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GROUPOIDS, THE PHRAGMEN-BROUWER PROPERTY,
AND THE JORDAN CURVE THEOREM

RONALD BROWN

(communicated by Frederick Cohen)

Abstract
We publicise a proof of the Jordan Curve Theorem which

relates it to the Phragmen-Brouwer Property, and whose proof
uses the van Kampen theorem for the fundamental groupoid
on a set of base points.

1. Introduction

This article extracts from [Bro88] a proof of the Jordan Curve Theorem based
on the use of groupoids, the van Kampen Theorem for the fundamental groupoid
on a set of base points, and the use of the Phragmen-Brouwer Property. In the
process, we give short proofs of two results on the Phragmen-Brouwer Property
(Propositions 4.1, 4.3). There is a renewed interest in such classical results1, as
shown in the article [Sie] which revisits proofs of the Schoenflies Theorem.

There are many books containing a further discussion of this area. For more
on the Phragmen-Brouwer property, see [Why42] and [Wil49]. Wilder lists five
other properties which he shows for a connected and locally connected metric space
are each equivalent to the PBP. The proof we give of the Jordan Curve Theorem
is adapted from [Mun75]. Because he does not have our van Kampen theorem
for non-connected spaces, he is forced into rather special covering space arguments
to prove his replacements for Corollary 3.5 (which is originally due to Eilenberg
[Eil37]), and for Proposition 4.1.

The intention is to make these methods more widely available, since the 1988
edition of the book [Bro88] has been out of print for at least ten years, and the
new edition is only just now available.

I mention in the same spirit that the results from [Bro88] on orbit spaces have
been made available in [BH02]. A further example of the use of groupoid methods,
this time in combinatorial group theory, is in [Bra04], which gives a new result com-
bining the Kurosch theorem and a theorem of Higgins which generalises Grusko’s
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theorem. Coverings of non connected topological groups are discussed in [BM94]:
essential use is made of the well known equivalence, for suitable X, between the cat-
egories of covering maps over X and of covering morphisms over the fundamental
groupoid π1X. Higgins in [Hig76] gives a powerful normal form theorem for what
he calls the fundamental groupoid of a graph of groups, avoiding the usual choice of
a base point or a tree.

Note that we use groupoids not to give nice proofs of theorems on the fundamental
group of a space with base point, but because we maintain that theorems in this area
are about the fundamental groupoid on a set of base points, where that set is chosen
in a way appropriate to the geometry of the situation at hand. The set of objects
of a groupoid gives a spatial component to group theory which allows for more
powerful and more easily understood modelling of geometry, and hence for more
computational power. Indeed this was the message of the paper [Bro67] and even
the first 1968 edition of [Bro88].

I would like to thank Michel Zisman for significant improvements to parts of the
exposition, and a referee for helpful comments.

2. The groupoid van Kampen theorem

We assume as known the notion of the fundamental groupoid π1XJ of a topo-
logical space X on a set J : it consists of homotopy classes rel end points of paths in
X joining points of J ∩X. We say the pair (X,J) is connected if J meets each path
component of X. The following theorem was proved in [Bro67] (see also [Bro88,
6.7.2]).

Theorem 2.1 (van Kampen Theorem). Let the space X be the union of open
subsets U, V with intersection W , let J be a set and suppose the pairs (U, J), (V, J),
(W,J) are connected. Then the pair (X, J) is connected and the following diagram
of morphisms induced by inclusion is a pushout in the category of groupoids:

π1WJ //

²²

π1V J

²²
π1UJ // π1XJ

This has been generalised to unions of any number of open sets in [BR84]. There
then has to be an assumption that (U, J) is connected for any 3-fold (and hence
also 1- and 2-fold) intersection U of the sets of the cover.

3. Pushouts of groupoids

In order to apply Theorem 2.1, we need some combinatorial groupoid theory.
This was set up in [Hig05], [Bro88]. We first explain here how to compute an
object group H(x) of a groupoid H = G/R given as the quotient of a groupoid G
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by a totally disconnected graph R = {R(x) | x ∈ Ob(G)} of relations: of course
G/R is defined by the obvious universal property, and has the same object set as
G.

Recall from [Bro88, 8.3.3] that:

Proposition 3.1. (a) If G is a connected groupoid, and x ∈ Ob(G), then there is
a retraction r : G → G(x) obtained by choosing for each y ∈ Ob(G) an element
τy ∈ G(x, y), with τx = 1x.
(b) If further R = {R(y) | y ∈ Ob(G)} is a family of subsets of the object groups
G(y) of G, then the object group (G/R)(x) is isomorphic to the object group G(x)
factored by the relations r(ρ) for all ρ ∈ R(y), y ∈ Ob(G).

