
Journal of Graph Algorithms and Applications
http://jgaa.info/ vol. 9, no. 1, pp. 53–97 (2005)

Radial Level Planarity Testing and Embedding

in Linear Time

Christian Bachmaier Franz J. Brandenburg

University of Passau,
94030 Passau, Germany

http://www.infosun.fmi.uni-passau.de/br/lehrstuhl/
{bachmaier,brandenb}@fmi.uni-passau.de

Michael Forster

IMAGEN Program, National ICT Australia,
Eveleigh, NSW 1430, Australia

http://nicta.com.au/director/research/programs/imagen/people/
michael forster.cfm

michael.forster@nicta.com.au

Abstract

A graph with an ordered k-partition of the vertices is radial level pla-

nar if there is a strictly outward drawing on k concentric levels without

crossings. Radial level planarity extends level planarity, where the ver-

tices are placed on k horizontal lines and the edges are routed strictly

downwards without crossings. The extension is characterised by rings,

which are certain level non-planar biconnected components.

Our main results are linear time algorithms for radial level planarity

testing and for computing a radial level planar embedding. We intro-

duce PQR-trees as a new data structure where R-nodes and associated

templates for their manipulation are introduced to deal with rings. Our al-

gorithms extend level planarity testing and embedding algorithms, which

use PQ-trees.

Article Type Communicated by Submitted Revised

regular paper G. Liotta February 2004 June 2005

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 54

1 Introduction

We consider the problem of drawing a graph with a given ordered vertex parti-
tion. Such a partition may be due to application-specific attributes of the graph
(e. g. hierarchies as in [23]) or it may be introduced by structural evaluation
(e. g. centrality measures as in [6, 7]) or by the drawing algorithm (e. g. the
Sugiyama framework [12,33]).

Formally, we are given a k-level graph G = (V,E, φ) with a level assignment
φ : V → {1, 2, . . . , k} with k ≤ |V | that partitions the vertex set into k pairwise
disjoint subsets V = V 1

.
∪ V 2

.
∪ · · ·

.
∪ V k, V j = φ−1(j), 1 ≤ j ≤ k, such that

φ(u) 6= φ(v) for each edge (u, v) ∈ E. A k-level graph is proper if |φ(u)−φ(v)| =
1 for each edge (u, v) ∈ E. Typically the vertices are constrained to lie on
horizontal or radial levels to make the partition visible. As is the case for
arbitrary drawings empirical evidence suggests that the number of crossings is
a major factor for readability of levelled drawings [31]. The (horizontal) level
planarity problem [13,20,26] is the question whether or not a level graph G can
be drawn in the plane such that all vertices of the j-th level V j are placed on the
j-th horizontal line lj = { (x, j) | x ∈ R } and the edges are drawn as strictly y-
monotone curves without crossings. The topological structure of such a drawing
is given by a level planar embedding, which is characterised by a linear ordering
of the vertices on each level V j . Level planarity has been intensively investigated
in literature. The main achievements are linear time algorithms for the test of
level planarity and for the computation of an embedding [13,20,21,24–26,28].

For k-level graphs the partition of the set of vertices into levels is given.
Assigning vertices to levels (levelling) is a different problem: Heath and Rosen-
berg [22] have shown that it is NP-hard deciding whether a planar graph has a
levelling into a proper level planar graph. In the non-proper case every planar
graph has a level planar partitioning of its vertices, but with up to O(|V |) levels
and many long edges spanning several levels. This follows for example from
planar straight-line grid drawings or from visibility representations [12]. The
number of levels spanned by long edges may be linear in the size of the graph,
as a nested sequence of triangles shows [10,11]. However, every planar graph has
a concentric representation [34] based on a breadth first search (BFS) traversal,
if in addition to the levelling the monotonicity of the edges is discarded. There
the vertices are placed on concentric circles corresponding to BFS-levels and the
edges are routed as curves without crossings.

