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Abstract

An st-orientation of a biconnected undirected graph defines a directed
graph with no cycles, a single source s and a single sink t. Given an undi-
rected graph G as input, linear-time algorithms have been proposed for
computing an st-orientation of G. Such an orientation is useful especially
in graph drawing algorithms which use it at their first stage [23]. Namely,
before they process the original undirected graph they receive as input,
they transform it into an st-DAG, by computing an st-orientation of it.
In this paper we observe that using st-orientations of different longest
path lengths in various applications can result in different solutions, each
one having its own merit. Guided by this intuition, we present results
concerning applications of proposed algorithms for longest path parame-
terized st-orientations. Specifically, we show how to achieve considerable
space savings (e.g., O(n)) for visibility representations of planar graphs by
using st-orientations computed by algorithms that can control the length
of the longest path. Also, we apply our results to the graph coloring prob-
lem, where we use an st-orientation as an intermediate step to compute
a good coloring of a graph, and to other problems, such as computing
space-efficient orthogonal drawings and longest paths.

Submitted:
December 2008

Reviewed:
May 2009

Revised:
December 2009

Accepted:
April 2010

Final:
June 2010

Published:
June 2010

Article type:
Regular paper

Communicated by:
U. Brandes

E-mail addresses: cpap@cs.brown.edu (Charalampos Papamanthou) tollis@ics.forth.gr (Ioannis

G. Tollis)

mailto:cpap@cs.brown.edu
mailto:tollis@ics.forth.gr


338 Papamanthou and Tollis Applications of Parameterized st-Orientations

1 Introduction

An st-orientation is an orientation of an undirected graph that satisfies certain
criteria, i.e., it defines no cycles and has exactly one source s and one sink
t. Starting with an undirected biconnected graph G = (V,E), many graph
algorithms, such as graph drawing algorithms [5, 17, 23] and network routing
algorithms [1, 2], use an st-orientation of G as a first step.

Close to the notion of st-orientations are st-numberings, which were first
introduced in 1967 [14]. An st-numbering of G is a numbering of its nodes
such that s receives number 1, t receives number n and every other node except
for s and t is adjacent to at least one lower-numbered and at least one higher-
numbered node, where n is the number of nodes of the graph. An st-orientation
of an undirected graph can be easily computed using an st-numbering of the
respective graph G and orienting the edges of G from low to high.

There has been a lot of work on efficient algorithms for the computation
of an st-orientation (or an st-numbering). The first existential result is given
in [14] where it is proved that given any edge {s, t} of a biconnected undirected
graph G, we can define an st-numbering. The proof of a theorem in [14] gives
a recursive algorithm that runs in time O(nm). However, in 1976 Even and
Tarjan proposed an algorithm that computes an st-numbering of an undirected
biconnected graph in O(n+m) time [7]. Ebert [6] presented a slightly simpler
algorithm for the computation of such a numbering, which was further simplified
by Tarjan [24]. The planar case has been extensively investigated in [20] where
a linear-time algorithm is presented which may reach any st-orientation of a
planar graph. Additionally, in [16] a parallel algorithm is described (running
in O(log n) time using O(m) processors) and finally in [3] another linear-time
algorithm for the problem is presented. An overview of the work concerning
st-orientations is presented in [4].

However, all developed linear-time algorithms compute an st-numbering at
random, without expecting any specific properties of the oriented graph. Algo-
rithms for longest path parameterized st-orientations—namely, algorithms that
apart from computing a correct st-orientation also manage to effectively control
the length of the longest path of the produced st-orientation—, that, however,
do not run in linear time and the application of which we study in this pa-
per, firstly appeared in [19]. Towards this direction, but in a more theoretical
context, Zhang and He have recently improved on various theoretical bounds
on the longest path length of st-orientations for the case of plane triangula-
tions only [11, 26, 27, 28]. They also provided an algorithm to construct an
st-orientation of a plane triangulation of minimum longest path length, equal
to 2n/3 + O(1) [29], by essentially matching a lower bound presented in [28].
Finally, computing an st-orientation of minimum longest path length was re-
cently proved to be NP-hard for the case of 2-connected plane graphs [21] (in
this paper we give a more general result).

This work presents extensive applications of new techniques that produce
orientations with specific properties (parameterized longest path length). We
apply parameterized st-orientations in several problems, such as the computa-
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tion of visibility representations [23] of minimal (variable) area, graph coloring
and orthogonal drawings [17]. For visibility representations, we exhibit some
classes of planar graphs for which using st-orientations of different longest path
lengths results in significant space savings, i.e., of a factor of O(n), where n is
the number of the nodes of the graph. For graph coloring, we derive an algo-
rithm that uses an st-orientation to produce a graph coloring of a graph and
we present some experiments for a well-known benchmark set of instances, that
justify the effectiveness of our approach. We finally note that an st-orientation
can also be used as a heuristic solution for the well-known longest path prob-
lem, which is NP-hard [9]. To achieve that, we can compute an st-orientation
of maximal longest path and output the longest path of the orientation as a
solution.

The paper is organized as follows. In Section 2 we present some preliminary
definitions and briefly describe the algorithm that is used for the presented
applications. In Section 3 we comment on applications of longest path param-
eterized st-orientations in graph drawing problems, graph coloring and longest
path. Section 4 presents experimental results. Finally, some conclusions and
discussion are presented in Section 5.

2 Preliminaries

In this section, we outline the algorithms [19] used for the presented applications.

2.1 Terminology

Throughout the paper, NG(v) denotes the set of neighbors of node v in graph
G, s is the source, t is the sink of the graph, n is the number of nodes of G and
m is the number of edges of G. Additionally, `(G) is the length of the longest
path of the st-oriented graph G (i.e., the length of the longest path from s to
t)1.

