorphism of C∗-algebras

ξJ,φ : Dφ(A;E;B)/Dφ(A, J,E;B) → Dφ·j(J,E;B)/Dφ·j(J, J,E;B)

is a ∗-isomorphism. It is easy to show that ξJ,φ is a monomorphism. To show that
ξJ,φ is an epimorphism, take x ∈ Dφ·j(J,E;B) and let E1 be the G-C∗-algebra in
L(E) generated by φ(J) ∪ K(E); let E2 be the separable G-C∗-algebra generated
by all elements of the form [x, φ(y)], y ∈ J ; and let F be the G-invariant separable
linear space generated by x and φ(A). One has
• E1 · E2 ⊂ K(E), because φ(b)[φ(a), x] ∼ [φ(ba), x] ∈ K(E), a ∈ A, b ∈ J ,
• [F , E1] ⊂ E1, because [x, φ(J)] ⊂ K(E) and [φ(A), φ(J)] ⊂ φ(J).
From a technical theorem by Kasparov it follows that there exists a positive

G-invariant operator X such that
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1. X · φ(J) ⊂ K(E);
2. (1−X) · [φ(A), x] ⊂ K(E);
3. [x,X] ∈ K(E).
Since [(1 − X)x, φ(a)] = (1 − X)[x, φ(a)] − [X,φ(a)]x, it follows from (2) and

(3) that (1 − X)x ∈ Dφ(A,E;B). In addition, it follows from (2) that Xx ∈
Dφ·j(J, J,E;B), and so that the image of (1−X)x in Dφ·j(J,E;B)/Dφ·j(J, J,E;B)
coincides with the image of x.

Now, we prove the following

Theorem 3.5. Let A be a separable C∗-algebra and let B be a σ-unital C∗-algebra.
Let J be a closed ideal in A. There exists an essential isomorphism

Ka
n(Rep(A,B)/D(A, J ;B)) ≈ Ka

n(Rep(J,B)) (3.5)

Proof. According to Proposition 3.4, it suffices to show that the homomorphism

Ka
∗(Rep(J ;B)) → Ka

∗(Rep(J ;B)/D(J, J ;B))

is an isomorphism. The exact sequence

...→ Ka
n(D(J, J ;B)) → Ka

n(Rep(J,B)) →

→ Ka
n(Rep(J,B)/D(J, J ;B)) ∂→ Ka

n−1(D(J, J ;B)) → ... (3.6)

shows that it suffices to show Ka
∗(D(J, J ;B)) = 0. According to Kasparov’s stabi-

lization theorem, one concludes that the full subcategory RepHB
(J ;B) on all objects

of the form (HB , ϕ) is a cofinal subcategory in Rep(J ;B), where HB is Kasparov’s
universal Hilbert B-module [23]. Note that the canonical isometry

i1 : HB → HB ⊕HB

in the first summand is in Dφ,φ⊕0(J ;HB ,HB ⊕HB ;B). So it induces inner homo-
morphism

ad(i1) : Dφ(J, J ;HB ;B) → Dφ⊕0(J, J ;HB ⊕HB ;B).

Consider the sequence of ∗-homomorphisms

Dφ(J, J ;HB ;B) → Dφ⊕φ(J, J ;HB ⊕HB ;B) ⊂ Dφ⊕0(J, J ;HB ⊕HB ;B), (3.7)

where the inclusion is given by x 7→ x. If the first arrow is induced by the inclusion
ι1 : HB → HB ⊕ HB into the first summand, then the composite is ad(i1). If
the first arrow is induced by the inclusion ι2 : HB → HB ⊕ HB into the second
summand, one obtains a homomorphism λ. Since Ka

n(ad(ι1)) = Ka
n(ad(ι2)), one has

Ka
n(ad(i1)) = Ka

n(λ). On the other hand, the homomorphism λ is the composite of
∗-homomorphisms of C∗-algebras

Dφ(J, J ;HB ;B) → D0(J, J ;HB ;B) → Dφ⊕0(J, J ;HB ⊕HB ;B),

defined by the assignments

x 7→ x and x 7→
(

0 0
0 x

)
.
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Note that one has D0(J, J ;HB ;B) ' M(J ⊗ KG). It is a well-known fact that
the latter algebra has trivial algebraic K-groups. If we apply K-functors then the
homomorphism corresponding to λ will be zero. Now, as a consequence we have the
following. Let α ∈ Ka

n(Dφ(J, J ;HB ;B)) represent an element in Ka
n(D(J, J ;B)).