Our contribution is a generalisation of level planarity to radial level planarity.
Now the vertices are placed on k concentric circles lj = { (j cos θ, j sin θ) | θ ∈
[0, 2π) }, 1 ≤ j ≤ k. A k-level graph is radial k-level planar if there are per-
mutations of the vertices on each radial level such that the edges can be drawn
as strictly monotone curves from inner to outer levels without crossings. Such
drawings [3] extend the radial tree drawings of Eades [16], where the levels of
the vertices are given by their depth, i. e., BFS-level. Figure 1(b) shows a ra-
dial level planar drawing of the graph in Figure 1(a) which is not level planar.
Another simple example is a levelled K2,2 which is proper radial 2-level planar
but not 2-level planar.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 55

1

3

2

0

1 2 3

4

4 7

5 6

(a)

234

1

1

0

2

3

4

5

6

7

(b)

Figure 1: A radial level planar graph with a radial level planar drawing.

Every level planar embedding can be transformed into a radial level planar
embedding by connecting the ends of each level to concentric circles. This
introduces new possibilities to add edges as monotone curves from the end of
one level to the beginning of another or vice versa. These cut edges cross a
ray from the centre of the concentric levels to infinity through the gluing points
of the level lines exactly once. There are two directions for routing cut edges
around the centre. Hence, as an extension of level planar embeddings, radial
level planar embeddings need additional information about cut edges and their
direction. Consider the graph in Figure 1(b). The edge (1, 6) crosses the ray
and thus is a clockwise cut edge, following its implicit direction from the lower
to the higher level. Obviously, a radial level planar graph without cut-edges is
level planar. Thus the cut-edges make up the major difference between radial
level planarity and level planarity.

In the following let V (G) denote the set of vertices of a graph G and E(G) its
set of edges. Without loss of generality, we only consider simple graphs without
self loops and parallel edges. Obviously, a graph with |E| > 3|V | − 6 can be
rejected as not (radial) level planar.

Lemma 1 For a k-level graph G:

G is level planar ⇒ G is radial level planar ⇒ G is planar

This paper is organised as follows: In the next section we survey previous
results related to radial level planarity. We recall the linear time level planarity
testing and embedding algorithm of Jünger, Leipert, and Mutzel [24–26, 28],

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 56

which is a basis for our algorithms. Section 3 introduces the concepts of our
linear time approach to decide whether a graph is radial level planar in Section 4.
The computation of an embedding is described in Section 5. We conclude with
a summary.

2 Level Planarity

2.1 Foundations

Dujmović et al. [15] have applied the concept of fixed parameter tractability
to graph drawing. It can be shown that k-level planarity and radial k-level
planarity are fixed parameter tractable. However, k must be bounded by a
constant. As a consequence an O(|V |) running time is obtained for a fixed
number of levels, but the O-notation hides large constants. We pursue a direct
approach and improve the result of Dujmović et al. to linear time for an ar-
bitrary number of levels. Our algorithms are practical and have been realised
in a prototypical implementation in C++ using the Graph Template Library
(GTL) with improved symmetric lists [4]. They are based on the level planarity
testing algorithm of Jünger, Leipert, and Mutzel [24–26, 28], in the following
called the JLM algorithm, which in turn is based on the approach of Heath
and Pemmaraju [20,21]. All these algorithms extend the level planarity testing
algorithm of Di Battista and Nardelli [13] to arbitrary level graphs. Previously
only hierarchies could be treated, which are level graphs with a single source.
A source is a vertex with edges only to vertices on higher levels, whereas a sink
is a vertex with edges only from vertices on lower levels. The linear time algo-
rithm of Chandramouli and Diwan [8] determines whether a triconnected DAG
is level planar. Because the JLM algorithm is rather involved and difficult to
implement, Healy and Kuusik [18] have presented a simpler approach for the
detection of level planarity. Their algorithm runs in O(|V |2) time for proper
level graphs and O(|V |4) time in the general case. If an embedding is needed,
the time complexity raises to O(|V |3) and O(|V |6), respectively. Finally, Ran-
derath et al. [32] have presented a quadratic time reduction of level planarity of
proper level graphs to the satisfiability problem of Boolean formulas in 2CNF,
which is solvable in linear time.

Our algorithm is based on the JLM algorithm which must be extended in
various directions. Familiar readers may proceed to Section 3.

