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Abstract
We develop the theory of CW(A)-complexes, which generalizes
the classical theory of CW-complexes, keeping the geometric
intuition of J.H.C. Whitehead’s original theory. We obtain this
way generalizations of classical results, such as Whitehead The-
orem, which allow a deeper insight in the homotopy properties
of these spaces.

1. Introduction

It is well known that CW-complexes are spaces which are built up out of simple
building blocks or cells. In this case, balls are used as models for the cells and
these are attached step by step using attaching maps, which are defined in the
boundary spheres of the balls. Since their introduction by J.H.C. Whitehead in
the late fourties [6], CW-complexes have played an essential role in geometry and
topology. The combinatorial structure of these spaces allows the development of
tools and results (e.g. simplicial and cellular aproximations, Whitehead Theorem,
Homotopy excision, etc.) which lead to a deeper insight of their homotopy and
homology properties.

The main properties of CW-complexes arise from the following two basic facts:
(1) The n-ball Dn is the topological (reduced) cone of the (n− 1)-sphere Sn−1 and
(2) The n-sphere is the (reduced) n-suspension of the 0-sphere S0. For example,
the homotopy extension properties of CW-complexes are deduced from (1), since
the inclusion of the (n − 1)-sphere in the n-disk is a closed cofibration. Item (2)
is closely related to the definition of classical homotopy groups of spaces and it is
used to prove results such as Whitehead Theorem or Homotopy excision and in the
construction of Eilenberg-MacLane spaces. These two basic facts suggest also that
one might replace the original core S0 by any other space A and construct spaces
built up out of cells of different shapes or types using suspensions and cones of the
base space A.

The main purpose of this paper is to develop the theory of such spaces. More pre-
cisely, we define the notion of CW-complexes of type A (or CW(A)-spaces for short)
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generalizing CW-complexes (which constitute a special case of CW(A)-complexes,
when A = S0). As in the classical case, we study these spaces from two different
points of view: the constructive and the descriptive approachs. We use both points
of view to prove generalizations of classical results such as Whitehead Theorem and
use these new results to study their homotopy properties.

Of course, some classical results are no longer true for general cores A. For
example, the notion of dimension of a space (as a CW(A)-complex) is not always
well defined. Recall that in the classical case, the good definition of dimension is
deduced from the famous Invariance of Dimension Theorem. By a similar argument,
we can prove that in particular cases (for example when the core A is itself a finite
dimensional CW-complex) the dimension of a CW(A)-complex is well defined. We
study this and other invariants and exhibit many examples and counterexamples to
clarify the main concepts.

It is clear that, in general, a topological space may admit many different de-
compositions into cells of different types. We study the relationship between such
different decompositions. In particular, we obtain results such as the following.

Theorem 1.1. Let A be a CW (B)-complex of finite dimension and let X be a
generalized CW (A)-complex. Then X is a generalized CW (B)-complex. In partic-
ular, if A is a standard finite dimensional CW-complex, then X is a generalized
CW-complex and therefore it has the homotopy type of a CW-complex.

By a generalized complex we mean a space which is obtained by attaching cells
in countable many steps, allowing cells of any dimension to be attached in any step.

We also analyze the changing of the core A by a core B via a map α : A → B
and obtain the following result.

Theorem 1.2. Let A and B be pointed topological spaces with closed base points,
let X be a CW(A) and let α : A→ B and β : B → A be continuous maps.

i. If βα = IdA, then there exists a CW(B) Y and maps ϕ : X → Y and ψ : Y →
X such that ψϕ = IdX .

ii. If β is a homotopy equivalence, then there is a CW(B) Y and a homotopy
equivalence ϕ : X → Y .

iii. If βα = IdA and αβ ' IdA then there exists a CW(B) Y and maps ϕ : X → Y
and ψ : Y → X such that ψϕ = IdX and ϕψ = IdX .

In particular, when the core A is contractible, all CW(A)-complexes are also
contractible.

Finally we start developing the homotopy theory of these spaces and obtain the
following generalization of Whitehead Theorem.

Theorem 1.3. Let X and Y be CW (A)-complexes and let f : X → Y be a con-
tinuous map. Then f is a homotopy equivalence if and only if it is an A-weak
equivalence.

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 1(1), 2006 247

We emphasize that our approach tries to keep the geometric intuition of White-
head’s original theory. There exist many generalizations of CW-complexes in the
literature. We especially recommend Baues’ generalization of complexes in Cofibra-
tion Categories [1]. There is also a categorical approach to cell complexes by the
first named author of this paper [4]. The main advantage of the geometric point
of view that we take in this article is that it allows the generalization of the most
important classical results for CW-complexes and these new results can be applied
in several concrete examples.

Throughout this paper, all spaces are assumed to be pointed spaces, all maps are
pointed maps and homotopies are base-point preserving.

2. The constructive approach and first results

We denote by CX the reduced cone of X and by ΣX its reduced suspension.
Also, Sn denotes the n-sphere and Dn denotes the n-disk.

Let A be a fixed pointed topological space.

Definition 2.1. We say that a (pointed) space X is obtained from a (pointed) space
B by attaching an n-cell of type A (or simply, an A-n-cell) if there exists a pushout
diagram

Σn−1A
g //

i

��
push

B

��
CΣn−1A

f
// X

The A-cell is the image of f . The map g is the attaching map of the cell, and f is
its characteristic map.

We say that X is obtained from B by attaching a 0-cell of type A if X = B ∨A.

Note that attaching an S0-n-cell is the same as attaching an n-cell in the usual
sense, and that attaching an Sm-n-cell means attaching an (m+n)-cell in the usual
sense.

The reduced cone CA of A is obtained from A by attaching an A-1-cell. In
particular, D2 is obtained from D1 by attaching a D1-1-cell. Also, the reduced
suspension ΣA can be obtained from the singleton ∗ by attaching an A-1-cell.

Of course, we can attach many n-cells at the same time by taking various copies
of Σn−1A and CΣn−1A. ∨

α∈J
Σn−1A

+
α∈J

gα

//

i

��
push

B

��∨
α∈J

CΣn−1A
+

α∈J
fα

// X
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Definition 2.2. A CW-structure with base A on a space X, or simply a CW(A)-
structure on X, is a sequence of spaces ∗ = X−1, X0, X1, . . . , Xn, . . . such that, for
n ∈ N0, Xn is obtained from Xn−1 by attaching n-cells of type A, and X is the
colimit of the diagram

∗ = X−1 → X0 → X1 → . . .→ Xn → . . .

We call Xn the n-skeleton of X.
We say that the space X is a CW(A)-complex (or simply a CW(A)), if it admits

some CW(A)-structure. In this case, the space A will be called the core or the base
space of the structure.

Note that a CW(A) may admit many different structures of CW-complex with base
A.

Examples 2.3.

1. A CW(S0) is just a CW-complex and a CW(Sn) is a CW-complex with no
cells of dimension less than n.

2. The space Dn admits several different CW(D1)-structures. For instance, we
can take Xr = Dr+1 for 0 6 r 6 n− 1 since CDr = Dr+1. We may also take
X0 = . . . = Xn−2 = ∗ and Xn−1 = Dn since there is a pushout

Σn−2D1 = Dn−1 //

i

��
push

∗

��
CΣn−2D1 = CDn−1 // ΣDn−1 = Dn

As in the classical case, instead of starting attaching cells from a base point ∗,
we can start attaching cells on a pointed space B.

A relative CW(A)-complex is a pair (X,B) such thatX is the colimit of a diagram

B = X−1
B → X0

B → X1
B → . . .→ Xn

B → . . .

where Xn
B is obtained from Xn−1

B by attaching n-cells of type A.