Let now G = (V,E) be a one-connected undirected graph, i.e., a graph that
contains at least one node whose removal causes the initial graph to disconnect.
The nodes that have this property are called cutpoints [13]. Every one-connected
graph is composed of a set of blocks (biconnected components) and cutpoints
that form a tree structure. This tree is called the block-cutpoint tree of the graph
and its nodes are the blocks and cutpoints of the graph. Suppose now that G
consists of a set of blocks B and a set of cutpoints C. Each edge (i, j) ∈ U of
the block-cutpoint tree connects a block to a cutpoint that belongs to its node
set [13]. The respective block-cutpoint tree T = (B ∪C,U) has |B|+ |C| nodes
and |B|+ |C| − 1 edges.

The block-cutpoint tree is a free tree, i.e., it has no distinct root. In order to
transform this free tree into a rooted tree, we define the t-rooted block-cutpoint

1Most of the times the source and the sink vertices of the st-orientation will be obvious
and therefore there is no need to explicitly mention them in the notation.
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tree with respect to the sink t. Consequently, the root of the block-cutpoint
tree is the block that contains t.

Finally, we define the leaf-blocks of the t-rooted block-cutpoint tree to be
the blocks, except for the root, of the block-cutpoint tree that contain a single
cutpoint. The block-cutpoint tree can be computed in O(n + m) time with an
algorithm similar to DFS [13].

2.2 The algorithm

The idea behind the algorithm is as follows. Given an undirected biconnected
graph G and two of its nodes s, t, we repeatedly remove a node vi (different
from t), orienting at the same time all its incident edges from vi to its neighbors.
Thus we build a directed graph F . The first node removed is the source s
of the desired st-orientation. Thus, the problem of computing a correct st-
orientation is reduced to this of removing the nodes of the graph in a correct
order v1, v2, . . . , vn with v1 = s and vn = t and simultaneously maintaining a
data structure (basically correctly updating the t-rooted block-cutpoint tree)
that will allow us to compute such a correct order. We now have the following
lemma:

Lemma 1 (Block-cutpoint tree [19]) Let G = (V,E) be an undirected bi-
connected graph and let s, t be two of its nodes. Suppose we remove s and all
its incident edges. Then there is at least one neighbor of s lying in a leaf-block
of the t-rooted block-cutpoint tree of G − {s}. Moreover, this neighbor is not a
cutpoint.

The algorithm proceeds by successively removing nodes and simultaneously
updating the t-rooted block-cutpoint tree that corresponds to the new graph.
We call each such node a source, because at the time of its removal it is effectively
chosen to be a source of the remainder of the graph. We initially remove s, the
first source, which is the source of the desired st-orientation and give direction
to all its incident edges from s to all its neighbors. Note that after this removal,
the graph either remains biconnected or is decomposed into several biconnected
components. This procedure continues until all the nodes of the graph are
removed, except for the desired sink t of the st-orientation. At each step of the
algorithm, the updated biconnectivity structure gives us information about the
choice of the next source. Actually, the biconnectivity maintenance allows us
to remove nodes and simultaneously maintain a “map” of possible nodes whose
future removal may or may not cause dramatic changes to the structure of the
tree.

At every step of the algorithm there will be a set of potential sources to
choose from. According to the choice we make every time, we can efficiently
influence the length of the longest path. A parameter 0 ≤ p ≤ 1 is introduced as
an input to the algorithm that provides control on the length of the longest path,
i.e., for p = 1 the algorithm explores the graph in a “DFS” mode, producing
st-oriented graphs of long longest path (in that case we say that we apply MAX-
STN) whereas for p = 0 the algorithm explores the graph in a “BFS” mode,
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producing st-oriented graphs of small longest path (in that case we say that we
apply MIN-STN). For other values of p (0 < p < 1) the algorithm is defined
as a hybrid execution of BFS and DFS and in that case we say that we apply
PAR-STN.

In terms of time complexity, since we have to remove n nodes and at each
removal we have to run an O(n+m) algorithm that updates the t-rooted block-
cutpoint tree, the total complexity of the algorithm is not linear, i.e., it isO(nm).
By using techniques from [12], we can reduce the complexity to O(m log5 n) time
(O(log5 n) amortized cost per edge removal). Furthermore, for planar graphs,
for which the block-cutpoint tree can be updated in O(log n) amortized time per
edge removal [15], we have that the complexity of the algorithm is O(m log n).
For a more detailed description of the algorithm, please refer to [19].

3 Various applications

During the past decades, many algorithms have been proposed for drawing bi-
connected graphs by firstly st-orienting them, using various st-orientation algo-
rithms. Hierarchical drawings [5], visibility representations [23] and orthogonal
drawings [23] are areas in Graph Drawing where the st-orientation (of a certain
longest path length) used can have a considerable impact on the aesthetics of
the final drawing.
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Figure 1: An undirected graph (a) and two st-orientations of it ((b),(c)).

For example, Figure 1 depicts an undirected graph G (Figure 1a) and two
different st-orientations of it. The length of the longest path (from s to t) of
the first st-orientation (Figure 1b) is equal to 4, while the second st-orientation
(Figure 1c) has length of longest path from s to t equal to 3. Figure 2 shows two
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different longest path and visibility representation layouts for the two different
st-orientations (1b), (1c) of the same graph (1a). The drawings have different
characteristics, for example drawings in Figure 2a are “longer” and “thinner”
whereas drawings in Figure 2b are “shorter” and “wider”. Additionally, in the
visibility representations layout, the required area is different. In the following
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Figure 2: Longest path layering and visibility representation layouts for the
st-orientation of Figure 1b (a) and for the one of Figure 1c (b).

we give an extensive description of these applications. We also specify in more
detail how the properties of the output drawings depend on the choice of the
specific st-ordering.

3.1 Primal and dual st-orientations

st-planar graphs G are undirected planar graphs admitting a planar embedding
that has two distinct nodes s, t on the outer face. If we st-orient such a graph,
we can define a single orientation for the dual graph G∗ which is also an s∗t∗-
orientation (see Figure 3). The dual graph G∗ can be computed from the primal
graph G by replacing every face f of G with a node v(f) in G∗. Edges that
bound face f in G are adjacent edges of v(f) in G∗. Moreover, the direction
of edges in G uniquely defines a direction for edges in G∗. Details on the
construction a dual s∗t∗-planar graph can be found in [5].