2.2 Level Planarity Testing

Let G be a k-level graph. The algorithm performs a top down sweep, processing
the levels in ascending order. Let Gj be the subgraph induced by the vertices of
the first j levels V 1∪V 2∪· · ·∪V j . For every Gj a set of admissible permutations
of V j+1 is computed, which are the permutations of level planar embeddings of
Gj+1. The input graph G is level planar if and only if the set of permutations
of Gk = G is non-empty.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 57

The sets of admissible vertex permutations can efficiently be stored and ma-
nipulated using PQ-trees. This data structure has been introduced by Booth
and Lueker [5] for the consecutive ones property in matrices. A PQ-tree repre-
sents the set of permutations of the elements of a finite set S, where the members
of specified subsets of S occur consecutively. It is a rooted, ordered tree with
leaves and two types of internal nodes, P-nodes and Q-nodes. In the context
of this paper the term vertex always denotes an element of a graph and the
term node denotes an element of a PQ-tree. It is common to draw P-nodes as
circles and Q-nodes as rectangles. The leaves correspond to the elements of S.
The set of permutations is encoded by the combination of the internal nodes.
The children of a P-node can be permuted arbitrarily, whereas the children of
a Q-node are ordered and only reversion is allowed. If PQ-trees are used in
planarity tests, a P-node represents a cut vertex and a Q-node represents a
biconnected component of the visited part of the graph. The leaves represent
edges to the unvisited part. Restrictions on the set of permutations are intro-
duced by edges towards the same vertex. If there are no permutations with the
given restrictions, the PQ-tree is empty.

The most important operation on PQ-trees is REDUCE. It restricts the
set of permutations such that all elements of a set S′ ⊆ S are consecutive in
all remaining permutations. In a bottom up strategy REDUCE uses eleven
template matching patterns to realise local changes within the tree. These are
given in Figure 2 and Figure 3, see [5]. PQ-leaves representing elements of S′

are called pertinent. The pertinent subtree is the subtree of minimum height
containing all pertinent PQ-leaves. Its root is called the pertinent root. A
PQ-node with at least one pertinent child different from the pertinent root is
pertinent, too. A PQ-node is full if it has only pertinent children, partial if it
has at least one pertinent and at least one non-pertinent child, and empty if it
has no pertinent children.

For an application of the templates P2, P4, P6, or Q3, the root of the left
side (pattern) of the template must be the pertinent root, whereas P3 and P5
cannot be applied to the pertinent root. There are no such restrictions for the
applicability of the remaining templates. The application of a template may
reverse the order of the children of some Q-nodes and insert the children of
a Q-node somewhere in between the children of another Q-node. In order to
achieve the linear time complexity as in [5], both reversing a list of children and
inserting a list of children into another must be done in constant time. The
complexity of REDUCE is crucial for level planarity testing and embedding in
linear time.

The subgraph Gj induced by the first j levels is not necessarily connected.
Thus a separate PQ-tree T (F j

i) is introduced for every component F
j
i of Gj

with mj such components and 1 ≤ i ≤ mj . T (F j
i) represents the set of admis-

sible permutations of the vertices of F
j
i in V j that appear in some level planar

embedding of Gj . If two different components are adjacent to a common vertex
v, their corresponding PQ-trees must be merged. T (Gj) denotes the set of all
T (F j

i).

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 58

−→

(a) Template P0.

−→

(b) Template P1.

pertinent root
−−−−−−−−−→

(c) Template P2.

not pertinent root
−−−−−−−−−−−→

(d) Template P3.

pertinent root
−−−−−−−−−→

(e) Template P4.

not pertinent root
−−−−−−−−−−−→

(f) Template P5.

pertinent root
−−−−−−−−−→

(g) Template P6.

Figure 2: Templates for testing (level) planarity. The grey shading indicates
pertinent nodes.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 59

−→

(a) Template Q0.

−→

(b) Template Q1.

−→

(c) Template Q2.

pertinent root
−−−−−−−−−→

(d) Template Q3.

Figure 3: Templates, Part 2.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 60

A formal description of the LEVEL-PLANARITY-TEST algorithm is given
by Algorithm 1. All operations are applied directly to T (F j

i) and not to the
graph. The procedure CHECK-LEVEL in Algorithm 2 is a sweep over a single
level j, divided into a first and a second reduction phase.

Algorithm 1: LEVEL-PLANARITY-TEST

Input: A level graph G = (V 1
.
∪ V 2

.
∪ . . .