It is clear that one can build a space X by attaching cells (of some type A)
without requiring them to be attached in such a way that their dimensions form an
increasing sequence. That means, for example, that a 2-cell may be attached on a
5-cell. In general, those spaces might not admit a CW(A)-structure and they will be
called generalized CW(A)-complexes (see 2.5). If the core A is itself a CW-complex,
then a generalized CW(A)-complex has the homotopy type of a CW-complex. This
generalizes the well-known fact that a generalized CW-complex has the homotopy
type of a CW-complex.

Before we give the formal definition we show an example of a generalized CW-
complex which is not a CW-complex.

Example 2.4. We build X as follows. We start with a 0-cell and we attach a 1-cell
by the identity map obtaining the interval [−1; 1]. We regard 1 as the base point.
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Now, for each n ∈ N we define gn : S0 → [−1, 1] by gn(1) = 1, gn(−1) = 1/n.
We attach 1-cells by the maps gn. This space X is an example of a generalized
CW-complex (with core S0).

It is not hard to verify that it is not a CW-complex. To prove this, note that the
points of the form 1/n must be 0-cells by a dimension argument, but they also have
a cluster point at 0.

Definition 2.5. We say that X is obtained from B by attaching cells (of different
dimensions) of type A if there is a pushout∨

α∈J
Σnα−1A

+
α∈J

gα

//

i

��
push

B

��(
∨
α∈J0

A) ∨ (
∨
α∈J

CΣnα−1A)
+

α∈J
fα

// X

where nα ∈ N for all α ∈ J . We say that X is a generalized CW(A)-complex if X is
the colimit of a diagram

∗ = X0 → X1 → X2 → . . .→ Xn → . . .

where Xn is obtained from Xn−1 by attaching cells (of different dimensions) of type
A.

We call Xn the n-th layer of X.
One can also define generalized relative CW(A)-complexes in the obvious way.

For standard CW-complexes, by the classical Invariance of Dimension Theo-
rem, one can prove that the notion of dimension is well defined. Any two different
structures of a CW-complex must have the same dimension.

For a general core A this is no longer true. However, we shall prove later that
for particular cases (for example when A is a finite dimensional CW-complex) the
notion of dimension of a CW(A)-complex is well defined.

Definition 2.6. Let X be a CW(A). We consider X endowed with a particular
CW(A)-structure K. We say that the dimension of K is n ifXn = X andXn−1 6= X,
and we write dim(K) = n. We say that K is finite dimensional if dim(K) = n for
some n ∈ N0.

Important remark 2.7. A CW(A) may admit different CW(A)-structures with
different dimensions. For example, let A =

∨
n∈N

Sn and let X =
∨
j∈N

A. Then X has a

zero-dimensional CW(A) structure. But we can see X = (
∨
j∈N

A)∨ΣA, which induces

a 1-dimensional structure. Note that
∨
j∈N

A = (
∨
j∈N

A)∨ΣA since both spaces consist

of countably many copies of Sn for each n ∈ N.
Another example is the following. It is easy to see that if B is a topological space

with the indiscrete topology then its reduced cone and suspension also have the
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indiscrete topology. So, let A be an indiscrete topological space with 1 6 #A 6 c. If
A is just a point then its reduced cone and suspension are also singletons, so ∗ can
be given a CW(∗) structure of any dimension. If #A > 2 then #(ΣnA) = c for all n,
and ΣnA are all indiscrete spaces. Since they have all the same cardinality and they
are indiscrete then all of them are homeomorphic. But each ΣnA has an obvious
CW(A) structure of dimension n. Thus, the homeomorphisms between ΣnA and
ΣmA, for all m, allow us to give ΣnA a CW(A) structure of any dimension (greater
than zero).

Given a CW(A)-complex X, we define the boundary of an n-cell en by
•
en =

en ∩Xn−1 and the interior of en by
◦
en = en −

•
en.

A cell emβ is called an immediate face of enα if
◦
emβ ∩ enα 6= ∅, and a cell emβ is called

a face of enα if there exists a finite sequence of cells

emβ = em0
β0
, em1
β1
, em2
β2
, . . . , emk

βk
= enα

such that emj

βj
is an immediate face of emj+1

βj+1
for 0 6 j < k.

Finally, we call a cell principal if it is not a face of any other cell.

Remark 2.8. Note that
◦
enα ∩

◦
emβ 6= ∅ if and only if n = m, α = β. Thus, if emβ is a

face of enα and emβ 6= enα then m < n.

As in the classical case, we can define subcomplexes and cellular maps in the
obvious way.

Remark 2.9. If X is a CW(A), then X =
⋃
n,α

◦
enα.

Proposition 2.10. Let X be a CW(A) and suppose that the base point of A is closed
in A. Then the interiors of the n-cells are open in the n-skeleton. In particular,
Xn−1 is a closed subspace of Xn.

Proof. For n = −1 and n = 0 it is clear. Let n > 1. We have a pushout diagram∨
α∈J

Σn−1A
+

α∈J
gα

//

i

��
push

Xn−1

��∨
α∈J

CΣn−1A
+

α∈J
fα

// Xn = Xn−1 ∪
⋃
α
enα

Consider a cell enβ . In order to verify that
◦
enβ is open in Xn we have to prove that

(+fβ)−1(
◦
enβ) is open in

∨
α∈J

CΣn−1A. Since (+fβ)−1(
◦
enβ) = CΣn−1A − Σn−1A is

open in CΣn−1A, then
◦
enβ is open in Xn.
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Proposition 2.11. Let A be a finite dimensional CW-complex, A 6= ∗, and let X
be a CW(A). Let K and K′ be CW(A)-structures in X and let n,m ∈ N0 ∪ {∞}
denote their dimensions. Then n = m.

Proof. We suppose first that K and K′ are finite dimensional and n > m.

Let k = dim(A) and let enα be an n-cell of K. We have a homeomorphism
◦
enα '

CΣn−1A− Σn−1A, and
◦
enα is open in X. Let e be a cell of maximum dimension of

the CW-complex CΣn−1A and let U =
◦
e. Thus U is open in X and homeomorphic

to
◦

Dn+k.
Now, U intersects some interiors of cells of type A of K′. Let e0 be one of those

cells with maximum dimension. Suppose e0 is an m′-cell, with m′ 6 m. Then
◦
e0

is open in the m′-skeleton of X with the K′ structure. It is not hard to see that
V = U ∩ ◦

e0 is open in U , extending
◦
e0 to an open subset of X as in 2.12 below.

In a similar way,
◦
e0 ' CΣm

′−1A−Σm
′−1A, and V meets some interiors of cells of

the CW-complex CΣm
′−1A. We take e1 a cell (of type S0) of maximum dimension

among those cells and we denote k′ = dim(e1). Then
◦
e1 is homeomorphic to

◦
Dk′ .

Let W = V ∩ ◦
e1. One can check that W is open in

◦
e1 '

◦
Dk′ and that it is also open

in U '
◦

Dn+k.
By the invariance of dimension theorem, n+k = k′, but also k′ 6 m+k 6 n+k.

Thus n = m.

It remains to be shown that if m = ∞ then n = ∞. Suppose that m = ∞ and

n 6= ∞. Let k = dim(A). We choose el an l-cell of K′ with l > n + k. Then
◦
el is

open in the l-skeleton (K′)l. As in the proof of 2.12 below, we can extend
◦
el to an

open subset U of X with U ∩ (K′)l−1 = ∅. Now we take a cell e1 of K such that
◦
e1 ∩U 6= ∅ and with the property of being of maximum dimension among the cells
of K whose interior meets U . Let r = dim(e1). We have that U ⊆ Kr. As before,
we extend

◦
e1 to an open subset V of X with V ∩ Kr−1 = ∅, V ∩ Kr =

◦
e1. So

U ∩ ◦
e1 = U ∩V is open in X. Proceeding analogously, since

◦
e1 ' CΣr−1A−Σr−1A,

we can choose a cell e2 of e1 (of type S0) with maximum dimension such that
W =

◦
e2 ∩ (U ∩ ◦

e1) 6= ∅. Again, W is open in X. Let s = dim e2. So W is open in
◦
e2 '

◦
Ds and s 6 r + k 6 n+ k < l. On the other hand, W must meet the interior

of some cell of type S0 belonging to one of the cells of K′ with dimension greater
than or equal to l (since U ∩ (K′)l−1 = ∅). So, a subset of W is homeomorphic to

an open set of
◦
Dq with q > l, a contradiction.