Both orientations are used in the visibility representation algorithms [23] in
order to compute the coordinates of the segments that correspond to nodes of
the primal and the dual graph. Actually, the length of the longest path of the
dual s∗t∗-oriented graph determines the width of the geometric representation.
Specifically, we have the following [5]:

Fact 1 Let G be an st-planar graph. Let O be an st-orientation of G and O∗

be the respective dual s∗t∗-orientation. Then there is a visibility representation
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Figure 3: Constructing the dual graph for different values of parameter p (p =
0, 1), by running PAR-STN(p) on a triangulated undirected planar graph G1

(first graph on the left). The second graph G2 is the st-oriented graph (together
with the dual G∗2) produced after running MIN-STN (p = 0) where the longest
path lengths are `(G2) = 4 and `(G∗2) = 10. Finally, the third graph G3 is the st-
oriented graph (together with the dual G∗3) produced after running MAX-STN
(p = 1) where the longest path lengths are `(G3) = 6 and `(G∗3) = 8.

of G of area `(O)× `(O∗).

Detailed definitions of visibility representations, st-planar graphs and the
construction of their respective dual s∗t∗-planar graphs can be found in [5].

The questions that arise now are natural. What is the impact of parameter
p on the length of the longest path of the dual s∗t∗-oriented graph G∗ of an st-
planar graph G, which (the graph G) has been st-oriented with PAR-STN(p)?
Intuitively, we would expect that the length of the longest path of the dual
graph G∗ will grow inversely proportional to the longest path length of the
primal graph G (see Figure 3). As we will see, this is not always the case.

In Figure 3, we demonstrate the impact of parameter p on the longest path
length of the dual graph of a produced st-orientation. We compute two st-
orientations, G2 and G3, of a triangulated planar graph, and also the respective
dual graphs G∗2 and G∗3. G2 is computed by using PAR-STN(0), while G3 is
computed by using PAR-STN(1). Note that `(G2) + `(G∗2) = `(G3) + `(G∗3) =
14 = 2n.

In the following, we present a special class of planar graphs where this impact
can be quantified in a more formal way and be translated into a considerable
saving of area of the respective visibility representations, computed by using
different longest path length st-orientations.
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3.2 A special class of planar graphs

Definition 1 Let n ≥ 5. We define an n-path planar graph Gn = (V,E) to
be the planar graph that consists of a path P = v2, v3, . . . , vn−1 of n − 2 nodes
and two other nodes v1, vn such that {v1, vi} ∈ E, {vi, vn} ∈ E, for all i =
2, . . . , n− 1 and {v1, vn} ∈ E.
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4
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Figure 4: Two v1vn−1-orientations of an n-path planar graph Gn, Gmin
n (left)

and Gmax
n (right). Gmin

n is the minimum longest path length v1vn−1-orientation
while Gmax

n is the maximum longest path length v1vn−1-orientation.

In Figure 4, an n-path planar graph is depicted (actually an n-path planar graph
is defined as the underlying undirected graph of Figure 4). Its source is node v1
and its sink is node vn−1. Note that an (n+ 1)-path planar graph Gn+1 can be
obtained from an n-path planar graph Gn by adding a new node and connecting
it with nodes v1, v2 and vn (nodes v1 and vn are the rightmost and leftmost nodes
of Gn’s embedding in Figure 4). In Figure 4, two v1vn−1-orientations of Gn are
depicted. On the left, the orientation of the minimum longest path length is
depicted while on the right the orientation of the maximum longest path length
is depicted. We call those two v1vn−1-orientations Gmin

n (see Lemma 2) and
Gmax

n (see Lemma 3) respectively.
Note the difference between the two orientations of Figure 4: All edges
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belonging to the middle path of Gmin
n successively change their direction. On the

other hand, all edges belonging to the middle path of Gmax
n have an orientation

towards the sink of the graph, vn−1. In the following lemmas, we say that a
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Figure 5: Dual orientations of Gmin
n (left) and Gmax

n (right), Gmin,∗
n and Gmax,∗

n re-
spectively. Gmin,∗

n ’s longest path is s, b1, a1, b2, b3, a2, a3, b4, b5, a4, a5, . . . , bn−2, t
whereas Gmax,∗

n ’s longest path is s, an−3, an−2, . . . , a1, b1, b2, . . . , bn−2, t, which
are both equal to 2n − 4 (see Theorem 2). Note that the dual source and the
dual sink are embedded in the external primal face, following standard tech-
niques described in the literature [5].

graph is a minimum (maximum) st-oriented graph if it is st-oriented and the
length of the longest path from s to t is the minimum (maximum) over all
possible st-orientations of the respective undirected graph.

Before proceeding to prove some results for n-path planar graphs, we prove
Lemma 2 that refers to minimum st-oriented n-path planar graphs, by using a
well-known result by Gallai [8], which is along the same lines of the result given
by Vitaver in [25] (note that this result is also used later in the paper to prove
the NP-hardness of the problem of computing a minimum longest path length
st-orientation):

Theorem 1 (Graph coloring and acyclic orientations) Let G be an undi-
rected biconnected graph. The length of the longest path of an acyclic orientation
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achieving the minimum longest path length over all acyclic orientations equals
χ(G)− 1, where χ(G) is the chromatic number of G.

Now we have the following:

Lemma 2 For all n ≥ 5, Gmin
n is a minimum v1vn−1-oriented graph of an n-

path planar graph Gn. Moreover, for this orientation, the length of the longest
path is `(Gmin

n ) = 4.