Since
α = Ka

n(ad(i1)(α)) = Ka
n(λ(α)) = 0,

one concludes that the class of α in Ka
∗(D(J, J ;B)) is zero. Therefore

Ka
∗(D(J, J ;B)) = 0.

3.2. On the Isomorphism Ka
n(Rep(A/J ;B)) ' Ka

n(D(A, J ;B))
Let

0 → J
j−→ A

q−→ A/J → 0

be a proper exact sequence and let σ : A/J → A be a completely positive and
contractive (equivariant) section.

Let (E, φ) be an object in Rep(A;B). A ∗-homomorphism

ψ =
(
ψ11 ψ12

ψ21 ψ22

)
: A/J → L(E ⊕ E′))

will be called a σ-dilation for φ if ψ11(a) = φ(σ(a)), where E′ is a right Hilbert B-
module. By generalized Stinespring’s theorem there exists a σ-dilation for φ, where
σ : A/J → A is a completely positive and contractive section [23].

Lemma 3.6. Let ψ be a σ-dilation for φ. Then
1. ψ12(a∗) = ψ21(a)∗;
2. for any a, b ∈ A/J there exists a j ∈ J such that ψ12(a)ψ21(b) = φ(j);
3. ψ12(a)x and xψ21(a) are compact morphisms for any a ∈ A/J and x ∈

Dφ(A, J ;B);
4. Let φ : A/J → L(E) be a ∗-homomorphism and let ψ : A/J → L(E ⊕ E′) be

a σ-dilation for φq. There exists a ∗-homomorphism ϕ : A/J → L(E′) such
that

ψ =
(
φ 0
0 ϕ

)
.

Proof. The case (1) is trivial, because ψ is a ∗-homomorphism.
The case (2). Since ψ is σ-dilation for φ, one has φ · (σ(ab) − σ(a) · σ(b)) =

ψ12(a) · ψ21(b). But j = σ(ab)− σ(a) · s(b) ∈ J . Therefore ψ12(a) · ψ21(b) = φ(j).
The case (3). If x ∈ Dφ(A, J ;B) then, by definition, xφ(j) and φ(j)x are com-

pact morphisms for any j ∈ J . According to cases (1) and (2), one has xψ12(a) ·
ψ∗12(a)x

∗ = xφ(j′)x∗ for some j′ ∈ J . Thus xψ12(a) · ψ12(a∗)x∗ is a compact mor-
phism. Therefore xψ12(a) and ψ21(a)x (= (x∗ψ12(a∗))∗) are compact morphisms,
too.

The case (4). Since ψ is a σ-dilation for φq,

ψ =
(
φ ψ12

ψ21 ϕ

)
.
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According to case (2), for any a, b ∈ A/J there exists j ∈ J such that ψ12(a)ψ21(b) =
φq(j) = 0. Applying the case (1), one has ψ12(a)ψ∗12(a) = 0. Therefore ψ12(a) = 0
and ψ21(a) = 0 for all a ∈ A/J and ϕ is a ∗-homomorphism.

The following lemma is used in Theorem 3.8.

Lemma 3.7. Let (E, φ) be an object in Rep(A,B) and let ψ : A/J → L(E ⊕ E′)

be a σ-dilation for φ. Then a map x =
(
x11 x12

x21 x22

)
7→ x′ =

 x11 0 x12

0 0 0
x21 0 x22


defines a ∗-monomorphism

ρ : M2(Dφ(A, J,E ⊕ E;B)) → Dψ·q⊕φ(A, J,E ⊕ E′ ⊕ E;B). (3.8)

Proof. It suffices to show that x′ ∈ Dψ·q⊕φ(A, J,E ⊕ E′ ⊕ E;B). By assumption
one has