.
∪ V k, E, φ)

Output: A Boolean value indicating whether G is level planar

Initialise T (G1)
for j ← 1 to k − 1 do

T (Gj+1)← CHECK-LEVEL(T (Gj), V j+1)
if T (Gj+1) = ∅ then return false

end

return true

Algorithm 2: CHECK-LEVEL

Input: The set of PQ-trees T (Gj) and the vertices V j+1 of the next level
Output: The PQ-trees T (Gj+1) of the next level

T (Gj)← FIRST-REDUCTION-PHASE(T (Gj), V j+1)
if T (Gj) = ∅ then return ∅
T (Gj)← SECOND-REDUCTION-PHASE(T (Gj), V j+1)
if T (Gj) = ∅ then return ∅
T (Gj)← FINAL-UPDATES(T (Gj), V j+1)
return T (Gj+1)← T (Gj)

Algorithm 3 describes the first reduction phase. Define H
j
i to be the extended

form of F
j
i , which consists of F

j
i and some new virtual vertices and virtual edges.

For every edge (u, v) with u ∈ V (F j
i)∩V j and φ(v) > j, a new virtual vertex v′

with label v and a virtual edge (u, v′) are introduced in H
j
i . The set of all virtual

vertices of H
j
i with label v is denoted by Sv

i . Note that there may be several
virtual vertices with the same label, possibly adjacent to different components
of Gj and each with exactly one entering edge.

The extension of T (F j
i) to T (Hj

i) is called the vertex addition step and is
accomplished by the REPLACE PQ-tree operation. After REDUCE all PQ-
leaves with the same label v appear consecutively in every admissible permuta-
tion. REPLACE replaces every such consecutive set with a P-node labelled v.
This is the parent of some new leaves representing the adjacent vertices of v in
V j+1 ∪ V j+2 ∪ · · · ∪ V k. Thereafter all PQ-leaves representing vertices in V j+1

with the same label are reduced to appear as a consecutive sequence in any
permutation stored by the PQ-trees. Then REPLACE-SINGLE replaces them
with a single representative PQ-leaf with the same label. This reduced extended
form of H

j
i is denoted by R

j
i . If the graph is not a hierarchy, the replacement

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 61

with a single representative is necessary for the correctness of the algorithm, as
JLM [28, p. 71ff] have discovered.

Algorithm 3: FIRST-REDUCTION-PHASE

Input: The set of PQ-trees T (Gj) and the vertices V j+1 of the next level
Output: The reduced PQ-trees T (Gj)

foreach component F
j
i in Gj do

construct T (Hj
i) from T (F i

j)
end

foreach v ∈ V j+1 do

foreach extended form H
j
i do

if |Sv
i | ≥ 2 then

T (Rj
i)← REDUCE(T (Hj

i), Sv
i)

if T (Rj
i) = ∅ then return ∅

let ṽ be a single representative of Sv
i

T (Rj
i)← REPLACE-SINGLE(T (Rj

i), Sv
i , ṽ)

end

end

end

return T (Gj)

Different PQ-trees may contain PQ-leaves with the same label. Thus a
second reduction phase is needed to merge these trees. A reduced extended
form R

j
i is called v-singular if all its virtual vertices have the same label, i. e.,⋃

w∈V,φ(w)>j Sw
i = {v}. Whenever new inner faces are created by replacing all

leaves labelled v with a single representative, a value PML or QML, which stores
the lowest level of this faces, is maintained in the PQ-leaf representing v. Using
this information it is possible to decide whether or not a v-singular component
fits into an inner face above v. Otherwise, it is checked whether it can be placed
into the outer face with the same mechanism as for non-singular forms.

Next we briefly describe the pairwise merge operations. Define the low in-
dexed level LL(F j

i) of F
j
i to be the least d such that F

j
i contains a vertex in V d.

This value is maintained as an attribute of the corresponding PQ-tree T (F j
i).