Proof: Let R be the graph that is produced from Gn by removing nodes v1
and vn−1 (and all their incident edges). The remaining graph has chromatic
number 3, namely we color the nodes v2, . . . , vn−2 with two different colors and
we use a third color to color vn, since vn is incident to all nodes v2, . . . , vn−2.
Therefore, by Theorem 1 the acyclic orientation of R of minimum longest path
length has length of longest path 2 = 3 − 1. There are many acyclic orienta-
tions of R that achieve this longest path length, and here we give one of them:
(v2, v3), (v4, v3), (v4, v5), . . . , (vn−2, vn−3) (note that if n− 2 is odd then the di-
rection is (vn−3, vn−2)) and (vi, vn) for all i = 2, . . . , n− 2. This directed graph
is a subgraph of Gmin

n and has a directed path of length 2 ending in vn. Note
that however, for any v1vn−1-orientation, the orientation of the prior-removed
edges (i.e., the edges (v1, vi), (vn−2, vn−1) and (vn, vn−1)) is pre-determined
since v1 and vn−1 are the source and the sink of the desired v1vn−1-orientation.
Moreover, these oriented edges increase the longest path length by 2. Thus the
length of the minimum longest path length st-orientation is 2 + 2 = 4. Since
Gmin

n achieves that length, it follows that Gmin
n is a minimum v1vn−1-oriented

graph of an n-path planar graph Gn. �

We now continue with a similar lemma for the maximum st-oriented n-path
planar graph.

Lemma 3 For all n ≥ 5, Gmax
n is a maximum v1vn−1-oriented graph of an n-

path planar graph Gn. Moreover, for this orientation, the length of the longest
path is `(Gmax

n ) = n− 1.

Proof: For every n, Gmax
n has a Hamiltonian path from v1 to vn−1, namely the

path v1, vn, v2, v3, . . . , vn−1. Note that this directed path also creates no cycles.
Therefore, Gmax

n is a maximum v1vn−1-oriented graph of an n-path planar graph
Gn. �

Let now Gmin,∗
n (dual graph on the left in Figure 5), Gmax,∗

n (dual graph on
the right in Figure 5) be the dual graphs of Gmin

n and Gmax
n respectively. We

have the following result:

Theorem 2 Let Gn be an n-path planar graph and Gmin
n and Gmax

n be the min-
imum and the maximum v1vn−1-oriented graphs of Gn. Let also Gmin,∗

n and
Gmax,∗

n be the dual graphs of Gmin
n and Gmax

n respectively. Then for all n ≥ 5, it
holds that `(Gmin,∗

n ) = `(Gmax,∗
n ) = 2n− 4.
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Proof: Note that the number of nodes of the dual graphs in Figure 5 is
2n − 3. For the case of Gmin,∗

n of Figure 5, denote with a1, a2, . . . , an−3 the
sequence of dual nodes that lie on the right of the middle path of Gmin

n and with
b1, b2, . . . , bn−2 (the numbering is from the top to the bottom) the sequence of
dual nodes that lie on the left of the middle path of Gmin

n (see Figure 5). Also
denote with s and t the dual source node and the dual sink node respectively.
Then, for all n, one can always output a Hamiltonian path as the longest path
of the dual orientation, namely the path

s, b1, a1, b2, b3, a2, a3, b4, b5, a4, a5, . . . , bn−2, t .

Therefore `(Gmin,∗
n ) = 2n−3−1 = 2n−4. For the case of Gmax,∗

n , one can again
output a different Hamiltonian path

s, an−3, an−2, . . . , a1, b1, b2, . . . , bn−2, t .

Therefore `(Gmax,∗
n ) = 2n− 3− 1 = 2n− 4. �

The above findings indicate that there is a significant impact of a different st-
orientation of an n-path planar graph on the area of its visibility representation.
By using the minimum st-orientation, we will need an area equal to

`(Gmin
n )`(Gmin,∗

n ) = 4(2n− 4) = 8n− 16 = Ω(n) . (1)

If we use the maximum st-orientation, we will need an area equal to

`(Gmax
n )`(Gmax,∗

n ) = (n− 1)(2n− 4) = 2n2 − 6n+ 4 = Ω(n2) . (2)

Thus we can reduce the area by a factor of n. Note that while `(Gmax
n ) +

`(Gmax,∗
n ) = 3n− 5 > 2n, it is `(Gmin

n ) + `(Gmin,∗
n ) = 2n ≤ 2n.

An observation on n-path planar graphs. As we saw in the computa-
tion of the st-orientations of n-path planar graphs, it is the case that the st-
orientation of the primal graph does not seem to significantly influence the
longest path length of the dual st-orientation. Namely, both for constant (4)
and linear (n− 1) length of longest path of the primal graph, the length of the
dual longest path is the same, i.e., equal to 2n − 4. Moreover, we can derive a
linear lower bound on the length of the longest path of the dual st-orientation.
This is mostly due to the large degree (O(n)) of the source of the primal graph,
which translates into long dual directed paths. We summarize our discussion
with the following theorem.

Theorem 3 Let Gn be an n-path planar graph and Gn be any v1vn−1-oriented
graph of Gn. Let also G∗n be the respective dual graph of Gn. Then it holds
`(G∗n) ≥ n− 2.

Proof: The source v1 of Gn has degree n− 2 = O(n). Therefore, for every st-
orientation of Gn, the edges adjacent to v1 are always oriented (fixed) from v1
to vj for j = 2, . . . , n− 1. This causes the creation of a dual path that contains
at least n− 2 edges, starting from the dual source and ending to the dual sink,
i.e., the path s, b1, b2, . . . , bn−2, t in Figure 5. Thus every dual longest path is
at least as long as this directed path and therefore `(G∗n) ≥ n− 2. �
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3.3 Graph coloring and longest path

In this section we investigate the application of longest path parameterized st-
orientations in two NP-hard problems, graph coloring and longest path. We see
that computing st-orientations of certain longest path length is equivalent to
producing heuristic solutions to these difficult problems. Based on Theorem 1
we can prove that computing an st-orientation with minimum longest path
length is NP-hard.

Theorem 4 Let G be an undirected biconnected graph and s, t be two of its
nodes. Computing an st-orientation with minimum longest path length from s
to t is NP-hard.