Recall that a topological space Y is T1 if the points are closed in X.

Proposition 2.12. Let A be a pointed T1 topological space, let X be a CW(A)
and K ⊆ X a compact subspace. Then K meets only a finite number of interiors of
cells.
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Proof. Let Λ = {α/ K ∩
◦
enα
α 6= ∅}. For each α ∈ Λ choose xα ∈ K ∩

◦
enα
α . We

want to show that for any α ∈ Λ there exists an open subspace Uα ⊆ X such that

Uα ⊇
◦
enα
α and xβ /∈ Uα for any β 6= α.

For each n, let Jn be the index set of the n-cells. We denote by gnα the attaching
map of enα and by fnα its characteristic map.

Fix β ∈ Λ. Take U1 =
◦
e
nβ

β , which is open in Xnβ . If nβ = −1, we take U2 =
(

∨
α∈J0∩Λ

A− {xα}) ∨ (
∨

α∈J0−Λ

A), which is open in the 0-skeleton.

Now, for nβ +n−1 > 1 we construct inductively open subspaces Un of Xnβ+n−1

with Un−1 ⊆ Un, Un ∩Xnβ+n−2 = Un−1 and such that xα /∈ Un if α 6= β.
If the base point a0 /∈ Un−1, we take

Un = Un−1 ∪
⋃

α∈Jnβ+n−1

fnα
α ((gnα

α )−1(Un−1)× (1− εα, 1])

with 0 < εα < 1 chosen in such a way that xα /∈ Un if α 6= β. Note that Un is open
in Xnβ+n−1.

If a0 ∈ Un−1 we take

Un = Un−1 ∪
⋃

α∈Jnβ+n−1

fnα
α (((gnα

α )−1(Un−1)

×(1− εα, 1]) ∪ (Wxα × I) ∪ (Σnβ+n−1A× [0, ε′α)))

with Wxα = Vxα ∩ (gnα
α )−1(Un−1), where Vxα ⊆ Σnβ+n−1A is an open neighbour-

hood of the base point not containing x′α (where xα = fnα
α (x′α, tα)), and 0 < εα < 1,

0 < ε′α < 1, chosen in such a way that xα /∈ Un if α 6= β. Note that Un is open in
Xnβ+n−1.

We set Uβ =
⋃
n∈N

Un. Thus K ⊆
⋃
α∈Λ

◦
enα
α ⊆

⋃
α∈Λ

Uα, and xα /∈ Uβ if α 6= β. Since

{Uα}α∈Λ is an open covering of K which does not admit a proper subcovering, Λ
must be finite.

Lemma 2.13. Let A and B be Hausdorff spaces and suppose X is obtained from
B by attaching cells of type A. Then X is Hausdorff.

Proof. Let x, y ∈ X. If x, y lie in the interior of some cell, then it is easy to choose
the open neighbourhoods. If one of them belongs to B and the other to the interior
of a cell, let’s say x ∈ enα

α , we work as in the previous proof. Explicitly, if x = fα(a, t)
with a ∈ Σnα−1A, t ∈ I then we take U ′ ⊆ Σnα−1A open set such that a ∈ U ′ and
a0 /∈ U ′, where a0 is the basepoint of Σnα−1A. We define U = fα(U ′ × (t/2, (1 +
t)/2)), and V = X − fα(U ′ × [t/2, (1 + t)/2]).

If x, y ∈ B, since B is Hausdorff there exist U ′, V ′ ⊆ B open disjoint sets such
that x ∈ U ′ and y ∈ V ′. However, U ′ and V ′ need not be open in X. Suppose first
that x, y are both different from the base point. So we may suppose that neither
U ′ nor V ′ contain the base point. We take

U = U ′ ∪
⋃
α∈J

fα((gα)−1(U ′)× (1/2; 1])
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V = V ′ ∪
⋃
α∈J

fα((gα)−1(V ′)× (1/2; 1])

If x is the base point then we take

U = U ′ ∪
⋃
α∈J

fα(((gα)−1(U ′)× I) ∪ (Σnα−1A× [0; 1/2)))

Proposition 2.14. Let A be a Hausdorff space and let X be a CW(A). Then X is
a Hausdorff space.

Proof. By the previous lemma and induction we have that Xn is a Hausdorff space
for all n > −1. Given x, y ∈ X, choose m ∈ N such that x, y ∈ Xm. As Xm is a
Hausdorff space, there exist disjoint sets U0 and V0, which are open in Xm, such
that x ∈ U0 and y ∈ V0. Proceeding in a similar way as we did in the previous
results we construct inductively sets Uk, Vk for k ∈ N such that Uk, Vk ⊆ Xm+k are
open sets, Uk ∩ Vk = ∅, Uk ∩ Xm+k−1 = Uk−1 and Vk ∩ Xm+k−1 = Vk−1 for all
k ∈ N. We take U =

⋃
Uk, V =

⋃
Vk.

Remark 2.15. Let X be a CW(A) and S ⊆ X a subspace. Then S is closed in X if
and only if S ∩ enα is closed in enα for all n, α.

Lemma 2.16. Let X, Y be CW(A)’s, B ⊆ X a subcomplex, and f : B → Y a
cellular map. Then the pushout

B
f //

i

��

Y

��

X //

push

X ∪
B
Y

is a CW(A).

Proof. We denote by {enX,α}α∈Jn the n-cells (of type A) of the relative CW(A)-
complex (X,B) and by {enY,α}α∈J′n the n-cells of Y . We will construct X ∪

B
Y at-

taching the cells of Y with the same attaching maps and at the same time we will
attach the cells of (X,B) using the map f : B → Y .

Let J ′′0 = J0 ∪J ′0 and Z0 =
∨

α∈J′′0
A. We define f0 : X0 → Z0 by f0|B0 = f |B0 and

f0| ⋃
α∈J0

e0X,α
the inclusion.

Suppose that Zn−1 and fn−1 : Xn−1 → Zn−1 with fn−1|Bn−1 = f are defined.
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We define Zn by the following pushout.

∨
α∈J′′n

Σn−1A
+

α∈J′′n
g′′α

//

i

��
push

Zn−1

in−1

��∨
α∈J′′n

CΣn−1A
+

α∈J′′n
f ′′α

// Zn

where J ′′n = Jn ∪ J ′n and

g′′α =
{
fn−1 ◦ gα if α ∈ Jn
g′α if α ∈ J ′n

where gα and g′α are the attaching maps. We define fn : Xn → Zn by fn|Bn = f |Bn ,
fn|Xn−1 = fn−1 and fn| ⋃

α∈Jn

en
X,α

= f ′′α (i.e. fn(fα(x)) = f ′′α(x)). Note that fn is well

defined.
Let Z be the colimit of the Zn. By construction it is not difficult to verify that

Z satisfies the universal property of the pushout.

Corollary 2.17. Let X be a CW(A) and B ⊆ X a subcomplex. Then X/B is a
CW(A).

Theorem 2.18. Let X be a CW(A). Then the reduced cone CX and the reduced
suspension ΣX are CW(A)’s. Moreover, X is a subcomplex of both of them.

