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Abstract

In this paper we present a new characterization of switch-regular up-
ward embeddings, a concept introduced by Di Battista and Liotta in 1998.
This characterization allows us to define a new efficient algorithm for com-
puting upward planar drawings of embedded planar digraphs. If compared
with a popular approach described by Bertolazzi, Di Battista, Liotta, and
Mannino, our algorithm computes drawings that are significantly better
in terms of total edge length and aspect ratio, especially for low-density
digraphs. Also, we experimentally prove that the running time of the
drawing process is reduced in most cases.
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1 Introduction

The upward drawing convention is commonly adopted to display acyclic digraphs
representing hierarchical structures, like for example PERT diagrams and class
inheritance diagrams. In an upward drawing each vertex is represented as a
point of the plane and all edges are drawn as curves monotonically increasing
in a common direction (e.g., the vertical one). An upward planar drawing is
an upward drawing with no edge crossing (see, e.g., Figure 1(b)). It is known
that not all planar digraphs admit an upward planar drawing, and Garg and
Tamassia [17] proved that the upward planarity testing problem is NP-complete
in the general case. Many papers have been devoted to the design of efficient
algorithms for computing upward planar drawings of specific families of planar
digraphs, including st-digraphs [11, 12, 15], planar lattices [21, 22, 25], rooted
trees [7, 8, 14, 23, 26, 27, 28], single-source digraphs [4, 19], outerplanar di-
graphs [24]. More references can be found in books and surveys on the subject
(see, e.g., [9, 16, 20]).

A fundamental result about upward planar drawability is described by Berto-
lazzi et al. [3]; they proved that the upward planarity testing and drawability
problem can be solved in polynomial time for every planar digraph, under the
assumption that the planar embedding of the digraph is assigned as part of
the input and can not be changed. More precisely, given a planar embedded
digraph G, the authors introduce the concept of upward planar embedding of
G, which is a labeled embedding that specifies the type of angles at source- and
sink-vertices inside each face of G; the label of an angle informs if that angle
will be “large” (greater than π) or “small” (less than π) in the final drawing.
The authors prove that an upward planar drawing of G exists if and only if
there exists an upward planar embedding of G with a specific set of properties;
such an upward embedding can be computed in polynomial time if it exists. In
the same paper, the authors describe an algorithm that computes a drawing
of an upward planar embedded digraph G in two steps: Step 1: Construct an
including planar st-digraph of G adding a suitable set of dummy edges; Step 2:
Compute a polyline drawing of the st-digraph using standard techniques [9, 20],
and then remove the dummy edges. It is important that the number of dummy
edges added during Step 1 is kept as small as possible. Indeed, dummy edges
restrict the choices that can be performed in Step 2 to determine a good lay-
out of the digraph, and they also influence both the running time and space
requirements of Step 2.

As far as we know, the upward planarity testing and drawing algorithm
described in [3] is the only one existing in the literature for general embedded
planar digraphs and no alternative augmentation technique has been proposed
so far for solving Step 1.

More recently, several papers have been devoted to the design of exponential-
time algorithms for solving the upward planarity testing and drawability prob-
lem in the variable embedding setting. Bertolazzi et al. [2] describe a branch-
and-bound algorithm for biconnected digraphs, and experimentally prove that
it is fast for many practical instances. Fixed Parameter Tractable algorithms for
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general planar digraphs are described by Chan [6] and by Healy and Lynch [18].
In this paper we address the problem of computing upward planar drawings

of general embedded planar digraphs using the strategy of Bertolazzi et al. [3],
which works in two steps as recalled above. We focus on Step 1, and investigate
a new approach for augmenting an upward planar embedded digraph to an
including st-digraph. The main results of this paper are listed below:

• We provide a new characterization for the class of switch-regular upward
embeddings. This class has been introduced by Di Battista and Liotta
in [10]. Our characterization is related to the one given in [5] to define
“turn-regular” orthogonal representations.

• We exploit the above characterization to design a new polynomial-time
algorithm that augments a given upward planar embedded digraph to an
including st-digraph.

• We experimentally prove that our augmentation algorithm significantly
reduces the number of dummy edges added to determine the including
st-digraph if compared with the technique in [3]. This reduction dramati-
cally improves the total edge length and the aspect ratio of the computed
drawings, especially for low-density digraphs, positively affecting the read-
ability of the drawings. Also, a reduction of the running time taken by
the whole drawing process is observed in most cases.