Proof: We reduce the graph coloring problem, a well-known NP-hard prob-
lem [9], to the problem of computing an st-orientation with minimum longest
path length from s to t. Let G be an instance of the graph coloring problem.
We give a polynomial-time reduction that produces a graph G′ such that com-
puting a minimum longest path length st-orientation from some s to some t of
G′ gives an algorithm for computing the chromatic number of G. To produce
G′, introduce two new nodes s, t and connect them with every node of G. These
new nodes will serve as the source and the sink of G′ (see Figure 6). An st-
orientation of G′ that has the minimum longest path length implies an acyclic
orientation of G (which is not necessarily an st-orientation of G) that has the
minimum longest path length, say l, over all acyclic orientations of G (other-
wise the computed st-orientation of G′ would not have the minimum longest
path length). Therefore, by Theorem 1, the chromatic number of G is equal to
l+1. Therefore computing an st-orientation with minimum longest path length
is NP-hard. �

Theorem 4 shows a connection of graph coloring and minimum longest path
length st-orientations. By producing a good solution for the minimum longest
path length st-orientation problem we may obtain a good solution for the graph
coloring problem. To see that, suppose we are given a graph G = (V,E) and
we want to compute a coloring of G. We use the reduction in the proof of
Theorem 4 as an algorithm to do that: We produce the graph G′ = (V ′, E′) by
adding two extra nodes s, t and edges from s to all the nodes of G and from t to
all the nodes of G. We apply an algorithm that computes an orientation to G′

with source s and sink t, resulting in an st-oriented graph F with longest path
length l. Then, by labelling the nodes of the graph with the respective longest
path length (i.e., the label of each node v is the length of the longest path from
the source s to v) and by assigning different colors to different longest path
lengths, we can color G using l− 1 colors, since two neighboring nodes with the
same color would imply a cycle.

Here we note that, from a practical viewpoint, if we were to use an st-
orientation to compute a good coloring of a graph, we would better use an
st-orientation of small longest path length. We illustrate this thought with an
example. Suppose we want to compute a coloring of a ring G = (V,E) consisting
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of 6 nodes. Clearly χ(G) = 2. If we add the nodes s, t, the undirected edges
(s, i), (t, i), for all i ∈ V and apply MIN-STN to it, we produce the st-oriented
graph of Figure 6.

Note that all nodes lying on the ring have a longest path length from s either
1 or 2. The longest path length from s to t is 3, and thus we need 3 − 1 = 2
colors to color G. Actually, this is the chromatic number of G. Hence, we have
computed the chromatic number of G by applying MIN-STN to G′.

Figure 6: Combining graph coloring and st-orientations.

Recently, computing an st-orientation of minimum longest path length was
proved to be NP-hard also for the case of 2-connected plane graphs [21]. This
shows that the problem has an inherent difficulty and does not get easier even
for the plane case. Therefore the need for heuristics for solving the problem is
now more prominent, since most of real life applications refer to planar graphs.

Analogously, computing an st-orientation for general graphs of the maximum
longest path length is NP-hard [19].

Theorem 5 Let G be an undirected biconnected graph and s, t be two of its
nodes. Computing an st-orientation of the maximum longest path length from
s to t is NP-hard.

Therefore, by using MAX-STN we can produce an st-orientation of high
longest path length which will also be a heuristic solution to the undirected
graph longest path problem, a well known NP-hard problem [9]. The use of
st-orientations in solving these difficult problems in practice will be presented
in Section 4.

3.4 Orthogonal drawings

Finally, we present some applications of the st-orientations in orthogonal draw-
ings. An orthogonal drawing is a drawing of a graph G such that the nodes of G
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are placed on the points of the grid and the edges of G are drawn as a sequence
of horizontal and vertical segments. There has been a considerable amount of
work on orthogonal drawings. To name few, [17] explores the case of graphs of
maximum degree-4 and [18] gives algorithms for embedding high degree graphs
on the orthogonal grid. Both works use an st-orientation as a preprocessing step.
In this section we explore the impact that different st-orientations can have in
the area of the orthogonal drawing of a maximum degree-four graph, embed-
ded on the orthogonal grid by using algorithms in [17], which are area-efficient
algorithms producing drawings of area at most 0.76n2.

After an initial st-orientation on the input graph is computed, the algorithm
in [17] divides the vertices of the graph into four categories (according to their
incoming and outgoing edges): column pairs (one column pair contains two
nodes), unassigned degree-2 nodes, unassigned degree-3 nodes and row pairs
(one row pair contains two nodes). This categorization, which is a function
of the st-orientation, is used by the algorithm in order to construct the final
drawing. Let now p1, p2, p3 and k2 be the number of column pairs, unassigned
degree-2 nodes, unassigned degree-3 nodes and row pairs respectively. Then it
can be proved [17] that the area occupied by the final orthogonal drawing is(

n+ 1− p1 − p2 −
p3
2

)
× (n+ 1− k2) .

Therefore the area of the drawing is dependent on the initial st-orientation.
This means that given the same graph to be embedded on the orthogonal grid,
if we use different st-orientations in the beginning we end up with correct draw-
ings (i.e., drawings that satisfy certain properties) which however occupy dif-
ferent areas. In Section 4, we experimentally investigate the impact of different
st-orientations on the area of orthogonal drawings computed with algorithms
in [17].

4 Experimental results

In this section we present experimental results concerning the execution of the
algorithm for producing solutions mainly for visibility representations and for
the graph coloring problem.

We also show implications of the algorithm in orthogonal drawings [17]. The
algorithms were implemented in Java, using the Java Data Structures Library
(http://www.jdsl.org) [10].