(φ(a)⊕ φ(a))x− x(φ(a)⊕ φ(a)) ∈ K(E ⊕ E),

for any a ∈ A, and
(φ(b)⊕ φ(b))x ∈ K(E ⊕ E),

x(φ(b)⊕ φ(b)) ∈ K(E ⊕ E) for any b ∈ J . It implies that

φ(a)xmn − xmnφ(a) ∈ K(E), φ(b)xmn ∈ K(E), xmnφ(b) ∈ K(E),

a ∈ A and b ∈ J . Then (ψ(q(a))⊕ φ(a)) · x′ − x′ · (ψ(q(a))⊕ φ(a)) =

=

 x11ψ11(q(a))− ψ11(q(a))x11 x11ψ12(p(a)) x12φ(a)− ψ11(q(a))x12

ψ21(q(a))x11 0 ψ21(q(a))x12

x21ψ11(q(a))− φ(a)x21 x21ψ12(q(a)) x22φ(a)− φ(a)x22

 .

By Lemma 3.6 (3), the morphisms ψ21(q(a))x11, x11ψ12(q(a)), x21ψ12(q(a)) and
ψ21(q(a))x12 are compact. Using the fact that φ(a)− ψ11(q(a)) ∈ φ(J), one has

(ψ(q(a))⊕ φ(a)) · x′ − x′ · (ψ(p(a))⊕ φ(a)) ∈ K(E ⊕ E′ ⊕ E), a ∈ A.

To show that (ψ(q(b)) ⊕ φ(b)) · x′ and x′ · (ψ(q(b)) ⊕ φ(b)) are in K(E ⊕ E′ ⊕ E)
when b ∈ J , note that (ψ(q(b))⊕ φ(b)) · x′ and x′ · (ψ(q(b))⊕ φ(b)) are equal to 0 0 0

0 0 0
φ(b)x21 0 φ(b)x22

 and

 0 0 x12φ(b)
0 0 0
0 0 x22φ(b)


respectively. They are compact morphisms because each entry of matrices is a com-
pact morphism.

The category Rep(A,B) may be identified with the full C∗-subcategory
D(q)(A, J ;B) in D(A, J ;B), on the objects all pairs of the form (E, φ · q), con-
sidering (E, φ) as an object in Rep(A/J ;B). Let

ε : D(q)(A, J ;B) ↪→ D(A, J ;B)

be the natural inclusion.
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Theorem 3.8. Let 0 → J
j−→ A

q−→ A/J → 0 be a proper exact sequence of separable
C∗-algebras. Then the induced homomorphism

Γn : Ka
n(Rep(A/J ;B)) → Ka

n(D(A, J ;B))

is an isomorphism for all n ∈ Z.

Proof. According to the discussion above, it suffices to show that ε induces an
isomorphism

εn : Ka
n(D

(q)(A, J ;B)) → Ka
n(D(A, J ;B)),

for all n ∈ Z.
(1). εn is a monomorphism.
Let (E, φ · q) be an object in D(q)(A, J ;B) and suppose that the class of an

element
y ∈ Ka

n(Dφ·q(A, J ;E,B))

in Ka
n(D(A, J ;B)) is zero. This means that there exists an isometry

s : (E, φ · q) → (E′, ψ)

in Rep(A;B) such that Ad(s)n(y) = 0 in Ka
n(Dψ(A, J ;E′, B)).

According to Lemma 3.6, it is easy to show that

s′ =
(
s 0
0 0

)
: (E ⊕HB , η · q) → (E′ ⊕HB , η

′ · q)

is an isometry in Rep(A/J,B), where η and η′ are σ-dilations of φ · q and ψ respec-
tively. By Lemma 3.6 η has form

η =
(
φ 0
0 χ

)
,

where χ is a ∗-homomorphism from A to L(HB). There is a homomorphism

ν : Dψ(A, J ;E′, B) → Dη′q(A, J ;E′ ⊕HB , B),

defined by x 7→
(
x 0
0 0

)
, and an isometry

i1 : (E, φ) → (E ⊕HB , η =
(
φ 0
0 χ

)
)