The remainder of the paper is structured as follows. In Section 2 we recall ba-
sic definitions and properties about upward planarity and switch-regularity. In
Section 3 we present the new characterization for switch-regular upward embed-
dings. The new augmentation algorithm is described in Section 4. In Section 5
the results of an extensive experimental study are presented. Examples of draw-
ings computed with the new algorithm are shown in Section 6. Conclusions and
open problems are given in Section 7.

2 Preliminaries

We assume familiarity with basic concepts of graph drawing and graph pla-
narity [9]. We concentrate on planar digraphs with a given planar embedding
and use a notation that is slightly revised with respect to the one adopted
in [3, 10].

2.1 Upward Planar Drawings

Let G be an embedded planar digraph. A drawing Γ of G is an upward planar
drawing if: (i) it has no edge crossing; (ii) it preserves the embedding of G; (iii)
all the edges of G are drawn as curves monotonically increasing in the vertical
direction. If G admits an upward planar drawing, it is called an upward planar
digraph.
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A vertex of G is bimodal if the circular list of its incident edges can be
partitioned into two (possibly empty) lists, one consisting of incoming edges
and the other consisting of outgoing edges. If all vertices of G are bimodal
then G and its embedding are called bimodal. Acyclicity and bimodality are
necessary conditions for the upward planar drawability of an embedded planar
digraph [3]. However, they are not sufficient conditions in general.

Let f be a face of an embedded planar bimodal digraph G and suppose that
the boundary of f is visited counterclockwise. Let s = (e1, v, e2) be a triplet
such that v is a vertex of the boundary of f and e1, e2 are incident edges of
v that are consecutive on the boundary of f . Triplet s is called a switch of
f if the direction of e1 is opposite to the direction of e2 (note that e1 and e2

may coincide if G is not biconnected). If e1 and e2 are both incoming in v,
then s is a sink-switch of f ; if they are both outgoing, s is a source-switch of
f . Observe that the number of source-switches of f is equal to the number of
sink-switches of f . Let 2nf be the total number of switches of f (both source-
and sink-switches); the capacity of f is defined as cf = nf − 1 if f is an internal
face, and cf = nf + 1 if f is the external face.

An assignment of the sources and sinks of G to its faces is upward consistent
if the following properties hold: (a) a source (sink) is assigned to exactly one of
its incident faces; (b) for each face f , the number of sources and sinks assigned
to f is equal to cf .

The following theorem gives a characterization of the class of embedded
digraphs that are upward planar.

Theorem 1 [3] Let G be an embedded planar bimodal digraph. G is upward
planar if and only if it admits an upward consistent assignment.

If G has an upward consistent assignment then the upward planar embedding
of G corresponding to that assignment is a labeled planar embedding of G such
that for each face f and for each switch s = (e1, v, e2) of f we have that: (i) s
is labeled L if v is a source or a sink assigned to f ; (ii) s is labeled S otherwise.

If f is a face of an upward planar embedding, the circular list of labels of f
is denoted by σf . Also, Sσf

and Lσf
denote the number of S and L labels of f ,

respectively.

Property 1 [3] If f is a face of an upward planar embedding then Sσf
= Lσf

+2
if f is internal, and Sσf

= Lσf
− 2 if f is external.

Given an upward planar embedding of a digraph G, it is possible to construct
an upward planar drawing of G such that every angle at a source-switch or a
sink-switch of f is greater than π when the switch is labeled L, and less than
π when the switch is labeled S. Figures 1(a) and 1(b) show an upward planar
embedded digraph and a corresponding upward planar drawing, respectively.

As recalled in the introduction, the computation of an upward planar draw-
ing of G, starting from an upward planar embedding of G, is done by first
constructing a planar st-digraph that includes G [3]; this step is usually called
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Figure 1: (a) A bimodal digraph G with a given upward planar embedding. (b)
An upward planar drawing of G corresponding to the upward embedding. (c) An
st-digraph including G; the dashed edges that are not incident on s∗ and t∗ form a
complete saturator of G.

saturating phase. After that, a drawing of the st-digraph is computed with stan-
dard techniques and dummy vertices and edges added in the saturating phase
are eventually removed.