4.1 Dual st-orientations of planar graphs

In this section we present some results for low-density and maximum density
(triangulated) st-planar graphs.
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Table 1: Primal and dual longest path length for low density st-planar graphs.
p=0 p=0.5 p=1 l × l∗

n l l∗ l l∗ l l∗ p=0 p=0.5 p=1
100 54 31 62 30 75 19 1674 1860 1425
200 111 36 138 26 173 14 3996 3588 2422
300 149 39 199 32 251 20 5811 6368 5020
400 190 112 257 81 346 19 21280 20817 6574
500 165 129 339 73 454 16 21285 24747 7264
600 302 118 378 120 462 32 35636 45360 14784
700 412 208 502 130 626 17 85696 65260 10642
800 447 156 565 156 717 19 69732 88140 13623
900 396 178 501 108 664 32 70488 54108 21248
1000 619 188 757 118 884 41 116372 89326 36244
1100 438 287 649 221 841 31 125706 143429 26071
1200 596 283 832 196 1014 43 168668 163072 43602
1300 756 361 970 182 1150 34 272916 176540 39100
1400 599 497 1010 315 1260 29 297703 318150 36540
1500 835 345 1047 281 1281 46 288075 294207 58926
1600 617 599 865 313 1407 36 369583 270745 50652
1700 671 327 963 296 1100 44 219417 285048 48400
1800 926 499 1258 292 1635 32 462074 367336 52320
1900 681 685 1241 333 1536 35 466485 413253 53760
2000 1147 337 1503 239 1803 44 386539 359217 79332
2500 1010 712 1471 511 2146 33 719120 751681 70818
3000 1652 683 2114 555 2608 44 1128316 1173270 114752
3500 1486 695 2804 695 2804 49 1032770 1948780 137396
4000 1500 1115 2271 745 3619 50 1672500 1691895 180950
5000 2101 1358 2500 763 3482 59 2853158 1907500 205438

Low-density (m = 1.5n) st-planar graphs of n nodes are constructed as follows:
Initially a node is chosen at random to be the root of the tree, which is also
the source of the orientation we are going to compute. Then we connect the
current tree (initially it only consists of the root) by inserting an edge between
a randomly chosen node of the current tree and a node that does not belong
to the current tree and which is again chosen at random. We execute the same
procedure until all nodes are inserted into the tree. Then we connect the leaves
of the tree following a preorder numbering so that all crossings are avoided.
Note that all the non-tree edges lie on the outer face of the graph embedding.
The sink of the orientation is set to be the last node that the aforementioned
procedure encounters (after connecting the leaves of the tree).

Maximum density (m = 3n− 6) st-planar graphs were computed with a certain
software for graph algorithms and visualization called PIGALE2, which offers
planar graph generators that are based on the algorithms by Schaeffer [22].

From Table 1, it is clear that the primal and the dual longest path length are
inversely proportional for various values of the parameter p. We have used the

2http://pigale.sourceforge.net/.
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Table 2: Primal and dual longest path length for max-density st-planar graphs.
p=0 p=0.5 p=1 l × l∗

n l l∗ l l∗ l l∗ p=0 p=0.5 p=1
109 31 167 75 95 100 74 5177 7125 7400
222 42 374 105 216 151 129 15708 22680 19479
310 44 503 186 319 280 163 22132 59334 45640
436 100 524 248 412 397 178 52400 102176 70666
535 98 785 240 534 402 293 76930 128160 117786
678 80 1019 382 449 625 195 81520 171518 121875
763 144 1114 385 780 691 241 160416 300300 166531
863 105 1286 453 791 767 270 135030 358323 207090
998 83 1419 425 862 846 340 117777 366350 287640
1117 109 1561 551 902 1013 208 170149 497002 210704
1302 134 2024 704 1154 1173 451 271216 812416 529023
1410 122 2120 730 835 1291 298 258640 609550 384718
1501 119 2203 784 1073 1403 224 262157 841232 314272
1638 110 2487 833 1436 1477 263 273570 1196188 388451
1719 131 2550 856 1661 1555 515 334050 1421816 800825
1825 180 2729 886 1391 1618 353 491220 1232426 571154
1990 208 2339 1013 1581 1773 400 486512 1601553 709200
2089 136 3095 1002 1648 1789 347 420920 1651296 620783
2159 142 3238 930 1816 1823 445 459796 1688880 811235
2213 162 3400 1093 2082 2008 551 550800 2275626 1106408
2268 148 3136 952 1666 1887 336 464128 1586032 634032
2413 154 3033 971 1968 1631 513 467082 1910928 836703
4323 356 5852 2238 3589 3957 841 2083312 8032182 3327837
5102 525 7155 2597 4473 4582 1139 3756375 11616381 5218898

values p = 0, 0.5, 1, as the most representative ones. Additionally, it seems that
for low density st-planar graphs the sum l + l∗ is no more that n (the number
of the primal graph nodes), something that does not hold in general, as will be
discussed later in this section.

The last three columns of Table 1 show the product l × l∗. This is actually
the area that is needed in order to construct a visibility representation of the
given graph using the algorithms proposed in [23]. The impact of the parameter
p on the area is very evident. The savings in the area for different values of the
parameter p is clear and actually for low density it is preferable to use the
parameter p = 1. In Figures 7, 8, we present a plot of the products l × l∗ as a
function of the size of the graph and the value of the parameter p for both low
density graphs and maximum density graphs. In Table 2, we show the same
results for the other class of planar graphs, the triangulated planar graphs. In
this case the sum l + l∗ is higher but always less than 2n, n being the number
of nodes of the primal planar graph.

4.2 Visibility representations

In this section we present results concerning various visibility representations
that can be output by using our algorithm for different values of parameter p.
We recall that the area of a visibility representation is totally dependent on
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Figure 7: Absolute (left) and normalized (divided by n2) (right) results for
visibility representation area requirement for different values of the parameter
p and low density planar graphs.

the st-orientation used (see Fact 1). When the input is an undirected graph
G, we run PAR-STN(p) for different values of p, producing the respective st-
orientations of the graph. Then we use the implementation of a visibility repre-
sentation algorithm offered by the software PIGALE3 to compute and visualize
the respective visibility representation.