The height of a component F
j
i is j−LL(F j

i). A merge operation is accomplished
by using information that is stored at the nodes of the PQ-trees. For any set
of virtual vertices S ⊆ V j+1 ∪ V j+2 ∪ · · · ∪ V k of a form H

j
i or R

j
i , define the

meet level ML(S) of S to be the largest d ≤ j such that V d ∪ V d+1 ∪ · · · ∪ V j

induces a subgraph of G where all s ∈ S occur in the same connected com-
ponent. For every P-node X a single value ML(X) = ML(frontier(X)) is
maintained, where frontier(X) is the sequence of its descendent leaves from
left to right. For every Q-node Y with ordered children Y1, Y2, . . . , Yt the values
ML(Yi, Yi+1) = ML(frontier(Yi) ∪ frontier(Yi+1)), 1 ≤ i < t, are stored. These
indicators tell whether a PQ-tree with a given low indexed level fits into the
indentations below a P-node or between two sons of a Q-node. The mainte-

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 62

Algorithm 4: SECOND-REDUCTION-PHASE

Input: The set of PQ-trees T (Gj) and the vertices V j+1 of the next level
Output: The merged PQ-trees T (Gj)

foreach v ∈ V j+1 do

foreach PQ-tree T (Rj
i) containing a leaf labelled with v do

// lazy reduce
if |Sv

i | ≥ 2 then

T (Rj
i)← REDUCE(T (Rj

i), S
v
i)

if T (Rj
i) = ∅ then return ∅

let ṽ be a single representative of Sv
i

T (Rj
i)← REPLACE-SINGLE(T (Rj

i), S
v
i , ṽ)

end

end

eliminate all v-singular R
j
i except for the one with the lowest LL-value

reorder indices such that Sv
1 , Sv

2 , . . . , Sv
p 6= ∅, Sv

q = ∅ for q > p,

and LL(Rj
1) ≤ LL(Rj

2) ≤ . . .≤ LL(Rj
p)

for i← 1 to p do

T (Rj
1)← INSERT(T (Rj

1), T (Rj
i), v)

T (Rj
1)← REDUCE(T (Rj

1), S
v
1)

if T (Rj
1) = ∅ then return ∅

let ṽ be a single representative of Sv
1

T (Rj
1)← REPLACE-SINGLE(T (Rj

1), S
v
1 , ṽ)

end

end

return T (Gj)

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 63

nance of the ML-values during template reductions and insertions in PQ-trees
is straightforward.

Let T v
1 , T v

2 , . . . , T v
f be all PQ-trees containing a leaf v ∈ V j+1 sorted accord-

ing to descending height. All PQ-trees T v
e , 2 ≤ e ≤ f , are merged sequentially

into T v
1 . This corresponds to adding the root of T v

e as a child to a PQ-node
of T v

1 . In order to find an appropriate location to insert T v
e , the method starts

with the leaf in T v
1 labelled with v and proceeds upwards in T v

1 until a node
X ′ and its parent X are encountered which satisfy one of the following merge
conditions. These are checked in the order A to E.

Merge Condition A The node X is a P-node with ML(X) < LL(T v
e). Then

attach T v
e as a child of X in T v

1 .

v

X

X
0

T
1

v

v

T
e

v

→

v

v

X

X
0

T
1

v

Merge Condition B The node X is a Q-node with ordered children X1, X2,
. . . , Xt, X ′ = X1, and ML(X1,X2) < LL(T v

e). Then replace X ′ in T v
1 with

a new Q-node Y with X ′ and T v
e as children. The case were X ′ = Xt and

ML(Xt−1,Xt) < LL(T v
e) is symmetric.

v

T
e

v

v

X

X
2

X
t

X
0

T
1

v

→

v

v

X

Y

X
2

X
tX

0

T
1

v

Merge Condition C The node X is a Q-node with ordered children X1, X2,
. . . , Xt, X ′ = Xi, 1 < i < t, and ML(Xi−1,Xi) < LL(T v

e) and ML(Xi,Xi+1) <

LL(T v
e). Then replace X ′ with a new Q-node Y with X ′ and T v

e as children.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 64

v

T
e

v

v

X

X
i 1+

X
t

X
0

T
1

v

X
1

X
i 1-

→

v

Y

v

X

X
i 1+

X
t

X
0

T
1

v

X
1

X
i 1-

Merge Condition D The node X is a Q-node with ordered children X1, X2,
. . . , Xt, X ′ = Xi, 1 < i < t, and

ML(Xi−1,Xi) < LL(T v
e) ≤ ML(Xi,Xi+1).