(inclusion into the first summand). It is clear that Ad(s′i1) = νAd(s). Therefore
Ad(s′i1)n(y) = 0 in Dη′q(A, J ;E′ ⊕ HB , B) and in Ka

n(D
(q)(A, J ;B)) too. This

means that the class of y in Ka
n(D

(q)(A, J ;B)) is zero.
(2). εn is an epimorphism.
Let an element in Ka

n(D(A, J ;B)) be represented by an element
x ∈ Ka

n(Dφ(A, J ;E,B)). Consider the ∗-homomorphism

θ : Dφ(A, J ;E;B) → Dψq(A, J ;E ⊕HB , B)

given by

x 7→
(
x 0
0 0

)
,
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where ψ is a σ-dilation of φ.
Let us show that classes of elements θn(x) and x in Ka

n(D(A, J ;B)) coincide.
Let ϑ be the composite

Dφ(A, J ;E;B) θ−→ Dψq(A, J ;E ⊕HB ;B)
Ad(iE⊕HB

)
−−−−−−−→ Dψq⊕φ(A, J ;E ⊕HB ⊕E;B),

where the second arrow is induced by the isometry into the first two summands.
It is clear that the ∗-homomorphism ϑ coincides with the ∗-homomorphism defined
by

x 7→

 x 0 0
0 0 0
0 0 0

 .

On the other hand this homomorphism may be interpreted as the composite

Dφ(A, J ;E,B) i1−→M2(Dφ(A, J ;E,B))
ρ−→ Dψ·q⊕φ(A, J ;E ⊕HB ⊕ E,B)

where i1 is given by x 7→
(
x 0
0 0

)
and ρ is defined by

x =
(
x11 x12

x21 x22

)
7→ x′ =

 x11 0 x12

0 0 0
x21 0 x22

 ,

as in Lemma 3.7. Consider another homomorphism η—the composite of the se-
quence of ∗-homomorphisms

Dφ(A, J ;E,B) i2−→M2(Dφ(A, J ;E,B))
ρ−→ Dψ·q⊕φ(A, J ;E ⊕HB ⊕ E,B)

where i2 is given by x 7→
(

0 0
0 x

)
. Since (i1)n = (i2)n, n ∈ Z, one has (ϑ)n =

(η)n. But (η)n = (ad(i3))n, n ∈ Z, where i3 : E → E ⊕ HB ⊕ E is an isometry
in the third summand. Therefore, classes of the elements ϑn(x), (ad(i3))n(x), x
and θn(x) in Ka

n(D(A, J ;B)) coincide. Therefore the class of the element θn(x) in
Ka
n(D

(q)(A, J ;B)) is the desired element.

4. Stability Property of Ka
n(Rep(−; B))

Everywhere below in this section, K is the C∗-algebra of compact operators on a
countable generated Hilbert space H considered as an object of SG via trivial action
of the compact group G.

Let p ∈ K be a rank one projection and let A be a C∗-algebra in SG; let eA :
A → A ⊗ K be the ∗-homomorphism defined by a 7→ a ⊗ p, a ∈ A. Then one has
the induced functor

e∗A : Rep(A⊗K;B) → Rep(A;B), (4.1)

defined by assignments (E,ϕ) 7→ (E,ϕeA) (on objects) and x 7→ x (on morphisms).
There is a ∗-functor

εA : Rep(A;B) → Rep(A⊗K;B)
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defined by assignments (E, φ) 7→ (E ⊗k H, φ⊗ idK) (on objects) and f 7→ f ⊗ idH
(on morphisms). Indeed, let (E, φ) be an object in Rep(A;B). One has the induced
∗-homomorphism

φ⊗ idK : A⊗K → L(E ⊗k H).

Let f : (E, φ) → (E′, φ′) be a morphism in Rep(A;B), i. e. fφ(a) − φ′(a)f ∈
K(E,E′), a ∈ A. Then

(f ⊗ idH)((φ⊗ idK)(a⊗ κ))− ((φ⊗ idK)(a⊗ κ))(f ⊗ idH) =
= (fφ(a)− φ(a)f)⊗ κ ∈ K(E ⊗k H, E′ ⊗k H) (4.2)

for all a ∈ A, κ ∈ K.
Now, in view of Remark 3.1 stability property of Ka

n(Rep(−;B)) may be formu-
lated as follows.