To determine an st-digraph that includes G, G is augmented with a new
source vertex s∗, a new sink vertex t∗, the edge (s∗, t∗), and a suitable set of
dummy edges, called saturating edges. More formally, the saturating edges can
be added applying the following rules.

• If s = (e1, v, e2) and s′ = (e′1, v
′, e′2) are two source-switches of a face f

such that s is labeled S and s′ is labeled L (see Figure 2(a)), then we can
add a saturating edge e = (v, v′) splitting f into two faces f ′ and f ′′. Face
f ′ contains the new source-switch (e1, v, e) labeled S, and f ′′ contains the
new source-switch (e, v, e2) labeled S. Also, v′ does not belong to any
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switch labeled L in f ′ and f ′′. We say that s saturates s′ and the new
embedding is still upward planar.

• If s = (e1, v, e2) and s′ = (e′1, v
′, e′2) are two sink-switches of a face f such

that s is labeled L and s′ is labeled S (see Figure 2(b)), then we can add
a saturating edge e = (v, v′) splitting f into two faces f ′ and f ′′. Face f ′

contains the new sink-switch (e, v′, e′2) labeled S, and f ′′ contains the new
sink-switch (e′1, v

′, e) with label S. Also, v does not belong to any switch
labeled L in f ′ and f ′′. We say that s′ saturates s and the new embedding
is still upward planar.

• Once all faces have been decomposed by using the two rules above, we
can add dummy edges that either connect a sink-switch labeled L of the
external face to t∗, or s∗ to a source-switch labeled L of the external face.
After the insertion of these edges the embedding is still upward planar.
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Figure 2: (a) A saturating edge between two source-switches. (b) A saturating edge
between two sink-switches. (c) Illustration of the proof of Theorem 3.
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A saturator of a face f of G is a set of saturating edges that split f . Such a
saturator is complete if no more saturating edges can be added to decompose f .
A set of saturating edges that is complete for all faces of G is called a complete
saturator of G. Notice that the set of saturating edges added to determine
an st-digraph including G is a complete saturator of G. Figure 1(c) shows an
st-digraph including the upward planar embedded digraph in Figure 1(a); the
dashed edges that are not incident on s∗ and t∗ form a complete saturator.

In Section 4 we recall a classical algorithm that computes a complete sat-
urator of an upward planar embedded digraph G, and then we propose a new
algorithm.

2.2 Switch-regularity

An internal face f of an upward planar embedding is switch-regular if σf does
not contain two distinct maximal subsequences σ1 and σ2 of S labels such that
Sσ1 > 1 and Sσ2 > 1. The external face f is switch-regular if σf does not contain
two consecutive S labels. An upward planar embedding is switch-regular if all
its faces are switch-regular. For example, the upward planar embedding of
Figure 1(a) is not switch-regular, since face f is not switch-regular. All the
other faces are switch-regular.

The following result establishes an interesting connection between switch-
regular faces and complete saturators of an upward planar embedded digraph.

Theorem 2 [10] Let f be a face of an upward planar embedding of a digraph
G. Face f has a unique complete saturator if and only if f is switch-regular.

Theorem 2 implies that an upward planar embedded digraph has a unique
complete saturator if and only if it is switch-regular. In this case there is only
one way to augment G to become an including st-digraph.

3 A New Characterization of Switch-regular Up-
ward Embeddings

In this section we give a new characterization of switch-regular upward embed-
dings; it is strongly related to the definition of turn-regular orthogonal repre-
sentations given in [5].

Let G be an embedded bimodal planar digraph with a given upward planar
embedding. Let f be a face of G. A reflex switch of f is a switch of f with
label L. A convex switch of f is a switch of f with label S. Denote by Σf the
circular list of switches of f while visiting the boundary of f counterclockwise
(clearly, |Σf | = |σf |). For any switch s ∈ Σf , we define turn(s) = −1 if s is
reflex, and turn(s) = 1 if s is convex.

Let s′ = (e′1, v, e′2) and s′′ = (e′′1 , v′′, e′′2) be two switches in Σf . Denote by
Σf (s′, s′′) the subsequence of Σf from s′ (included) to s′′ (excluded). We define
the following function:
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rotationf (s′, s′′) =
∑

s∈Σf (s′,s′′)

turn(s).