Then attach T v
e as a child of X between Xi−1 and Xi. If

ML(Xi,Xi+1) < LL(T v
e) ≤ ML(Xi−1,Xi)

then attach T v
e as a child of X between Xi and Xi+1.

v

T
e

v

v

X

X
i 1+

X
t

X
0

T
1

v

X
1

X
i 1-

→

v

v

X

X
i 1+

X
t

X
0

T
1

v

X
1

X
i 1-

Merge Condition E The node X ′ is the root of T v
1 . Then reconstruct T v

1

by inserting a new Q-node Y as the new root with X ′ and T v
e as its children.

v

T
e

v

v

T
1

v

X
0 →

vv

Y

X
0

T
1

v

After each merge operation, REDUCE and REPLACE are called again to
make all v-leaves consecutive and then to replace them with a single represen-
tative PQ-leaf. Afterwards T v

e is deleted from T (Gj+1). In order to achieve
linear running time, there is no scan for other leaves with the same label after
v-merging several reduced extended forms. However, this strategy results in
improper reduced extended forms possibly with several virtual vertices with the
same label. These are called partially reduced extended forms and are reduced
on demand.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 65

Finally, in a new sweep over the current level Algorithm 5 deletes all PQ-
leaves representing sinks v in V j+1 from their corresponding PQ-tree and re-
constructs the tree such that it obeys the properties of a valid PQ-tree.

Algorithm 5: FINAL-UPDATES

Input: The set of PQ-trees T (Gj) and the vertices V j+1 of the next level
Output: The PQ-trees T (Gj)

delete leaves representing sink vertices of V j+1 from the PQ-trees
update the pointers of the leaves to their PQ-tree
add for every source in V j+1 a new PQ-tree to T (Gj)
return T (Gj)

Note that the LEVEL-PLANARITY-TEST also works on non-proper level
graphs within O(|V |) time and without inserting up to O(|V |2) dummy vertices
for long edges by adding all children on higher levels and not only those on the
next level.

2.3 Level Planar Embedding

For a witness of the level planarity of a graph after a positive level planarity
test and for a level planar drawing the algorithm computes a level embedding in
two passes. It is outlined in Algorithm 6. First G is augmented to a planar st-
graph [17,29]. This is a biconnected graph with two adjacent vertices s and t and
a bijective numbering st : V → {1, . . . , |V |} of the vertices such that st(s) = 1,
st(t) = |V |, and that for every vertex v with 1 < st(v) < |V | there are adjacent
vertices u and w with st(u) < st(v) < st(w). An st-numbering for G can be
computed by topologically sorting the vertices using implicit edge directions
from lower to higher levels. This corresponds to numbering the vertices level by
level in ascending order. Then a planar st-embedding can be obtained by the
algorithm of Chiba et al. [9], from which a level planar embedding can directly
be computed.

Augmenting a level graph G to an st-graph Gst is divided into two phases.
After adding a new source s and a new target t, in the first phase an outgoing
edge is added to every old sink of G by the application of a modified LEVEL-
PLANARITY-TEST algorithm from level 1 to k. Using the same algorithmic
concept bottom up from level k to 1, an incoming edge is added to every old
source of G in the second phase. To add these edges without violating level
planarity, every PQ-leaf representing a sink in G is replaced with a sink indicator
as a leaf in its corresponding PQ-tree. This indicator is ignored throughout the
application of the algorithm. If all siblings of a node are ignored, its parent is
ignored, too. Thus whole PQ-trees can be ignored. Sink indicators are removed
either together with the leaves representing the incoming edges of some vertex
w ∈ V l, l > j, or they are still left in the final PQ-trees. In the first case vertices
which are represented by sink indicators are connected to w after its reduction
by the subsequent REPLACE on w. In the second case they are connected to t

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 66

Algorithm 6: LEVEL-PLANAR-EMBED

Input: A level graph G = (V 1
.
∪ V 2

.
∪ . . .

.
∪ V k, E, φ)

Output: A level embedding El of G if it is level planar, ∅ otherwise

expand G to Gst by adding V 0 ← {s} and V k+1 ← {t}

AUGMENT(Gst)
if AUGMENT fails then return El ← ∅

// Gst is now a hierarchy

reverse the level numbering Gst from bottom to top
AUGMENT(Gst) // cannot fail
restore the original level numbering Gst

Est ← Est ∪ (s, t)

// Gst is now an st-graph

TOPSORT(Vst)
compute a planar embedding Est according to Chiba et al. [9]

using the topological sorting as an st-ordering

El ← CONSTRUCT-LEVEL-EMBED(Est, Gst)

return El

at the end of the augmentation phase. Sink indicators in PQ-trees representing
a v-singular form are connected to v if they are inserted into an inner face above
v.