Theorem 4.1. For any rank one projection p ∈ K and any C∗-algebra A in SG the
homomorphism

eAn = Ka
n(e

∗
A) : Ka

n(Rep(A⊗K;B)) → Ka
n(Rep(A;B)),

induced by the functor 4.1 is an isomorphism.

Proof. Let εAn : Ka
n(Rep(A;B)) → Ka

n(Rep(A ⊗ K;B)) be the homomorphism
induced by the functor εA. It is easy to verify that the family {εAn } is a natural
transformation from the functor Ka

n(Rep(−;B)) to Ka
n(Rep(−⊗K;B)). Therefore,

the following diagram

Ka
n(Rep(A⊗K;B))

eA
n−−−−→ Ka

n(Rep(A;B))

εA⊗K
n

y yεA
n

Ka
n(Rep(A⊗K ⊗K;B)) −−−−→

eA⊗K
n

Ka
n(Rep(A⊗K;B))

commutes, and it shows that for our purposes it suffices to verify that

eAn ε
A
n = idKa

n(Rep(A;B)), (4.3)

for all A ∈ SG. Indeed, first note that
1. The equality 4.3 shows that eAn is an epimorphism.
2. Since Ka

n(Rep(−⊗K;B)) is a stable functor, according to the identity 4.3, one
easily shows that εA⊗Kn and eA⊗Kn are isomorphisms (cf. Proposition 10.6 in [33]).
Therefore eAn is a monomorphism.

Checking the equality 4.3. We construct a useful isometry σE : E → E ⊗k H,
for any countably generated B-module E, which is a morphism from (E, φ) to
(E ⊗k H, (φ⊗ idK)eA).

Choose y ∈ H so that p(y) = y and ||y|| = 1 and consider a B-homomorphism σE
given by x 7→ x⊗ y. For any z ∈ H there exists λz ∈ k determined uniquely by the
equation p(z) = λzy. Define σ∗E by the map x ⊗ z 7→ λzx. The B-homomorphism
σ∗E is adjoint to σE . Since σ∗EσE(x) = σ∗E(x⊗ y) = x, one concludes that σE is an
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isometry. Since σEφ(a) = ((φ⊗ idK)eA(a))σE , the isometry σE is a morphism from
(E, φ) into (E ⊗k H, (φ⊗ idK)eA).

Consider restriction of e∗Aε to Dφ(A;E;B). We have a ∗-homomorphism

(e∗Aε)E : Dφ(A;E;B) → D(φ⊗id)eA
(A;E ⊗k H;B) (4.4)

mapping x ∈ Dφ(A;E;B) to x⊗ idH ∈ D(φ⊗id)eA
(A;E ⊗k H;B). But

(σEx)(z) = (σE)(x(z)) = x(z)⊗y = ((x⊗p)σE)(z) for any x ∈ Dφ(A;E;B), z ∈ E.

Since σEσ∗E = idE ⊗ p, one concludes that σExσ∗E = x⊗ p. Therefore

(e∗Aε)E(x) = σExσ
∗
E + x⊗ (1− p). (4.5)

Let ψ(x) = (e∗Aε)E(x), ψ0(x) = x⊗ p and ψ1(x) = x⊗ (1− p). Then ψ0 and ψ1 are
∗-homomorphisms, ψ = ψ0 + ψ1 and

ψ0(x)ψ1(x) = ψ1(x)ψ0(x) = 0. (4.6)

Here we show that e∗Aε induces the identity homomorphism of the group
Ka
n(Rep(A,B)) onto itself. Indeed, choose an element r ∈ Ka

n(Rep(A,B)).
By definition of Ka

n-groups the element r is represented by an element
rφ ∈ Ka

n(Dφ(A;E;B)). Then the element Ka
n(e

∗
Aε)(r) is represented by the ele-

ment
Ka
n((e∗Aε)E)(rφ) = Ka

n(ψ0 + ψ1)(rφ). (4.7)

Since Ka
n is an additive functor, according to 4.6 and Lemma 2.1.18 in ([11]), it

follows that
Ka
n(ψ0 + ψ1)(rφ) = Ka

n(ψ0)(rφ) +Ka
n(ψ1)(rφ).