Notice that, by Property 1, rotationf (s, s) = +2 for any switch s of an inter-
nal face f . If f is external, then rotationf (s, s) = −2. Also rotationf (s′, s′′) =
rotationf (s′, s)+ rotationf (s, s′′), for each ordered sequence s′, s, s′′ ∈ Σf . Let
{s′, s′′} be an ordered pair of reflex switches of f . We call {s′, s′′} a pair of kitty
corners of f if one of the following holds:

• rotationf (s′, s′′) = +1.

• rotationf (s′, s′′) = −3 and f is external.

By Property 1, if {s′, s′′} is a pair of kitty corners of a face f (internal
or external), then {s′′, s′} is a pair of kitty corners of f , too. Indeed, if f is
internal and rotationf (s′, s′′) = +1, then rotationf (s′′, s′) = +1. Also if f
is external and rotationf (s′, s′′) = +1, then rotationf (s′′, s′) = −3. In the
upward planar embedding of Figure 1(a), for s′ = ((3, 9), 9, (5, 9)) and s′′ =
((12, 11), 12, (12, 10)) in face f , we have rotationf (s′, s′′) = +1, and therefore s′

and s′′ are kitty corners of f . The following theorem is the main result of this
section.

Theorem 3 A face of an upward planar embedding is switch-regular if and only
if it has no kitty corners.

Proof: We prove the statement for an internal face f . A similar proof applies
for the external face. Let f be a switch-regular face. Suppose by contradiction
that f contains a pair {s′, s′′} of kitty corners and consider the subsequence
Σf (s′, s′′). Since rotationf (s′, s′′) = +1, then in Σf (s′, s′′) the number of convex
switches is equal to the number of reflex switches plus one. Therefore, since s′

is a reflex switch, in Σf (s′, s′′) there are necessarily two consecutive switches
labeled S. Applying the same reasoning, there must be two consecutive switches
with label S in the subsequence Σf (s′′, s′). Since s′ and s′′ are labeled L, we
have found two maximal subsequences of S labels both of size greater than one.
Therefore, f is not switch-regular, a contradiction.

Conversely, let f be a face that does not contain kitty corners. Suppose
by contradiction that f is not switch-regular. By Theorem 2 f has no unique
saturator. This implies that in f there is a reflex switch s = (e1, v, e2) that
can be saturated by at least two distinct convex switches, say s′ = (e′1, v

′, e′2)
and s′′ = (e′′1 , v′′, e′′2). Assume, without loss of generality, that s, s′, and s′′ are
sink-switches. Each of the two saturating edges (v, v′) and (v, v′′) would split
f , keeping the embedding upward planar. Refer to the notation of Figure 2(c):
Denote by snext the switch that follows s in Σf , and let f ′ be the face to the right
of the saturating edge (v, v′). Since the complete rotation of an internal face
is always 2, we have that rotationf ′(snext, s

′) = 2− rotationf ′(s′, snext) = +1.
Also, since s is a reflex switch of f , we have that rotationf (s, s′) = 0. By a
similar reasoning applied on the face to the right of the saturating edge (v, v′′),
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we have that rotationf (s, s′′) = 0, and hence rotationf (s′, s′′) = 0. This implies
that in the subsequence Σf (s′, s′′) there exists at least one reflex switch sr such
that rotationf (s, sr) = +1 (indeed s′ is labeled S, and the number of L labels
in Σf (s′, s′′) is equal to the number of S labels). Therefore, {s, sr} is a pair of
kitty corners, a contradiction. 2

4 A Switch-regularity Heuristic

Let G be a planar bimodal digraph with a given upward planar embedding.
In [3] the authors describe a linear-time algorithm that constructs an st-digraph
including G by computing a complete saturator of G. This algorithm recursively
decomposes every face f , searching on the boundary of f subsequences of three
consecutive switches s, s′, s′′ such that both s and s′ are labeled S, while s′′ is
labeled L. Each time such a sequence is found, the algorithm splits f into two
faces by adding a saturating edge connecting the vertices of s and s′′. When
there are no more subsequences of labels SSL in a face, then the algorithm
connects the dummy source s∗ to each reflex source-switch of the external face,
and each reflex sink-switch of the external face to the dummy sink t∗. In the
remainder of the paper we call this algorithm SimpleSat.
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Figure 3: (a) A face having kitty corners s, s′ is split by edge e = (v, v′). (b)
An upward planar embedding augmented to a switch-regular one; dummy edges are
dashed.