In Figure 9, we show 3 visibility representation frames of a 21-path pla-
nar graph. We use 3 different st-orientations computed for p = 0, 0.5, 1. Note
that the length of the dual longest path of all three st-orientations is consistent

3We are indebted to Hubert de Fraysseix for kindly offering to provide us with a version of
the visibility representation software PIGALE (http://pigale.sourceforge.net/) that uses
as input not only the undirected graph, but also an st-orientation of it. The initial version of
PIGALE would use an st-numbering with no specific properties.
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Figure 8: Absolute (left) and normalized (divided by n2) (right) results for
visibility representation area requirement for different values of the parameter
p and maximum density planar graphs. The parameter p = 0 (low longest path
st-oriented graphs) is clearly preferable.

with Theorem 3, since 21, the degree of the primal source is always less than the
length of the dual longest paths, i.e., 21 ≤ 38, 29, 38 for p = 0, 0.5, 1 respectively.
Also, the length of the longest path of the primal graph varies significantly for
different values of p. Namely, and in consistence with experimental results on
Hamiltonian graphs presented in [19], it increases as parameter p gets larger.
This notable variance of the length of the primal longest path (and also the
smaller variance of the length of the dual longest path) causes the area of the
different visibility representations to vary significantly, namely being equal to
152, 348, 760 for p = 0, 0.5, 1 respectively. This means that the area of the visibil-
ity representations increases in proportion with the length of the primal longest
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path—in theory, this can be the case only when the length of the dual longest
path remains proportional to n, while parameter p changes, since the area equals
the product of the two—. This is in accordance with the observation made in
Section 3.2 (Equations 1 and 2), where it is shown that the st-orientations of
small longest path length produce more area-efficient visibility representations,
for the case of n-path planar graphs. Finally note that the dual longest path
length does not change in a monotone way as p increases (i.e., at some point it
reaches a minimal value and then it increases again).

In Figure 10, visibility representations of low-density st-planar graphs are
presented. Here, parameter p does not have a big influence on the length of the
longest path. The length of the dual longest path has a more notable variance
(especially for the case of p = 0.5, 1). We believe that the primal longest path
length does not vary due to the small degree (due to the small density) of the
nodes of the graph: This results in a smaller number of existent st-orientations
which in turn does not give enough flexibility to PAR-STN(p), forcing it to
orient most of the edges in the same way. Although the variance of the primal
longest path length is not that big, there is no obvious way to predict (and
argue about) the variance of the respective dual longest path length—even if
a direction change of a primal edge implies a direction change of dual edge—,
since our st-orientation algorithm is executed on the primal graph. This is why
the dual longest path length varies more significantly than the primal longest
path length. Finally, for these graphs only, it is interesting that the minimum
area for visibility representations is achieved for p = 1. This is due to the non-
variance of the primal longest path and therefore the area becomes a function
of the dual longest path which, in this case, decreases in a monotone way as p
increases.

In Figure 11, we present the visibility representations (p = 0, 0.5, 1) of an
85-node triangulated st-planar graph. This triangulated graph was produced
with PIGALE. Again here the dual longest path length does not change in a
monotone way as p increases. However, the most important observation that
can be made in this case is the fact that, unlike the case of the n-path planar
graphs, the “minimal” st-orientation here does not achieve such a low longest
path length (e.g., O(1)). We believe this is due to the fact that the embedding of
those random planar graphs span a wider area—which enforces longer directed
paths—than the one occupied by n-path planar graphs, and also, due to the
lack of symmetries. Finally, note that again, the “minimal” (i.e., p = 0) st-
orientation produces the most area-efficient visibility representation.

Finally, in Figure 12, we present some visibility representations frames pro-
duced by st-orienting a grid graph. As we can see here the parameter has a
considerable influence on the length of the primal longest path, which grows
analogously with parameter p. Actually, for p = 1, the algorithm computes the
Hamiltonian path. We believe that this is the case because the graph has cer-
tain symmetries and structure, which is also observed in other graphs with well
defined structure such as n-path planar graphs and st-Hamiltonian graphs [19].
Again, the parameter that gives the most area-efficient visibility representation
is p = 0.
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Figure 9: Visibility representations of a 21-path planar graph for different st-
orientations produced with p = 0, 0.5, 1. The respective areas (height × width)
are 4× 38 = 152, 12× 29 = 348 and 20× 38 = 760.
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Figure 10: Visibility representations of an 100-node st-planar graph of low
density (m = 1.5n) for different st-orientations produced with PAR-STN(p)
(p = 0, 0.5, 1). The respective areas (height × width) are 54 × 31 = 1674,
62× 30 = 1860 and 75× 19 = 1425.
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Figure 11: Visibility representations of an 85-node triangulated st-planar graph
for different st-orientations produced with PAR-STN(p) (p = 0, 0.5, 1). The
respective areas (height × width) are 22 × 49 = 1078, 49 × 61 = 2989 and
66× 49 = 3234.
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Figure 12: Visibility representations of a 10 × 10 grid graph for different st-
orientations produced with PAR-STN(p) (p = 0, 0.25, 1). The respective areas
(height× width) are 35× 34 = 1190, 46× 50 = 2300 and 99× 34 = 3366.
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4.3 Graph coloring

In this section we present some experimental results concerning the use of MIN-
STN in coloring graphs using the method described in Section 3.3.