Since ψ0 = ad(sE), the class of Ka
n(ψ0)(rφ) is equal to the class of rφ. Thus the

proof will be completed if we show that the class of Ka
n(ψ1)(rφ) in Ka

n(Rep(A;B))
is zero. Indeed, let

s : E ⊗H → (E ⊗H)⊕HB)

be the isometry defined by e⊗ h 7→ e⊗ h⊕ 0. Then the ∗-homomorphism ad(s)ψ1

may be factored through the ∗-homomorphism

Dφ(A;E;B) → D0(A;E ⊗ (1− p)H⊕HB ;B).

But, according to Kasparov’s stabilization theorem, one has

D0(A;E ⊗ (1− p)H⊕HB ;B) ≈ L(HB).

Since Ka
n(L(HB)) = 0, one concludes that classes of Ka

n(ψ1)(z) and
Ka
n(ad(s)(ψ1))(z) are equal to zero in Ka

n(Rep(A;B)). Thus the homomorphism
Ka
n(eAε) is the identity.

5. On the Isomorphism Ka
0(Rep(−; B)) ' KK−1(−; B)

First we recall the definition of Kasparov’s groupK1(A,B), which will be denoted
by KK−1(A,B), where A and B are trivially graded C∗-algebras with actions of a
second countable compact group.
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Consider a triple (ϕ,E; p), where E is a trivially graded countably generated right
B-module, ϕ : A → LB(E) is a ∗-homomorphism and p ∈ LB(E) is an invariant
element so that

pϕ(a)− ϕ(a)p ∈ KB(E),
(p∗ − p)ϕ(a) ∈ KB(E), (p2 − p)ϕ(a) ∈ KB(E) (5.1)

for all a ∈ A. Such a triple will be called a Kasparov-Fredholm A,B- module. If all
left parts in 5.1 are zero, then such a triple is said to be degenerate.

Define the sum of Kasparov-Fredholm A,B-modules by the formula

(ϕ,E; p)⊕ (ϕ′, E′; p′) = (ϕ⊕ ϕ′, E ⊕ E′; p⊕ p′).

Consider the equivalence relations:

• (Unitary isomorphism) A,B-modules (ϕ,E; p) and (ϕ′, E′; p′) will be said to
be unitarily isomorphic if there exists a unitary isomorphism u : E → E′ such
that

uϕ(a)u∗ = ϕ′(a), upu∗ = p′

for all a ∈ A.

• (Homology) A,B-modules (ϕ,E; p) and (ϕ′, E; p′) will be said to be homolo-
gous if

p′ϕ′(a)− pϕ(a) ∈ KB(E)

for all a ∈ A.

Simple checking shows that the equivalence relations defined above are well behaved
with respect to sum.

Let E1(A,B) be the abelian monoid of classes of A,B-modules with respect to the
equivalence relation generated by the unitary isomorphism and homology. Denote
by D1(A,B) the submonoid of E1(A,B) consisting of only those classes which are
classes of all degenerate triples. By definition

E1(A,B) = E1(A,B)/D1(A,B).

Using the Kasparov stabilization theorem, one easily shows that the definition of
E1(A,B) coincides with Kasparov’s original definition of E1(A,B) which is isomor-
phic to KK−1(A,B) by lemma 2 of section 7 of [24].

Recall that objects of Rep(A,B), by definition, have form (ϕ,E; p), where p :
(ϕ,E) → (ϕ,E) is a projection in the category Rep(A;B). More precisely,

ϕ(a)p− pϕ(a) ∈ KB(E), p∗ = p, p2 = p.

A unitary isomorphism s : (ϕ,E; p) → (ψ,E′, q) in Rep(A,B) is a usual partial
isometry s : E → E′ such that

sϕ(a)− ψ(a)s ∈ KB(E,E′), s∗s = p, ss∗ = q.

Let Ẽ1(A,B) be the abelian monoid of unitary isomorphism classes of objects in
Rep(A;B). According to Lemma 1.1, one easily checks that the Grothendieck group
of Ẽ1(A,B) may be identified with K0(Rep(A,B)) (cf. [16]).