We use the characterization of Theorem 3 to design a new heuristic for com-
puting a planar st-digraph including G. For each face f , we test if f is switch-
regular or not. If f is not switch-regular, we apply an O(deg(f)) procedure that
finds a pair {s, s′} of kitty corners of f , where deg(f) is the degree of f (i.e. the
number of its edges). Such a procedure uses the same technique described in [5]
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for detecting a pair of kitty corners in a face of an orthogonal representation.
Once {s, s′} is detected, we split f by adding to G a dummy edge connecting
the vertices of s and s′ (see Figure 3(a)). After the insertion of this edge, the
new embedding is still an upward planar embedding. We recursively decompose
all faces that are non-switch-regular by applying the above algorithm to make
the upward planar embedding switch-regular. Figure 3(b) shows an upward
planar embedding that is augmented to a switch-regular one by using the above
strategy. When the upward planar embedding becomes switch-regular, we apply
the SimpleSat algorithm to add the edges that are still needed to construct an
st-digraph including G. Notice that, since we apply algorithm SimpleSat on a
switch-regular upward embedding, the complete saturator determined by this
algorithm is uniquely defined. We call our heuristic SrSat.

Regarding time complexity, SrSat takes O(n2) time in the worst case, since
there may be an O(n) number of kitty corners, and the detection of each pair
requires O(n) time. In practice however, since SrSat adds less edges than
SimpleSat, the overall running time of the drawing algorithm is reduced (see
Section 5).

5 Experimental results

We implemented and tested heuristics SimpleSat and SrSat on a large test
suite of graphs, in order to compare their performances. The test suite con-
sists of two subsets, Small-graphs and Large-graphs, of upward planar em-
bedded digraphs. Subset Small-graphs contains 800 digraphs having number
of vertices in {10, 20, . . . , 100} and density in {1.2, 1.4, 1.6, 1.8} (the density is
the ratio between the number of edges and the number of vertices). Subset
Large-graphs contains 160 digraphs, each having number of vertices in the
set {500, 600, . . . , 1500, 1600, . . . , 2000} and density ranging from 1.2 to 1.3. All
digraphs have been randomly generated. However, since these digraphs are
connected, upward planar, and they have specific given density values, the de-
sign of the generation algorithm was a difficult task. We used two different
approaches to generate the digraphs for the two subsets; both the approaches
guarantee that the digraphs have the required properties. Each graph in subset
Small-graphs was generated by the following procedure: (i) Generate, with a
uniform probability distribution, a connected (possibly non-planar) graph hav-
ing the desired number of vertices; (ii) Compute a spanning tree of this graph
by randomly choosing the root vertex; (iii) Randomly add edges to the spanning
tree until the desired density value is reached: each time a new edge is chosen
for insertion, this edge is really added only if the planarity of the graph is not
violated, otherwise the edge is discarded; (iv) Once a planar embedded graph
has been generated, an upward orientation is assigned to the graph by applying
the network-flow algorithm described in [13].

The above generation algorithm requires the application of a planarity test-
ing each time a new edge is chosen for possible insertion. Therefore, it does not
allow the generation of large graphs in a reasonable time. In order to generate



W. Didimo, Upward Planar Drawings, JGAA, 10(2) 259–285 (2006) 269

graphs for the subset Large-graphs we used a different and faster algorithm.
First we generate a planar embedded biconnected graph within a certain range
of density values by applying the technique described in [1], and then we assign
an orientation to the graph by using the algorithm in [13]. Hence, the graphs
in this subset are always biconnected.

All experiments were performed on a PC Pentium M, 1.6 Ghz, 512 MB
RAM, and Linux OS.

5.1 Structural measures

From the graph structure point of view, we measured:

• The percentage of non-switch-regular faces in the upward planar embedded
digraphs of our test suite;

• The percentage of kitty corners detected and saturated by SrSat over to
the total number of reflex vertices (i.e., number of sources and sinks);

• The total number of dummy edges added by SimpleSat and SrSat to
compute an including st-digraph.