Table 3: Almost optimal coloring computed by MIN-STN.
file name n m optimal coloring MIN-STN coloring

myciel6.col 95 755 7 7

myciel5.col 47 236 6 6

myciel4.col 23 71 5 5

myciel3.col 11 20 4 4

games120.col 120 368 9 9

jean.col 80 254 10 10

huck.col 74 301 11 11

zeroin.i.1.col 211 4100 49 49

mulsol.i.5.col 186 3973 31 31

mulsol.i.4.col 185 3946 31 31

mulsol.i.3.col 184 3916 31 31

mulsol.i.2.col 188 3885 31 31

mulsol.i.1.col 197 3925 49 49

inithx.i.3.col 621 13969 31 31

inithx.i.1.col 864 18707 54 54

fpsol2.i.3.col 425 8688 30 30

fpsol2.i.1.col 496 11654 65 65

myciel7.col 191 2360 8 9

miles250.col 128 387 8 9

david.col 87 406 11 12

anna.col 138 493 11 12

zeroin.i.3.col 206 3540 30 31

zeroin.i.2.col 211 3541 30 31

inithx.i.2.col 645 13979 31 32

We test the algorithm’s performance on known benchmarks which are available
at http://mat.gsia.cmu.edu/COLOR/instances.html. For some graphs (see Ta-
ble 3) we obtained very good results, computing essentially an almost optimum
coloring. Actually, for the first 17 benchmark graphs G of Table 3, MIN-STN
computes the chromatic number χ(G). Note that graphs myciel*.col are diffi-
cult to solve4: They are based on the Mycielski transformation, they are triangle
free (clique number 2) but the chromatic number increases with the problem
size. Still, our algorithm computes an optimum coloring for them. For the last 7
benchmark graphs of Table 3, MIN-STN computes a coloring equal to χ(G)+1.

In Table 4, we show the results for some benchmark graphs for which MIN-
STN did not perform so well. Some of these graphs, e.g., the graphs queen*.col,

4See http://mat.gsia.cmu.edu/COLOR/instances.html#XXMYC.
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are constructed as follows. Given an n×n chessboard, a queen graph is a graph
on n2 nodes, each corresponding to a square of the board. Two nodes are
connected by an edge if the corresponding squares are in the same row, column,
or diagonal. Although these graphs have certain structure and symmetry, which
seemed to be an advantage for graphs we studied in Section 4.2, our algorithm
fails to compute optimum colorings. We believe this is due to the large degree
(i.e., O(n)) of the nodes of these graphs.

Table 4: Relatively good coloring computed by MIN-STN.
file name n m optimal coloring MIN-STN coloring

queen8 12.col 96 1368 12 15

queen7 7.col 49 476 7 10

queen6 6.col 36 290 7 9

queen5 5.col 25 160 5 7

miles500.col 128 1170 20 23

homer.col 561 1629 13 15

fpsol2.i.2.col 451 8691 30 32

4.4 Orthogonal drawings

The pairing technique of [17] described in Section 3.4 has been implemented.
We used the parameterized st-orientations for p = 0, 0.5, 1 and we present some
experimental results in Table 5. The impact of the different st-orientations is
not very clear in orthogonal drawings, as indicated in Table 5. For example
the width and the height of the orthogonal drawings are not considerably influ-
enced for various values of parameter p. However, for the algorithm described
in [17], where the area upper bound is roughly 0.76n2, we are able to produce
st-orientations that produce drawings of an area equal to 0.68n2 or less. The
test graphs that we use are constructed by inserting random edges to a node
set of n nodes, making sure every time that the degree of every node does not
exceed four.

From the results in Table 5, we observe that the most area-efficient orthog-
onal drawings are achieved for p = 1. Note that this is the case since, although
p = 1 produces st-orientations of large longest path length, the area of the
drawing is not an immediate function of the length of directed paths in the st-
oriented graph but of the number of outgoing and incoming edges of each node
in the produced st-oriented graph. Therefore we cannot report some direct
connection of length of longest paths with the area of the orthogonal drawings
apart from this experimental evidence. However, it would be interesting to see,
from a theoretical point of view, in which way different longest path length st-
orientations influence the number of row and column pairs produced with the
pairing algorithm in [17].
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Table 5: Area bounds for orthogonal drawings and different st-orientations. The
values of the parameter p that is used for these experiments are p = 0, 0.5, 1.

n width w height h wh
n2

0 0.5 1 0 0.5 1 0 0.5 1

200 174 156 152 157 167 169 0.68 0.65 0.64

400 317 310 303 332 335 337 0.66 0.65 0.64

600 478 467 444 493 501 511 0.65 0.65 0.63

800 627 618 600 661 668 669 0.65 0.65 0.63

1000 790 742 728 819 848 850 0.65 0.63 0.62

1200 939 903 874 985 1009 1021 0.64 0.63 0.62

1400 1099 1052 1012 1146 1172 1191 0.64 0.63 0.61

1600 1240 1204 1166 1319 1346 1360 0.64 0.63 0.62

1800 1402 1363 1308 1479 1507 1525 0.64 0.63 0.62

2000 1527 1512 1444 1662 1673 1667 0.63 0.63 0.60

5 Conclusions and discussion

In this paper we present applications of a newly developed algorithm that man-
ages to efficiently control the length of the longest path of an st-orientation. We
especially study these applications from the viewpoint of Graph Drawing but
also give evidence of the importance of parameterized st-orientations in pro-
ducing heuristics for difficult problems such as graph coloring and longest path.
There are two main conclusions that have been drawn, by carefully examining
the experimental results.

First of all, the experimental results indicate that the length of the longest
path of a graph G that is st-oriented with MAX-STN is always greater than or
equal to the length of the longest path of G that is st-oriented with MIN-STN.
Of course, this is something to be expected, since MAX-STN explores the graph
in a “DFS” mode, thus producing “long” paths, while MIN-STN explores the
graph in a “BFS” mode, thus producing “short” paths. We point out that, in
our experiments, there was not a single case where this property was violated.
It would be nice to find a formal proof for that property of our algorithm and
we conjecture here that it should hold.

Secondly, the experimental results indicate that the length of the longest
path of the primal st-oriented graph G grows inversely proportional to the length
of the longest path of the respective dual st-oriented graph G∗. Moreover their
sum never exceeds 2n, where n is the number of the nodes of the graph (see
Tables 1 and 2). However, this is not the case for all st-orientations of a given
graph G. A counterexample is graph Gmax

n with dual graph Gmax,∗
n (as shown in

Figure 5). This leads us to the following conjecture:

Conjecture 1 For every n-node planar biconnected graph G, there exists an st-
orientation O with a respective dual st-orientation O∗ such that `(O) + `(O∗) ≤
2n+ c, where c is a small constant.
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