We assume as understood the notion of free groupoid on a (directed) graph. If G,
H are groupoids then their free product G∗H is given by the pushout of groupoids

Ob(G) ∩Ob(H) i //

j

²²

H

²²
G // G ∗H

where Ob(G)∩Ob(H) is regarded as the subgroupoid of identities of both G,H on
this object set, and i, j are the inclusions. We assume, as may be proved from the
results of [Bro88, Chapter 8]:

Proposition 3.2. If G,H are free groupoids, then so also is G ∗H.

If J is a set, then by the category of groupoids over J we mean the category
whose objects are groupoids with object set J and whose morphisms are morphisms
of groupoids which are the identity on J .

Proposition 3.3. Suppose given a pushout of groupoids over J

C
i

//

j

²²

A

u

²²
B

v
// G

(1)

such that C is totally disconnected and A,B are connected. Let p be a chosen el-
ement of J . Let r : A → A(p), s : B → B(p) be retractions obtained by choosing
elements αx ∈ A(p, x), βx ∈ B(p, x), for all x ∈ J , with αp = 1, βp ∈ 1. Let
fx = (uαx)−1(vβx) in G(p), and let F be the free group on the elements fx, x ∈ J ,
with the relation fp = 1. Then the object group G(p) is isomorphic to the quotient
of the free product group

A(p) ∗B(p) ∗ F

by the relations
(riγ)fx(sjγ)−1f−1

x = 1 (2)
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for all x ∈ J and all γ ∈ C(x, x).

Proof. We first remark that the pushout (1) implies that the groupoid G may
be presented as the quotient of the free product groupoid A ∗ B by the relations
(iγ)(jγ)−1 for all γ ∈ C. The problem is to interpret this fact in terms of the object
group at p of G.

To this end, let T, S be the tree subgroupoids of A,B respectively generated by
the elements αx, βx, x ∈ J . The elements αx, βx, x ∈ J , define isomorphisms

ϕ : A → A(p) ∗ T, ψ : B → B(p) ∗ S

where if g ∈ G(x, y) then

ϕg = αy(rg)α−1
x , ψg = βy(sg)β−1

x .

So G is isomorphic to the quotient of the groupoid

H = A(p) ∗ T ∗B(p) ∗ S

by the relations
(ϕiγ)(ψjγ)−1 = 1

for all γ ∈ C. By Proposition 3.1, the object group G(p) is isomorphic to the quotient
of the group H(p) by the relations

(rϕiγ)(rψjγ)−1 = 1

for all γ ∈ C.

Now if J ′ = J \ {p}, then T, S are free groupoids on the elements αx, βx, x ∈ J ′,
respectively. By Proposition 3.2, and as the reader may readily prove, T ∗S is the free
groupoid on all the elements αx, βx, x ∈ J ′. It follows from [Bro88, 8.2.3] (and from
Proposition 3.1), that (T ∗S)(p) is the free group on the elements rβx = α−1

x βx = fx,
x ∈ J ′. Let fp = 1 ∈ F . Since

rϕiγ = riγ, rψjγ = fx(sjγ)f−1
x ,

the result follows.

Remark 3.4. The above formula is given in essence in van Kampen’s paper
[Kam33], since he needed the case of non connected intersection for applications
in algebraic geometry. However his proof is difficult to follow, and a modern proof
for the case of connected intersection was given by Crowell in [Cro59]. 2

There is a consequence of the above computation (see [Eil37]) which we shall
use in the next section in proving the Jordan Curve Theorem.

First, if F and H are groups, recall that we say that F is a retract of H if there
are morphisms ı : F → H, ρ : H → F such that ρı = 1. This implies that F is
isomorphic to a subgroup of H.

Corollary 3.5. Under the situation of Proposition 3.3, the free group F is a retract
of G(p). Hence if J = Ob(C) has more than one element, then the group G(p) is
not trivial, and if J has more than two elements, then G(p) is not abelian.
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Proof. Let M = A(p)∗B(p)∗F , and let ı′ : F → M be the inclusion. Let ρ′ : M → F
be the retraction which is trivial on A(p) and B(p) and is the identity on F . Let
q : M → G(p) be the quotient morphism. Then it is clear that ρ′ preserves the
relations (2), and so ρ′ defines uniquely a morphism ρ : G(p) → F such that
ρq = ρ′. Let ı = qi′. Then ρı = ρ′i′ = 1. So F is a retract of G(p).