The first two parameters provide an indication of how much the upward
planar embedded digraphs are non-switch-regular. As already found in other
similar experiments on orthogonal representations [5], the percentage of non-
switch-regular faces decreases exponentially with the increasing of the graph
density (see Figure 4). For small graphs of density 1.2 we have up to 60% of faces
that are not switch-regular (Figure 4(a)). The percentage of non-switch-regular
faces in the large graphs of our test suite is 33% in the average (Figure 4(b)).
This behavior is confirmed by the percentage of kitty corners, which decreases
with the increasing of the graph density (Figure 5). In particular, for small
graphs (Figure 5(a)), the average percentages are 34%, 21%, 12%, and 8%, for
densities 1.2, 1.4, 1.6, and 1.8, respectively.

Figure 6 shows the number of dummy edges added by the two heuristics for
low density small graphs and for large graphs. Heuristic SrSat adds about 16%
of edges less than SimpleSat in the average. This improvement is significantly
attenuated for graphs with high density, since the number of non-switch-regular
faces and the number of kitty corners in these graphs is quite small; for graphs
with density 1.8, we have a 4% reduction of dummy edges in the average (the
chart is omitted).

Since the performances of algorithms SimpleSat and SrSat differ especially
on low density graphs (due to the high number of non-switch-regular faces), in
the following we only discuss the results for low density small graphs and for
large graphs.

5.2 Aesthetics

Concerning drawing aesthetics we measured the total edge length, the area, and
the aspect ratio of the computed drawings.
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Figure 4: Percentage of non-switch-regular faces (y-axis) with respect to the graph
density (x-axis): (a) Small-graphs; (b) Large-graphs.

While the areas of the drawings computed by SrSat and SimpleSat are quite
similar (Figure 7), SrSat dramatically improves both the total edge length and
the aspect ratio with respect to SimpleSat. This improvement has a strong
impact on the readability of the drawings, as shown by some examples in Sec-
tion 6.

More in detail, the average reduction for total edge length is about 12% for
small graphs (Figure 8(a)) and it grows to 27% for large graphs (Figure 8(b)).
Concerning the aspect ratio, we measured the deviation of the width-to-height
ratio of the drawings computed by the two heuristics from an “optimum” aspect
ratio of 4/3, i.e., the aspect ratio of a common workstation screen (Figure 9).
The deviation from the optimum aspect ratio is rather small for the drawings
computed by SrSat, while it is usually remarkable for the drawings computed
by SimpleSat.
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Figure 5: Percentage of kitty corners saturated by SrSat (y-axis) over the total
number of reflex vertices (x-axis): (a) Small-graphs; (b) Large-graphs.

The intuition behind the better performance of SrSat in terms of aspect ratio
and total edge length is shown in Figure 10. The figure depicts two upward
drawings of the same non-switch-regular face, obtained by decomposing the
face into smaller st-faces using heuristic SimpleSat (Figure 10(a)) and heuristic
SrSat (Figure 10(b)); the dummy edges are dashed and have a light color. SrSat
inserts dummy edges that connect kitty corners and that force them to have a
“bottom-top” relative position in the final upward drawing; this determines a
better balancing between the width and the height of the drawing. Conversely,
heuristic SimpleSat inserts dummy edges between S labeled switches and L
labeled switches; this typically stretches the drawing in the horizontal direction,
causing long edges and poor aspect ratio.
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Figure 6: Average number of dummy edges added by the two heuristics with respect
to the number of vertices: (a) Small graphs; (b) Large graphs.

5.3 Efficiency

Although the asymptotic cost of SrSat is O(n2), in practice this heuristic causes
a reduction of the running time taken by the whole drawing process, due to the
“small” number of dummy edges added with respect to SimpleSat.

In fact, on the st-digraphs computed by the two heuristics we applied the
same compaction algorithm to determine a polyline drawing of the digraph (see
e.g. [9]). This algorithm first computes a visibility representation of the st-
digraph, then applies on it an O(n2 log n)-time min-cost-flow technique to min-
imize the total edge length, and finally constructs a polyline drawing from the
compact visibility representation. We measured both the CPU time required by
the two saturating heuristics and the overall CPU time spent for computing the
upward planar drawings using the compaction algorithm described above. We
observed that SimpleSat is about 48% faster than SrSat on large graphs, which
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Figure 7: Average areas of the drawings computed by the two heuristics with respect
to the number of vertices: (a) Small graphs; (b) Large graphs.

confirms the theoretical asymptotic complexity of the two heuristics. Neverthe-
less, both the saturating heuristics are very fast, and in most cases they take less
than 0,5% of the CPU time required by the whole drawing process. This implies
that, in practice, the extra time required by SrSat is negligible if compared with
the benefits of having less dummy edges in the rest of the process.