Proof. By the previous lemma, it suffices to prove the result for CX.
Let enα be the n-cells of X and, for each n, let Jn be the index set of the n-

cells. We denote by gnα the attaching maps and by fnα the characteristic maps. Let
in−1 : Xn−1 → Xn be the inclusions. We construct Y = CX as follows.

Let Y 0 =
∨
α∈J0

A = X0.

We construct Y 1 from Y 0 and from the 0-cells and the 1-cells ofX by the pushout

∨
α∈J′1

A
+

α∈J′1

g′α

//

i

��
push

Y 0

i′0

��∨
α∈J′1

CA
+

α∈J′1

f ′α

// Y 1

where J ′1 = J0 t J1. The maps g′α, for α ∈ J ′1, are defined as

g′α =
{
iα if α ∈ J0

gα if α ∈ J1

and iα : A →
∨
α∈J0

A is the inclusion of A in the α-th copy. Note that X1 is a

subcomplex of Y 1.
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Note also that the 1-cells of Y are divided into two sets. The ones with α ∈ J1

are the 1-cells of X, and the others are the cone of the 0-cells of X.
Inductively, suppose we have constructed Y n−1. We define Y n as the pushout

∨
α∈J′n

Σn−1A
+

α∈J′n
g′α

//

i

��
push

Y n−1

i′n−1

��∨
α∈J′n

CΣn−1A
+

α∈J′n
f ′α

// Y n

where J ′n = Jn−1 t Jn and

g′α =
{
gα for α ∈ Jn
fα ∪ Cgα for α ∈ Jn−1 .

We prove now that Y n = CXn−1 ∪
⋃
α
enα. We have the following commutative

diagram.

∨
α∈J′n

Σn−1A
( +
α∈Jn−1

g′α)∨Id

//

∨
α∈J′n

i

��

Y n−1 ∨
∨

α∈Jn

Σn−1A

in−1∨
∨

α∈Jn

i

��

Id+( +
α∈Jn

g′α)

//

push

Y n−1

��∨
α∈J′n

CΣn−1A
( +
α∈Jn−1

f ′α)∨Id

// CXn−1 ∨
∨

α∈Jn

CΣn−1A
Id+( +

α∈Jn

f ′α)

// CXn−1 ∪
⋃
α
enα

The right square is clearly a pushout. To prove that the left square is also a
pushout it suffices to verify that the following is also a pushout.

∨
α∈Jn−1

Σn−1A
+

α∈Jn−1
g′α

//

∨
α∈Jn−1

i

��

Y n−1 = CXn−2 ∪
⋃

α∈Jn−1

en−1
α

inc

��∨
α∈Jn−1

CΣn−1A
+

α∈Jn−1
f ′α

// CXn−1

For simplicity, we will prove this in the case that there is only one A-(n-1)-cell.
Let

j : Σn−1A→ CΣn−1A
i1 : C(Σn−1A)× {1} → CCΣn−1A
i2 : (Σn−1A)× {1} × I/ ∼→ CCΣn−1A
i : ΣnA = CΣn−1A ∪

A
CΣn−1A→ CΣnA

be the corresponding inclusions.
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Let ϕ : CC(Σn−1A) → CΣ(Σn−1A) be a homeomorphism, such that ϕ−1i =
i1 + i2. Note that Cj = i2. There are pushout diagrams

Σn−1A
g //

j

��
push

Xn−1

inc

��
CΣn−1A

f
// Xn = Xn−1 ∪ en

CΣn−1A
Cg //

Cj=i2

��
push

CXn−1

Cinc

��
CCΣn−1A

Cf
// CXn

It is not hard to check that the diagram

ΣnA = CΣn−1A ∪
A

CΣn−1A f+Cg //

i

��

CXn−1 ∪ en

inc

��
CΣnA

(Cf)ϕ−1
// CXn

satisfies the universal property of pushouts.
Now we take Y to be the colimit of Y n, which satisfies the desired properties.

Remark 2.19.
1. The standard proof of the previous theorem for a CW-complex X uses the

fact that X × I is also a CW-complex. For general cores A, it is not always
true that X × I is a CW(A)-complex when X is.

2. It is easy to see that if X is a CW(A), then ΣX is a CW(A). Just apply
the Σ functor to each of the pushout diagrams used to construct X. In this
way we give ΣX a CW(A) structure in which each of the cells is the reduced
suspension of a cell of X. This is a simple and interesting structure. However,
it does not have the property of having X as a subcomplex.

Lemma 2.20. Let A be a topological space and let (X,B) be a relative CW(A) (resp.
a generalized relative CW(A)). Let Y be a topological space, and let f : B → Y be
a continuous map. We consider the pushout diagram

B
f //

i

��

Y

��

X //

push

X ∪
B
Y

Then (X ∪
B
Y, Y ) is a relative CW(A) (resp. a generalized relative CW(A)).

Moreover, if (X,B) has a CW(A)-stucture of dimension n ∈ N0 (resp. a CW(A)-
structure with a finite number of layers) then (X∪

B
Y, Y ) can also be given a CW(A)-

stucture of dimension n (resp. a CW(A)-structure with a finite number of layers).

Theorem 2.21. Let A be a CW(B) of finite dimension and let X be a generalized
CW(A). Then X is a generalized CW(B). In particular, if A is a CW-complex of
finite dimension then X is a generalized CW-complex.
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Proof. Let

∗ = X0 → X1 → . . .→ Xn → . . .

be a generalized CW(A) structure on X. Then, for each n ∈ N we have a pushout
diagram

Cn =
∨
α∈J

Σnα−1A
+

α∈J
gα

//

i

��
push

Xn−1

��
Dn = (

∨
α∈J0

A) ∨ (
∨
α∈J

CΣnα−1A)
+

α∈J
fα

// Xn

where nα ∈ N for all α ∈ J .
We have that (Dn, Cn) is a relative CW(B) by 2.18, and it has finite dimension

since A does. So, by 2.20, (Xn, Xn−1) is a relative CW(B) of finite dimension. Then,
for each n ∈ N, there exist spaces Y jn for 0 6 j 6 mn, with mn ∈ N such that Y jn is
obtained from Y j−1

n by attaching cells of type B of dimension j and Y −1
n = Xn−1,

Y mn
n = Xn. Thus, there exists a diagram

∗ = X0 = Y −1
1 → Y 0

1 → Y 1
1 → . . .→ Y m1

1 = X1 =

Y −1
2 → . . .→ Y m2

2 = X2 = Y −1
3 → . . .

where each space is obtained from the previous one by attaching cells of type B. It
is clear that X, the colimit of this diagram, is a generalized CW(B).

In the following example we exhibit a space X which is not a CW-complex but
is a CW(A), with A a CW-complex.

Example 2.22. Let A = [0; 1]∪{2}, with 0 as the base point. We buildX as follows.
We attach two 0-cells to get A ∨ A. We will denote the points in A ∨ A as (a, j),
where a ∈ A and j = 1, 2. We define now, for each n ∈ N, maps gn : A → A ∨ A
in the following way. We set gn(a) = (a, 1) if a ∈ [0; 1] and gn(2) = (1/n, 2). We
attach 1-cells of type A by means of the maps gn. By a similar argument as the one
in 2.4, the space X obtained in this way is not a CW-complex.

If A is a finite dimensional CW-complex and X is a generalized CW(A), the
previous theorem says that X is a generalized CW-complex, and so it has the ho-
motopy type of a CW-complex. The following result asserts that the last statement
is also true for any CW-complex A.

Proposition 2.23. If A is a CW-complex and X is a generalized CW(A) then X
has the homotopy type of a CW-complex.

Proof. Let

∗ ⊆ X1 ⊆ X2 ⊆ . . . ⊆ Xn ⊆ . . .
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be a generalized CW(A) structure on X. We may suppose that all the 0-cells are
attached in the first step, that is,

X1 =
∨
β

A ∨
∨
α

ΣnαA

with nα ∈ N. It is clear that X1 is a CW complex.
We will construct inductively a sequence of CW-complexes Yn for n ∈ N with

Yn−1 ⊆ Yn subcomplex and homotopy equivalences φn : Xn → Yn such that
φn|Xn−1 = φn−1.