Algorithm 6 computes an st-embedding Est by the technique of Chiba et al.
[9] using a topological sorting of the augmented graph as the st-numbering. The
algorithm CONSTRUCT-LEVEL-EMBED computes a level planar embedding
El of G from the planar embedding Est. It traverses the graph in depth first
search (DFS) order from t and proceeds from every visited vertex v to the
unvisited neighbour w on a smaller level that appears first in the clockwise
ordering of v’s adjacency list in Est. Initially, all levels in El are empty. If a
vertex w 6∈ {s, t} is visited, it is appended at the end of the ordered list of
the vertices assigned to φ(w). Since the DFS starts at t and uses only edges
to vertices with a smaller st-number, the DFS in Chiba’s method ENTIRE-
EMBED [9, p. 62] extending the obtained directed upward embedding Eu into
a complete and undirected st-embedding Est can be omitted.

In order to achieve linear running time, it must be avoided to search for sink
indicators which can be considered for an augmentation. But sink indicators
must be treated correctly by merge operations. Therefore, a new node type
called contact is introduced in the PQ-trees during the merge operations B–D.
The contacts store which sinks have to be augmented if the new introduced
Q-node is inserted into its parent Q-node by an application of a template later
in the algorithm. For details see [24,25,28].

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 67

1

2

12

3

4

(a)

1

2

1

5

2

6

7

3

8

4

(b)

Figure 4: A radial level planar connected component and a radial level non-
planar graph which is a combination of two such components.

3 Fundamental Properties

In this section we establish some fundamental properties of radial level planar
graphs and elaborate distinctions between level and radial level planar graphs.
Our first result is obvious.

Lemma 2 A radial level planar graph is level planar if there are no cut edges.

Next consider connectivity. The JLM algorithm relies on the fact that a level
graph is level planar if and only if each connected component is level planar.
Therefore, it tests each connected component separately for level planarity, what
is no restriction since separate components can be placed next to each other.
This is no more true for radial level planarity as Figure 4(b) illustrates. There
two disjoint ovals interleave.

Obviously, a graph is radial level planar if it consists of level planar compo-
nents only. Hence, we must consider those components of a level graph that are
radial level planar and level non-planar.

Definition 1 A ring is a biconnected component of a level graph which is radial
level planar and not level planar. A level graph containing a ring is called a ring
graph.

It is not immediate whether a biconnected component is a ring. We will
see later how rings are detected. Nevertheless we investigate some interesting
properties of rings first. The graph in Figure 5(a) consists of four biconnected
components with a darker shaded ring. Observe that a component can and
sometimes must be nested in another one. This may occur if the outer com-
ponent is a ring. Clearly, a ring must contain a cycle, but a cycle does not
necessarily induce a ring. Being a ring also depends on the levelling. If ver-
tex 14 was on level 1, this graph would not contain a ring, because according
to the ray in Figure 5(b) there are no cut edges and every component is level
planar. The definitions imply the following fact:

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 68

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16 17

18

19

20

21

22

23

24

25

0

2

3

4

1

5

(a) A ring graph.

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16 17

18

19

20

21

22

23

24

25

0

2

3

4

1

5

(b) Not a ring graph.

Figure 5: Rings depend on the levelling.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 69

Lemma 3 If a level graph G does not contain a ring, the following are equiva-
lent:

1. G is radial level planar.

2. G is level planar.

3. Each connected component of G is level planar.

4. Each connected component of G is radial level planar.

Hence, if a graph does not contain a ring, we can use the JLM level planarity
testing algorithm to test for radial level planarity. For ring graphs the algorithm
needs an extension. Before we describe how our algorithm stores the admissible
permutations of the vertices on each concentric circle in the next section we
discuss some more properties of rings.

Lemma 4 In every radial level planar embedding of a ring graph the centre of
the concentric levels lies in an inner face. This face is called the centre face.

Proof: Suppose there exists a ring graph G that has a radial level planar
embedding with the centre lying in the outer face. Then there is a ray from
the centre to infinity which crosses no edges. Hence, there are no cut edges and
every biconnected component of G is level planar. Thus G does not contain a
ring in contradiction to the assumption. 2

Lemma 5 A ring contains at least four vertices and four edges, and there is a
ring of that size.