For the considerations above, we only report the charts for the overall CPU
time. While for small graphs the choice of the saturating heuristic has no re-
markable effect on the CPU time, which is always significantly less than 1 second
(Figure 11(a)), applying SrSat against SimpleSat on large graphs reduces the
overall CPU time by about 10% in the average (Figure 11(b)).
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Figure 8: Average total edge length of the drawings computed by the two heuristics
with respect to the number of vertices: (a) Small graphs; (b) Large graphs.

6 Drawing Gallery

In this section we report a small drawing gallery that shows how the better
aesthetics of the drawings computed using SrSat positively affect the readability.
All drawings are scaled down to perfectly fit in a rectangle with 4/3 aspect ratio.
We remark how the good aspect ratio of the drawings computed by SrSat allows
us to visualize these drawings with a size that is bigger than the one for the
drawings computed by SimpleSat. This improvement can be better appreciated
for large graphs (see, e.g., Figures 16 and 17).
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Figure 9: Deviation from the 4/3 aspect ratio for the drawings computed by the two
heuristics: (a) Small graphs; (b) Large graphs.

7 Conclusions and Open Problems

In this paper we presented a new algorithm for computing upward planar draw-
ings of digraphs. This algorithm exploits a novel saturating strategy for aug-
menting an upward planar embedding to an including st-digraph, and it is based
on a new characterization of switch-regular faces.

We experimentally proved that, if compared with a popular technique known
in the literature, our saturating heuristic significantly reduces the number of
dummy edges added to determine an including st-digraph. This reduction pos-
itively affects the drawing process, both in terms of drawing readability and in
terms of running time and space. In particular, for low-density digraphs, the
new algorithm dramatically outperforms the classical technique in terms of total
edge length and aspect ratio of the computed drawings. Beyond the positive
results of the new technique, several problems are still open. Some of them are
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Figure 10: A figure that illustrates why the use of SrSat gives rise to upward drawings
having better aspect ratio and total edge length than those computed using SimpleSat.
The figure shows two different upward drawings of the a non-switch-regular face; in
(a) the face has been decomposed using SimpleSat, while in (b) the face has been
decomposed using SrSat. The dummy edges inserted by the two heuristics are dashed
and have a light color.
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Figure 11: CPU time (in seconds) required for computing upward planar drawings
applying the two different heuristics in the saturating phase: (a) Small graphs; (b)
Large graphs.
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listed below:

• The implementation of our saturating heuristic currently requires O(n2)
time, where n is the number of vertices of the digraph. Is it possible to
design a linear time implementation?

• Our heuristic recursively detects and saturates pairs of kitty corners in
a face. When multiple pairs occur in the same face, saturating a pair in
place of another may influence the remainder of the saturating phase. Is
it possible to design more effective heuristics that are capable to detect at
each step the “best” pair of kitty corners to be saturated?

• What about drawing algorithms that also improve the area of the drawing?
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Figure 12: Two upward drawings of the same digraph with 10 vertices: (a) SimpleSat;
(b) SrSat.



W. Didimo, Upward Planar Drawings, JGAA, 10(2) 259–285 (2006) 281

(a)

(b)

Figure 13: Two upward drawings of the same digraph with 30 vertices: (a) SimpleSat;
(b) SrSat.
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(a)
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Figure 14: Two upward drawings of the same digraph with 50 vertices: (a) SimpleSat;
(b) SrSat.



W. Didimo, Upward Planar Drawings, JGAA, 10(2) 259–285 (2006) 283

(a)

(b)

Figure 15: Two upward drawings of the same digraph with 100 vertices: (a)
SimpleSat; (b) SrSat.
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Figure 16: An upward drawing (in landscape) of a digraph with 1000 vertices, com-
puted with heuristic SimpleSat. The deviation from a 4/3 screen is very high.
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Figure 17: An upward drawing (in landscape) of the digraph in Figure 16, computed
with heuristic SrSat. The aspect ratio is quite better.