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 1(1), 2006 215

There is a natural homomorphism

λ1 : K0(Rep(A,B)) → E1(A,B),

defined by the map (ϕ,E; p) 7→ (ϕ,E; p). Indeed, let s : (ϕ,E; p) → (ϕ′, E′; p′) be a
unitary isomorphism in Rep(A;B). Consider the isomorphism in Rep(A;B)

s̄ : (ϕ⊕ ψ,E ⊕ E′) → (ψ ⊕ ϕ,E′ ⊕ E),

where

s̄ =
(

s 1− ss∗

1− s∗s s

)
.

It is clear that (ϕ⊕ ψ,E ⊕E′, p̄) is isomorphic to (s(ϕ⊕ ψ)s∗, E′ ⊕E, q̄), which is
homologous to (ψ ⊕ ϕ,E′ ⊕ E, q̄), with

p̄ =
(
p 0
0 1

)
and p̄′ =

(
1 0
0 p′

)
.

This means that classes of (ϕ,E; p) and (ϕ′, E′; p′) coincide in E1(A,B).
Let RepJ(A,B) = Rep(A,B)/D(A, J ;B) be the idempotent-complete

C∗-category universally obtained from the category Rep(A,B)/D(A, J ;B)) (see
section 1). Let (ϕ;E; p) be a Kasparov-Fredholm A,B-module. Then p defines a
projector ṗ in the category RepA(A,B). Thus the triple (ϕ;E; ṗ) is an object in
RepA(A,B).

There is a well-defined homomorphism

µ : E1(A,B) → K0(RepA(A,B))

defined by (ϕ;E; p) 7→ (ϕ;E; ṗ). This is checked below.
We recall definition of operatorial homotopy:
• (Operatorial homotopy) An A,B-module (ϕ,E; p) is operatorially homotopic

to (ϕ,E; p′) if there exists a continuous map pt : [0; 1] → LB(E) such that
(ϕ,E; pt) is an A,B-module for any t ∈ [0; 1].

If (ϕ,E; p) is homologous to (ψ,E; q), then (ϕ,E; p) ⊕ (ψ,E; 0) is operatorially
homotopic to (ϕ,E; 0) ⊕ (ψ,E; q). Indeed, the desired homotopy is defined by the
formula ((

ϕ 0
0 ψ

)
, E ⊕ E,

1
1 + t2

(
p tpq
tqp t2q

))
, t ∈ [0;∞]

(cf. section 7 in [24]). Thus the projections ˙p⊕ 0 and ˙0⊕ q are homotopic. Then,
using Lemma 4 from section 6 in [24], one concludes that the objects (ϕ,E; ṗ) ⊕
(ψ,E; 0̇) and (ϕ,E; 0̇) ⊕ (ψ,E; q̇) are unitarily isomorphic objects in RepA(A,B).
Let (ϕ,E; p) be unitarily isomorphic to (ψ,E; q). Then (ϕ,E; ṗ) is isomorphic to
(ψ,E; q̇) in the category RepA(A,B). Therefore µ is well-defined.

We are now ready to prove the following theorem.

Theorem 5.1. The natural homomorphism

λ1 : K0(Rep(A,B)) → E1(A,B) ' KK−1(A,B)

is an isomorphism.
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Proof. The homomorphism λ1 is an epimorphism. Indeed, let (ϕ,E; p) be a Kaspa-
rov-Fredholm A,B-module. Applying techniques of the Lemmata 17.4.2-17.4.3 in
[2], one can suppose that p∗ = p and ||p|| 6 1. Then it is equivalent to (ϕ⊕ 0, E ⊕
E; p′), where

p′ =
(

p
√
p− p2√

p− p2 1− p

)
.

Simple checking shows that p′ is a projection and (ϕ⊕ 0, E ⊕E; p′) is an object in
Rep(A,B). To show that λ1 is a monomorphism, consider the commutative diagram

K0(Rep(A,B)) λ1−−−−→ E1(A,B)

‖
y yµ

K0(Rep(A,B))
ξ−−−−→ K0(RepA(A,B)).

By Theorem 3.5, ξ is an isomorphism. Therefore λ1 is a monomorphism.
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