The concluding statements are clear.

We use the last two statements of the Corollary in sections 4 and 5 respectively.

4. The Phragmen-Brouwer Property

A topological space X is said to have the Phragmen-Brouwer Property (here
abbreviated to PBP) if X is connected and the following holds: if D and E are
disjoint, closed subsets of X, and if a and b are points in X \ (D ∪ E) which lie in
the same component of X \ D and in the same component of X \ E, then a and
b lie in the same component of X \ (D ∪ E). To express this more succinctly, we
say a subset D of a space X separates the points a and b if a and b lie in distinct
components of X \D. Thus the PBP is that: if D and E are disjoint closed subsets
of X and a, b are points of X not in D ∪ E such that neither D nor E separate a
and b, then D ∪ E does not separate a and b.

A standard example of a space not having the PBP is the circle S1, since we can
take D = {+1}, E = {−1}, a = i, b = −i. This example is typical, as the next result
shows. But first we remark that our criterion for the PBP will involve fundamental
groups, that is will involve paths, and so we need to work with path-components
rather than components. However, if X is locally path-connected, then components
and path-components of open sets of X coincide, and so for these spaces we can
replace in the PBP ‘component’ by ‘path-component’. This explains the assumption
of locally path-connected in the results that follow.

Proposition 4.1. Let X be a path-connected and locally path-connected space whose
fundamental group (at any point) does not have the integers Z as a retract. Then
X has the PBP.

Proof. Suppose X does not have the PBP. Then there are disjoint, closed subsets
D and E of X and points a and b of X \ (D ∪ E) such that D ∪ E separates
a and b but neither D nor E separates a and b. Let U = X \ D, V = X \ E,
W = X \ (D ∪ E) = U ∩ V . Let J be a subset of W such that a, b ∈ J and
J meets each path-component of W in exactly one point. Since D and E do not
separate a and b, there are elements α ∈ π1U(a, b) and β ∈ π1V (a, b). Since X is
path-connected, the pairs (U, J), (V, J), (W,J) are connected. By the van Kampen
Theorem 2.1 the following diagram of morphisms induced by inclusions is a pushout
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of groupoids:

π1WJ
i1 //

i2
²²

π1UJ

u1

²²
π1V J u2

// π1XJ.

Since U and V are path-connected and J has more than one element, it follows
from Corollary 3.5 that π1XJ has the integers Z as a retract.

As an immediate application we obtain:

Proposition 4.2. The following spaces have the PBP: the sphere Sn for n > 1;
S2 \ {a} for a ∈ S2; Sn \ Λ if Λ is a finite set in Sn and n > 2. 2

In each of these cases the fundamental group is trivial.

An important step in our proof of the Jordan Curve Theorem is to show that
if A is an arc in S2, that is a subspace of S2 homeomorphic to the unit interval I,
then the complement of A is path-connected. This follows from the following more
general result.

Proposition 4.3. Let X be a path-connected and locally path-connected Hausdorff
space such that for each x in X the space X \ {x} has the PBP. Then any arc in
X has path-connected complement.

Proof. Suppose A is an arc in X and X \ A is not path-connected. Let a and b lie
in distinct path-components of X \A.

By choosing a homeomorphism I→ A we can speak unambiguously of the mid-
point of A or of any subarc of A. Let x be the mid-point of A, so that A is the union
of sub-arcs A′ and A′′ with intersection {x}. Since X is Hausdorff, the compact sets
A′ and A′′ are closed in X. Hence A′ \ {x} and A′′ \ {x} are disjoint and closed in
X \ {x}. Also A \ {x} separates a and b in X \ {x} and so one at least of A′, A′′

separates a and b in X \ {x}. Write A1 for one of A′, A′′ which does separate a and
b. Then A1 is also an arc in X.

In this way we can find by repeated bisection a sequence Ai, i > 1, of sub-arcs
of A such that for all i the points a and b lie in distinct path-components of X \Ai

and such that the intersection of the Ai for i > 1 is a single point, say y, of X.

Now X \ {y} is path-connected, by definition of the PBP. Hence there is a path
λ joining a to b in X \{y}. But λ has compact image and hence lies in some X \Ai.
This is a contradiction.