We take Y1 = X1 and φ1 the identity map. Suppose we have already constructed
Y1, . . . , Yk and φ1, . . . , φk satisfying the conditions mentioned above. We consider
the following pushout diagram.

∨
α

Σnα−1A
+
α
gα

//

∨
α
i

��
push

Xk

ik

��

φk //

push

Yk

γ′k

��∨
α

CΣnα−1A
+
α
fα

// Xk+1
β

// Y ′
k+1

Note that β is a homotopy equivalence since ik is a closed cofibration and φk is
a homotopy equivalence.

We deform φk ◦ (+
α
gα) to a cellular map ψ and we define Yk+1 as the pushout

∨
α

Σnα−1A ψ //

∨
α
i

��
push

Yk

γk

��∨
α

CΣnα−1A // Yk+1

There exists a homotopy equivalence k : Y ′
k+1 → Yk+1 with k|Yk

= Id. Let
ik : Xk → Xk+1 be the inclusion. Then kβik = kγ′kφk and kγ′k = γk is the inclusion.
Let φk+1 = kβ. Then, φk+1 is a homotopy equivalence and φk+1|Xk = φk.

We take Y to be the colimit of the Yn’s. Then Y is a CW-complex. As the
inclusions ik, γk are closed cofibrations, by proposition A.5.11 of [3], it follows that
X is homotopy equivalent to Y .

We prove now a variation of theorem 2.21.

Theorem 2.24. Let A be a generalized CW(B) with B compact, and let X be a
generalized CW(A). If A and B are T1 then X is a generalized CW(B).

Proof. Let
∗ = X0 → X1 → . . .→ Xn → . . .

be a generalized CW(A)-structure on X. Let Cn, Dn be as in the proof of 2.21.
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We have that (Dn, Cn) is a relative CW(B) by 2.18. By 2.20, (Xn, Xn−1) is also
a relative CW(B), but it need not be finite dimensional, so we can not continue
with the same argument as in the proof of 2.21. But using the compactness of B,
we will show that the cells of type B may be attached in a certain order to obtain
spaces Zn for n ∈ N such that X is the colimit of the Zn’s.

Let J denote the set of all cells of type B belonging to some of the relative
CW(B)’s (Xn, Xn−1) for n ∈ N. We associate an ordered pair (a, b) ∈ (N0)2 to
each cell in J in the following way. Note that each cell of type B is included in
exactly one cell of type A. The number a will be the smallest number of layer in
which that A-cell lies. In a similar way, if we regard that A-cell as a relative CW(B)
(CΣn−1A,Σn−1A) (or more precisely, the image of this by the characteristic map),
we set b to be the smallest number of layer (in (CΣn−1A,Σn−1A)) in which the
B-cell lies. If e is the cell, we denote ϕ(e) = (a, b).

We will consider in (N0)2 the lexicographical order with the first coordinate
greater than the second one.

Now we set the order in which the B-cells are attached. Let J1 be the set of all
the cells whose attaching map is the constant. We define inductively Jn for n ∈ N
to be the set of all the B-cells whose attaching map has image contained in the
union of all the cells in Jn−1. Clearly Jn−1 ⊆ Jn. We wish to attach first the cells
of J1, then those of J2 − J1, etc. This can be done because of the construction of
the Jn. We must verify that there are no cells missing, i.e., that J =

⋃
n∈N

Jn.

Suppose there exists one cell in J , which we call e1, which is not in any of the
Jn. The image of its attaching map, denoted K, is compact, since B is compact and
therefore it meets only a finite number of interiors of A-cells. For each of these cells
eA we consider the relative CW(B) (eA, eA −

◦
eA), where eA is the cell of type A.

Then K ∩ eA is closed in K and hence compact, so it meets only a finite number
of interiors of B-cells of the relative CW(B) (eA, eA −

◦
eA).

Thus K meets only a finite number of interiors of B-cells in J .

This implies that K, which is the image of the attaching map of e1, meets the
interior of some cell e2 which does not belong to any of the Jn, because of the
finiteness condition.

Recall that e2 is an immediate face of e1, which easily implies that ϕ(e2) < ϕ(e1).

Applying the same argument inductively we get a sequence of cells (en)n∈N such
that ϕ(en+1) < ϕ(en) for all n.

But this induces an infinite decreasing sequence for the lexicographical order,
which is impossible. Hence, J =

⋃
n∈N

Jn.

Let Zn =
⋃
e∈Jn

e. It is clear that (Zn, Zn−1) is a relative CW(B).

Since colimits commute, we prove that X = colim Zn is a generalized CW(B)-
complex.
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3. The descriptive approach

We will investigate now the descriptive approach and compare it with the con-
structive approach introduced in the previous section. We shall prove that in many
cases a constructive CW(A)-complex is the same as a descriptive one.

As before, let A be a fixed pointed topological space.

Definition 3.1. Let X be a pointed topological space (with base point x0). A
cellular complex structure of type A on X is a collection K = {enα : n ∈ N0, α ∈ Jn}
of subsets of X, which are called the cells (of type A), such that x0 ∈ enα for all n
and α, and satisfying conditions (1), (2) and (3) below.

Let Kn = {erα, r 6 n, α ∈ Jr} for n ∈ N0, K−1 = {{x0}}. Kn is called the
n-skeleton of K. Let |Kn| =

⋃
r6n
α∈Jr

erα, |Kn| ⊆ X a subspace.

We call
•
enα = enα∩|Kn−1| the boundary of the cell enα and

◦
enα = enα−

•
enα the interior

of the cell enα.
The collection K must satisfy the following properties.

(1) X =
⋃
n,α
enα = |K|

(2)
◦
enα ∩

◦
emβ 6= ∅ ⇒ m = n, α = β

(3) For every cell enα with n > 1 there exists a continuous map

fnα : (CΣn−1A,Σn−1A, a0) → (enα,
•
enα, x0)

such that fnα is surjective and fnα : CΣn−1A − Σn−1A →
◦
enα is a homeomor-

phism. For n = 0, there is a homeomorphism f0
α : (A, a0) → (e0α, x0).

The dimension of K is defined as dimK = sup{n : Jn 6= ∅}.

Definition 3.2. Let K be a cellular complex structure of type A in a topological
space X. We say that K is a cellular CW-complex with base A if it satisfies the
following conditions.

(C) Every compact subspace of X intersects only a finite number of interiors of
cells.

(W) X has the weak (final) topology with respect to the cells.

In this case we will say that X is a descriptive CW(A).

We study now the relationship between both approaches.

Theorem 3.3. Let A be a T1 space. If X is a constructive CW(A), then it is a
descriptive CW(A).

Proof. Let K = {enα}n,α∪{{x0}}. It is not difficult to verify that K defines a cellular
complex structure on X.

It remains to prove that it satisfies conditions (C) and (W). Note that condition
(C) follows from 2.12, while (W) follows from 2.15.
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Note that the hypothesis of T1 on A is necessary. For example, take A = {0, 1}
with the indiscrete topology and 0 as base point. Let X =

∨
j∈N

A. The space X also

has the indiscrete topology and it is a constructive CW(A). If it were a descriptive
CW(A), it could only have cells of dimension 0 since X is countable. But X is not
finite, then it must have infinite many cells, but it is a compact space. This implies
that (C) does not hold, thus X is not a descriptive CW(A).

Theorem 3.4. Let A be a compact space and let X be a descriptive CW(A). If X
is Hausdorff then it is a constructive CW(A).