Corollary 4.4. The complement of any arc in Sn is path-connected.

Sketch Proof The case n = 0 is trivial, while the case n = 1 needs a special
argument that the complement of any arc in S1 is an open arc. The case n > 2
follows from the above results. 2
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5. The Jordan Separation and Curve Theorems

We now prove one step along the way to the full Jordan Curve Theorem.

Theorem 5.1 (The Jordan Separation Theorem). The complement of a simple
closed curve in S2 is not connected.

Proof. Let C be a simple closed curve in S2. Since C is compact and S2 is Hausdorff,
C is closed, S2 \ C is open, and so path-connectedness of S2 \ C is equivalent to
connectedness.

Write C = A ∪ B where A and B are arcs in C meeting only at a and b say.
Let U = S2 \ A, V = S2 \ B, W = U ∩ V , X = U ∪ V . Then W = S2 \ C and
X = S2 \ {a, b}. Also X is path-connected, and, by Corollary 4.4, so also are U and
V .

Let x ∈ W . Suppose that W is path-connected. By the van Kampen Theorem
2.1, the following diagram of morphisms induced by inclusion is a pushout of groups:

π1(W,x) //

²²

π1(U, x)

i∗
²²

π1(V, x)
j∗

// π1(X, x).

Now π1(X,x) is isomorphic to the group Z of integers. We derive a contradiction
by proving that the morphisms i∗ and j∗ are trivial. We give the proof for i∗, as
that for j∗ is similar.

Let f : S1 → U be a map and let g = if : S1 → X. Let γ be a parametrisation
of A which sends 0 to b and 1 to a. Choose a homeomorphism h : S2 \ {a} → R2

which takes b to 0 and such that hg maps S1 into R2 \ {0}. Then hγ(0) = 0 and
‖hγ(t)‖ tends to infinity as t tends to 1. Since the image of g is compact, there is
an r > 0 such that hg[S1] is contained in B(0, r). Now there exists 0 < t0 < 1 such
that the distance from 0 to y = hγ(t0) is > r. Define the path λ to be the part of
hγ reparametrised so that λ(0) = 0 and λ(1) = y.

Define G : S1 × I→ R2 by

G(z, t) =

{
hg(z)− λ(2t) if 0 6 t 6 1

2 ,

(2− 2t)hg(z)− y if 1
2 6 t 6 1.

Then G is well-defined. Also G never takes the value 0 (this explains the choices of
λ and y). So G gives a homotopy in R2 \ {0} from hg to the constant map at −y.
So hg is inessential and hence g is inessential. This completes the proof that i∗ is
trivial.

As we shall see, the Jordan Separation Theorem is used in the proof of the Jordan
Curve Theorem.
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Theorem 5.2 (Jordan Curve Theorem). If C is a simple closed curve in S2,
then the complement of C has exactly two components, each with C as boundary.

Proof. As in the proof of Theorem 5.1, write C as the union of two arcs A and B
meeting only at a and b say, and let U = S2 \ A, V = S2 \ B. Then U and V are
path-connected and X = U ∪ V = S2 \ {a, b} has fundamental group isomorphic
to Z. Also W = U ∩ V = S2 \ C has at least two path-components, by the Jordan
Separation Theorem 5.1.

If W has more than two path-components, then the fundamental group G of
X contains a copy of the free group on two generators, by Corollary 3.5, and so
G is non-abelian. This is a contradiction, since G ∼= Z. So W has exactly two
path-components P and Q, say, and this proves the first part of Theorem 5.2.

Since C is closed in S2 and S2 is locally path-connected, the sets P and Q are
open in S2. It follows that if x ∈ P \ P then x /∈ Q, and hence P \ P is contained
in C. So also is Q \Q, for similar reasons. We prove these sets are equal to C.

Let x ∈ C and let N be a neighbourhood of x in S2. We prove N meets P \ P .
Since P \ P is closed and N is arbitrary, this proves that x ∈ P \ P .

Write C in a possibly new way as a union of two arcs D and E intersecting in
precisely two points and such that D is contained in N ∩ C. Choose points p in P
and q in Q. Since S2 \E is path-connected, there is a path λ joining p to q in S2 \E.
Then λ must meet D, since p and q lie in distinct path-components of S2 \ E. In
fact if s = sup{t ∈ I : λ[0, t] ⊆ P}, then λ(s) ∈ P \P . It follows that N meets P \P .

So P \ P = C and similarly Q \Q = C.
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