Proof. We will prove that |Kn| can be obtained from |Kn−1| by attaching A-n-cells.
For n = 0 this is clear since we have a homeomorphism

∨
α∈J0

f0
α :

∨
α∈J0

A→ |K0|.

For any n ∈ N, there is a pushout

∨
α∈Jn

Σn−1A
+

α∈Jn

fn
α |Σn−1A

//

i

��
push

|Kn−1|

��∨
α∈Jn

CΣn−1A
+

α∈Jn

fn
α

// |Kn|

The topology of |Kn| coincides with the pushout topology since X is hausdorff
and A is compact.

It is interesting to see that 3.4 is not true if X is not Hausdorff, even in the case
A is compact and Hausdorff. For example, take A = S0 with the usual topology, and
X = [−1; 1] with the following topology. The proper open sets are [−1; 1), (−1; 1]
and the subsets U ⊆ (−1; 1) which are open in (−1; 1) with the usual topology. It
is easy to see that X is a descriptive CW(A). We denote D1 = [−1; 1] with the
usual topology. Take e0 = {−1; 1}, e1 = X. Let f0 : A → {−1; 1} and f1 : CA =
D1 → e1 be the identity maps on the underlying sets. Both maps are continuous and

surjective. The maps f0 and f1| ◦
D1

:
◦
D1 →

◦
e1 are homeomorphisms. So conditions

(1), (2) and (3) of the definition of cellular complex are satisfied. Condition (C) is
obvious, and (W) follows from the fact that e1 = X. So X is a descriptive CW(A).
But it is not a constructive CW(A) because it is not Hausdorff.

In a similar way one can define the notion of descriptive generalized CW(A)-
complex. The relationship between the constructive and descriptive approachs of
generalized CW(A)-complexes is analogous to the previous one.

4. Changing cores

Suppose we have two spaces A and B and maps α : A→ B and β : B → A. Let
X be a CW(A). We want to construct a CW(B) out of X, using the maps α and β.
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We shall consider two special cases. First, we consider the case βα = IdA, that is,
A is a retract of B. In this case, we construct a CW(B) Y such that X is a retract
of Y .

We denote gnγ , fnγ the adjunction and characteristic maps of the A-n-cells (γ ∈
Jn). Let Y 0 =

∨
γ∈J0

B and let ϕ0 : X0 → Y 0 be the map ∨α and let ψ0 : Y 0 → X0

be the map ∨β. Clearly ψ0ϕ0 = IdX0 .
By induction suppose we have constructed Y n−1 and maps ϕn−1 : Xn−1 → Y n−1

and ψn−1 : Y n−1 → Xn−1 such that ψn−1ϕn−1 = IdXn−1 and such that ϕk, ψk
extend ϕk−1, ψk−1 for all k 6 n− 1. We define Y n by the following pushout.

∨
γ∈Jn

Σn−1B
ϕn−1( +

γ∈Jn

gn
γ Σn−1β)

//

∨i
��

push

Y n−1

j

��∨
γ∈Jn

CΣn−1B
+

γ∈Jn

hn
γ

// Y n

Since

( +
γ∈Jn

fnγ CΣn−1β)(∨i) = +
γ∈Jn

(fnγ CΣn−1βi)

= +
γ∈Jn

(fnγ iΣ
n−1β) = +

γ∈Jn

(incgnγΣn−1β)

= incψn−1 +
γ∈Jn

(ϕn−1g
n
γΣn−1β)

there exists a map ψn : Y n → Xn extending ψn−1 such that ψn +
γ∈Jn

hnγ =

+
γ∈Jn

(fnγ CΣn−1β) and ψnj = incψn−1.

On the other hand we have the following commutative diagram

∨
γ∈Jn

Σn−1A
+

γ∈Jn

gn
γ

//

∨i

��

∨Σn−1α

&&NNNNNNNNN
Xn−1

inc

��

ϕn−1

!!B
BB

BB
BB

BB
B

∨
γ∈Jn

Σn−1B
ϕn−1( +

γ∈Jn

gn
γ Σn−1β)

//

∨i

��

Y n−1

j

��

∨
γ∈Jn

CΣn−1A
+

γ∈Jn

fn
γ

//

∨CΣn−1α

&&NNNNNNNNN
Xn

ϕn

!!∨
γ∈Jn

CΣn−1B
+

γ∈Jn

hn
γ

// Y n

where the front and back faces are pushouts. Then the dotted arrow exists and we
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have ϕn = jϕn−1 + ( +
γ∈Jn

hnγCΣn−1α). Also, ψnϕn = IdXn , since

ψnϕn = ψnjϕn−1 + ( +
γ∈Jn

ψnh
n
γCΣn−1α)

= incψn−1ϕn−1 + ( +
γ∈Jn

fnγ CΣn−1βCΣn−1α) =

= inc + ( +
γ∈Jn

fnγ ) = IdXn

Let Y = colim Y n. Then there exist maps ϕ : X → Y and ψ : Y → X induced by
the ψn’s and ϕn’s and they satisfy ψϕ = IdX . So, X is a retract of Y .

The second special case we consider is the following. Suppose A and B have
the same homotopy type, that is, there exists a homotopy equivalence β : B → A
with homotopy inverse α. Suppose, in addition, that the base points of A and B
are closed. Let X be a CW(A). We will construct a CW(B) which is homotopy
equivalent to X.

Again we take Y 0 =
∨
γ∈J0

B. Let ϕ0 : X0 → Y 0 be the map ∨α. So, ϕ0 is a

homotopy equivalence.

Now, let n ∈ N and suppose we have constructed Y n−1 and a homotopy equiv-
alence ϕn−1 : Xn−1 → Y n−1. We define Y n as in the first case. Consider the
commutative diagrams

∨
γ∈Jn

Σn−1B
+

γ∈Jn

gn
γ Σn−1β

//

iB

��

Id

''OOOOOOO
Xn−1

inc

��

ϕn−1

$$HH
HH

HH
HH

HH

∨
γ∈Jn

Σn−1B
ϕn−1( +

γ∈Jn

gn
γ Σn−1β)

//

iB

��

Y n−1

j

��

∨
γ∈Jn

CΣn−1B //

Id

''OOOOOOO
Xn−1 ∪ enB

p1

$$∨
γ∈Jn

CΣn−1B
+

γ∈Jn

hn
γ

// Y n
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∨
γ∈Jn

Σn−1B
+

γ∈Jn

gn
γ Σn−1β

//

iB

��

∨Σn−1β

''NNNNNNN
Xn−1

inc

��

Id

$$HH
HH

HH
HH

HH

∨
γ∈Jn

Σn−1A
+

γ∈Jn

gn
γ

//

iA

��

Xn−1

inc

��

∨
γ∈Jn

CΣn−1B //

∨CΣn−1β ''NNNNNNN
Xn−1 ∪ enB

p2

$$∨
γ∈Jn

CΣn−1A
+

γ∈Jn

fn
γ

// Xn

Since the front and rear faces of both cubical diagrams are pushouts, the dotted
arrows p1 and p2 exist. Now ϕn−1, ∨Σn−1β and ∨CΣn−1β are homotopy equiva-
lences and iA and iB are closed cofibrations. Then, by proposition 7.5.7 of [2], p1

and p2 are homotopy equivalences. We have the following commutative diagram.

Y n−1

i

��

Xn−1
ϕn−1oo Id //

j

��

Xn−1

k

��
Y n Xn−1 ∪ enB

p1oo p2 // Xn

where i, j and k are the inclusions. Let p−1
2 be a homotopy inverse of p2. Then

p1p
−1
2 k = p1p

−1
2 p2j ' p1j = iϕn−1. Since k : Xn−1 → Xn is a cofibration, ϕn−1

extends to some ϕn : Xn → Y n and ϕn is homotopic to p1p
−1
2 , and thus, it is a

homotopy equivalence.
Again, we take Y = colim Y n. Then the maps ϕn for n ∈ N induce a map

ϕ : X → Y which is a homotopy equivalence by proposition A.5.11 of [3].
We summarize the previous results in the following theorem.

Theorem 4.1. Let A and B be pointed topological spaces. Let X be a CW(A), and
let α : A→ B and β : B → A be continuous maps.

i. If βα = IdA, then there exists a CW(B) Y and maps ϕ : X → Y and ψ : Y →
X such that ψϕ = IdX .

ii. Suppose A and B have closed base points. If β is a homotopy equivalence, then
there exists a CW(B) Y and a homotopy equivalence ϕ : X → Y .

iii. Suppose A and B have closed base points. If βα = IdA and αβ ' IdA then
there exists a CW(B) Y and maps ϕ : X → Y and ψ : Y → X such that
ψϕ = IdX and ϕψ ' IdY .

Note that item (iii) follows by a similiar argument.

The previous theorem has an easy but interesting corollary.
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Corollary 4.2. Let A be a contractible space (with closed base point) and let X be
a CW(A). Then X is contractible.

This corollary also follows from a result analogous to Whitehead Theorem which
we prove in the next section.

5. Homotopy theory of CW(A)-complexes

In this section we start to develop the homotopy theory of CW(A)-complexes.
The main result of this section is theorem 5.10 which generalizes the famous White-
head Theorem.

Let X be a (pointed) topological space and let r ∈ N0. Recall that the sets πAr (X)
are defined by πAr (X) = [ΣrA,X], the homotopy classes of maps from ΣrA to X.
It is well known that these are groups for r > 1 and Abelian for r > 2.

Similarly, for B ⊆ X one defines πAr (X,B) = [(CΣr−1A,Σr−1A), (X,B)] for
r ∈ N, which are groups for r > 2 and Abelian for r > 3.

Note that πS
0

r (X) = πr(X) and πS
n

r (X) = πr+n(X). Note also that πAr (X) are
trivial if A is contractible.

Definition 5.1. Let (X,B) be a pointed topological pair. The pair (X,B) is called
A-0-connected if for any given continuous function f : A → X there exists a map
g : A→ B such that ig ' f , where i : B → X is the inclusion.

∗ //

�� '

B

i

��
A

f
//

g
>>~~~~~~~
X

Definition 5.2. Let n ∈ N. The pointed topological pair (X,B) is called A-n-
connected if it is A-0-connected and πAr (X,B) = 0 for 1 6 r 6 n.

Definition 5.3. Let f : X → Y be a continuous map, and let A be a topological
space. The map f is called an A-0-equivalence if for any given continuous function
g : A→ Y , there exists a map h : A→ X such that fh ' g.

∗ //

�� '

X

f

��
A g

//

h

>>~~~~~~~
Y

Given n ∈ N, the map f is called an A-n-equivalence if it induces isomorphisms
f∗ : πAr (X,x0) → πAr (Y, f(x0)) for 0 6 r < n and an epimorphism for r = n.
Also, f is called an A-weak equivalence if it is an A-n-equivalence for all n ∈ N.

Remark 5.4. Let f : X → Y be map and let n ∈ N. We denote by Zf the mapping
cylinder of f . Then f is an A-n-equivalence if and only if the topological pair (Zf , X)
is A-n-connected.
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Lemma 5.5. Let X, S, B be pointed topological spaces, S ⊆ X a subspace, x0 ∈ S
and b0 ∈ B the base points. Let f : (CB,B) → (X,S) be a continuous map. Then
the following are equivalent.

i) There exists a base point preserving homotopy H : (CB × I,B × I) → (X,S)
such that Hi0 = f , Hi1(x) = x0 ∀x ∈ CB.

ii) There exists a (base point preserving) homotopy G : CB × I → X, relative to
B, such that Gi0 = f , Gi1(CB) ⊆ S.

iii) There exists a (base point preserving) homotopy G : CB × I → X, such that
Gi0 = f , Gi1(CB) ⊆ S.

Proof. i) ⇒ ii) Define G as follows.

G([x, s], t) =
{
H([x, 2s

2−t ], t) if 0 6 s 6 1− t
2

H([x, 1], 2− 2s) if 1− t
2 6 s 6 1

It is clear that G is well defined and continuous. Note that

Gi0([x, s]) = H([x, 2s
2 ], 0) = H([x, s], 0) = f(x, s)

Gi1([x, s]) = H([x, 2s], 1) = x0 ∈ S if s 6 1
2

Gi1([x, s]) = H([x, 1], 2− 2s) ∈ S if s > 1
2

since H(B × I) ⊆ S.
ii) ⇒ iii) Obvious.
iii) ⇒ i) We define H by

H([x, s], t) =
{
G([x, s], 2t) if 0 6 t 6 1

2
Gi1([x, s(2− 2t)]) if 1

2 6 t 6 1

Lemma 5.6. Let X, Y be pointed topological spaces and let f : X → Y be an
A-n-equivalence. Let r ∈ N, r 6 n and let iA : Σr−1A→ CΣr−1A be the inclusion.
Suppose that g : Σr−1A→ X and h : CΣr−1A→ Y are continuous maps such that
hiA = fg. Then, there exists a continuous map k : CΣr−1A→ X such that kiA = g
and fk ' h rel Σr−1A.

Σr−1A
g //

iA

�� '
|‖

X

f

��
CΣr−1A

h
//

k
;;vvvvvvvvv
Y

Proof. Consider the inclusions i : X → Zf and j : Y → Zf . Let r : Zf → Y be the
usual retraction. Note that there is a homotopy commutative diagram

Σr−1A
g //

iA

��

X

i

��
CΣr−1A

jh
// Zf

http://jhrs.rmi.acnet.ge


Journal of Homotopy and Related Structures, vol. 1(1), 2006 267

Let H : Σr−1A × I → Zf be the homotopy from jhiA to ig defined by H(a, t) =
[g(a), t] for a ∈ Σr−1A, t ∈ I. Consider the commutative diagram of solid arrows

Σr−1A
i0 //

iA

��

Σr−1A× I

�� H

��

CΣr−1A
i0

//

jh

//

CΣr−1A× I

H′

%%
Zf

Since iA is a cofibration there exists a map H ′ such that the whole diagram com-
mutes, which induces a commutative diagram

Σr−1A
g //

iA

��

X

i

��
CΣr−1A

H′i1

// Zf

The pair (Zf , X) is A-n-connected, so by lemma 5.5 there exists a continuous func-
tion k : CΣr−1A→ X such that kiA = g, ik ' H ′i1 rel Σr−1A. Then

fk = rik ' rH ′i1 ' rH ′i0 = rjh = h

Note that the homotopy is relative to Σr−1A, thus fk ' h rel Σr−1A.

Theorem 5.7. Let f : X → Y be an A-n-equivalence (n = ∞ is allowed) and
let (Z,B) be a relative CW(A) which admits a CW(A)-structure of dimension less
than or equal to n. Let g : B → X and h : Z → Y be continuous functions such
that h|B = fg. Then there exists a continuous map k : Z → X such that k|B = g
and fk ' h rel B.

B
g //

i

�� '
|‖

X

f

��
Z

h
//

k

>>

Y

Proof. Let

S = {(Z ′, k′,K ′)/B ⊆ Z ′ ⊆ Z A− subcomplex , k′ : Z ′ → Z with k′|B = g
and K ′ : Z ′ × I → Y,K ′ : fk′ ' h|Z′ rel B}

It is clear that S 6= ∅. We define a partial order in S in the following way.

(Z ′, k′,K ′) 6 (Z ′′, k′′,K ′′) if and only if Z ′ ⊆ Z ′′, k′′|Z′ = k′ K′′|Z′×I = K′

It is clear that every chain has an upper bound since Z has the weak topology.
Then, by Zorn’s lemma, there exists a maximal element (Z ′, k′,K ′). We want to
prove that Z ′ = Z. Suppose Z ′ 6= Z, then there exist some A-cells in Z which are
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not in Z ′. Choose e an A-cell with minimum dimension. We want to extend the
maps k′ and K ′ to Z ′ ∪ e. If e is an A-0-cell this is easy to do since f is an A-0-
equivalence and all homotopies are relative to the base point. Suppose then that
dim e > 1. Let φ : (CΣr−1A,Σr−1A) → (Z,Z ′) be the characteristic map of e, let
ψ = φ|Σr−1A, and let Z ′′ = Z ′ ∪ e. We have the following diagram.

Σr−1A
ψ //

iA

��

Z ′
k′ //

iZ′

��

X

f

��
CΣr−1A

φ
//

|‖

Z ′′
h|Z′′

//

'

Y

Here, the homotopy of the right square is relative to B. Let α : I → I be defined
by α(t) = 1 − t. Since iZ′ is a cofibration we can extend K ′(Id × α) to some
H : Z ′′ × I → Y , and then we obtain a commutative diagram

Σr−1A
ψ //

iA

��

Z ′
k′ //

iZ′

��

X

f

��
CΣr−1A

φ
//

|‖

Z ′′
Hi1

//

|‖

Y

By the previous lemma, there exists l : CΣr−1A → X such that liA = k′ψ and
fl ' Hi1φ rel Σr−1A. Let G denote this homotopy.
Now, since the left square is a pushout, there is a map γ : Z ′′ → X ′ such that γφ = l,
γiZ′ = k′. So γ extends k′. We want now to define a homotopy K ′′ : fγ ' h|Z′′
extending K ′. We consider CΣr−1A × [0, 2]/ ∼ where we identify (b, t) ∼ (b, t′)
for b ∈ Σr−1A, t, t′ ∈ [1, 2]. There is a homeomorphism β : CΣr−1A × [0, 2]/ ∼→
CΣr−1A× I defined by

β([a, s], t) =
{

([a, s], t
2−s ) if 0 6 t 6 1

([a, s], 1−s
2−s t+ s

2−s ) if 1 6 t 6 2

We have the following commutative diagram.

Σr−1A× I
ψ×IdI //

iA×IdI

��

Z ′ × I

iZ′×IdI

�� K′(Id×α)

��

CΣr−1A× I
φ×IdI

//

push

(H(φ×IdI)+G(Id×α))β−1 00

Z ′′ × I

∼
K ##

Y

Note that

(H(φ× IdI) +G(Id× α))β−1(iA × IdI) = H(φ× IdI)(iA × IdI) =
= H(iZ′ × IdI)(ψ × IdI) = K ′(Id× α)(ψ × IdI)

Then, the map
∼
K exists. We take K ′′ =

∼
K(Id× α).
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Remark 5.8. If (Y,B) is a relative CW(A) which is A-n-connected for all n ∈ N
then i : B → Y is an A-n-equivalence for all n ∈ N and we have

B
IdB //

i

�� '
|‖

B

i

��
Y

IdY

//

r

>>

Y

Thus B is a strong deformation retract of Y . In particular, if X is a CW(A) with
πAn (X) = 0 for all n ∈ N0, then X is contractible.

The following proposition follows immediately from 5.7.

Proposition 5.9. Let f : Z → Y be an A-n-equivalence (n = ∞ is allowed) and
let X be a CW(A) which admits a CW(A)-structure of dimension less than or equal
to n. Then, the map f∗ : [X,Z] → [X,Y ] is surjective.

Finally we obtain a generalization of Whitehead’s theorem.

Theorem 5.10. Let X, Y be CW(A)’s and f : X → Y a continuous map. Then f
is a homotopy equivalence if and only if it is an A-weak equivalence.

Proof. Suppose f is an A-weak equivalence. We consider f∗ : [Y,X] → [Y, Y ]. By
the previous proposition, f∗ is surjective, then there exists g : Y → X such that
fg ' IdY . Then g is also an A-weak equivalence, so applying the above argument,
there exists an h : X → Y such that gh ' IdX . Then f ' fgh ' h, and so,
gf ' gh ' IdX . Thus f is a homotopy equivalence.

We finish with some results concerning the connectedness of CW(A)-complexes.

Lemma 5.11. Let A be an l-connected CW-complex, let B be a topological space,
and suppose X is obtained from B by attaching a 1-cell of type A. Then (X,B) is
(l + 1)-connected.

Proof. Let g be the attaching map of the cell and f its characteristic map. Since A
is an l-connected CW-complex, (CA,A) is a relative CW-complex which is (l + 1)-
connected. Then there exists a relative CW-complex (Z,A′) such that A is a strong
deformation retract of A′, CA is a strong deformation retract of Z and (ZA′)l+1 =
A′. Let r : A′ → A be the retraction and let iX : B → X be the inclusion. Consider
the pushout

A′
gr //

iA′

��
push

B

iY

��
Z

f ′
// Y

Then (Y,B) is a relative CW-complex with (YB)l+1 = B, and hence it is (l+ 1)-
connected. The inclusions i : A → A′ and j : CA → Z and the identity map of B
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induce a map ϕ : X → Y with ϕiX = iY IdB . Now, iA, iA′ are closed cofibrations
and i, j and IdB are homotopy equivalences, then, by proposition 7.5.7 of [2], ϕ is
a homotopy equivalence. Thus, (X,B) is (l + 1)-connected.

Note that the previous lemma can be applied when attaching a cell of any positive
dimension, since attaching an A-n-cell is the same as attaching a (Σn−1A)-1-cell.
The following lemma deals with the case in which we attach an A-0-cell. The proof
is similar to the previous one.

Lemma 5.12. Let A be an l-connected CW-complex, B a topological space, and
suppose X is obtained from B by attaching a 0-cell of type A (i.e., X = B ∨ A).
Then (X,B) is l-connected.

Now, using both lemmas we are able to prove the following proposition.

Proposition 5.13. Let A be an l-connected CW-complex, and let X be a CW(A).
Then the pair (X,Xn) is (n+ l + 1)-connected.

Proof. Let r 6 n+ l + 1 and f : (Dr, Sr−1) → (Xn+1, Xn). We want to construct
a map f ′ : (Dr, Sr−1) → (Xn+1, Xn) such that f ′(Dr) ⊆ Xn, and f ' f ′ rel Sr−1.
Since f(Dr) is compact, it intersects only a finite number of interiors of (n + 1)-
cells (note that A is T1). By an inductive argument, we may suppose that we are
attaching just one (n + 1)-cell of type A, which is equivalent to attaching a 1-cell
of type ΣnA. Since ΣnA is (n+ l)-connected, (Xn+1, Xn) is (n+ l+ 1)-connected.
The result of the proposition follows.

Proposition 5.14. Let A be an l-connected CW-complex, with dim(A) = k ∈ N0,
and let X be a CW(A). Then the pair (X,Xn) is A-(n− k + l + 1)-connected.

Proof. We prove first the A-0-connectedness in case k 6 n+ l+ 1. We have to find
a dotted arrow in a diagram

∗ //

�� '
|‖

Xn

i

��
A

f
//

==

X

This map exists because A is a CW-complex with dim(A) = k and (X,Xn) is
(n+ l + 1)-connected.

Now we prove the A-r-connectedness in case 1 6 r 6 n − k + l + 1. By lemma
5.5, it suffices to find a dotted arrow in a diagram

Σr−1A //

�� '
|‖

Xn

i

��
CΣr−1A

f
//

::

X

This map exists because (CΣr−1A,Σr−1A) is a CW-complex of dimension r + k,
(X,Xn) is (n+ l + 1)-connected, and r + k 6 n+ l + 1.
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