Proof: A ring is not level planar. Thus every level embedding contains at least
two crossing edges (u, v) and (w, x) with mutually different vertices u, v, w, and
x. To ensure biconnectivity at least four edges are needed. The K2,2 on two
levels is a ring, cf. Figure 4(a). 2

Another important property of rings is the nesting, which is determined by
some characterising parameters:

Definition 2 For a k-level graph G containing a ring R let αR and δR be the
minimum and maximum levels of G containing a vertex of R, respectively. Let
the inner radius βR of R be the maximum level with a vertex of the centre face
of R in any radial level planar embedding, and let the outer radius γR of R be
the minimum level with a vertex of the outer face of R in any radial level planar
embedding.

These parameters are illustrated in Figure 6. The minimum level αR and
the maximum level δR of a ring are independent of the embedding because they
are given by the levelling of the graph. This is not necessarily true for the inner
radius βR and the outer radius γR.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 70

1

3

4

5

6

2

1

2
3

457

8

9

6

7

Figure 6: Extreme levels of a ring. αR = 2, βR = 6, γR = 3, δR = 7.

Definition 3 A radial level planar embedding of a ring R is level optimal if βR

and γR are the extreme levels of the centre face and of the outer face, respectively.

Lemma 6 Every level planar graph has an embedding that is level optimal for
each contained ring.

Proof: Our algorithm always constructs such an embedding, as will be shown
in Lemma 12. 2

Lemma 7 Every ring R spans at least two levels and its characterising para-
meters relate by δR > γR ≥ αR and δR ≥ βR > αR.

Proof: The source and the target vertices of an edge always lie on different levels
since horizontal edges are not allowed. By Lemma 5 a ring always contains edges
and thus has vertices on at least two levels. Therefore, the four relations follow
directly from the definitions. 2

Lemma 8 Let G be a level graph consisting of two disjoint rings R and S. G

is radial level planar if and only if R and S are radial level planar and R fits in
the centre face of S or vice versa, i. e.,

(αS > γR and βS > δR) or (αR > γS and βR > δS).

Proof: For the only if direction let G be a radial level planar graph consisting
of two disjoint rings R and S. Since subgraphs of radial level planar graphs
are always radial level planar, R and S are radial level planar. Each ring is
biconnected and encloses the centre according to Lemma 4. Thus in any planar

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 71

embedding one ring is completely contained within the centre face of the other.
Let w. l. o. g. R be contained in S. If αS ≤ γR or βS ≤ δR then the border of the
centre face of S intersects the border of the outer face of R, which contradicts
the radial level planarity of G.

For the if direction let G be a level graph consisting of two disjoint rings R

and S with αS > γR and βS > δR. The case αR > γS and βR > δS is symmetric.
We show the radial level planarity of G by an embedding of G which combines
level optimal radial level planar embeddings ER

l and ES
l of R and S. These

embeddings have only the levels between αS and δR in common, whereas the
others remain unchanged. Since αS > γR all vertices of S are on higher levels
than γR and thus can be placed beyond the border of the outer face of R. Since
βS > δR all vertices of R fit inside the border of the centre face of S. Note that
it may be necessary to rotate and squeeze R, so that all vertices fit inside the
largest cavity of S and vice versa. 2

The nesting of disjoint rings is illustrated in Figure 7. This is an essential
difference to disjoint components of level planar graphs, which are usually placed
side by side and which can be treated separately.

4 Radial Level Planarity Testing

We now come to the main results of this paper and extend the JLM algorithm
for radial level planarity testing, see Algorithm 1. Our extensions are PQR-
trees as a new data structure, an advanced merging of them, and the detection
of nested rings.

The input graph is traversed in a top down sweep, which now becomes a
wavefront sweep from the centre. The processed part of the graph is represented
by a collection of trees, which is denoted by T . We need a new data structure,
PQR-trees, to deal with rings. PQR-trees store the admissible edge permuta-
tions of radial level planar graphs. They are based on PQ-trees and contain a
new “R” node type for the rings. PQR-trees are not related to SPQR-trees that
are used for example in incremental planarity testing [14].

4.1 R-Nodes

R-nodes are similar to Q-nodes. Their new properties express the differences
between rings and other biconnected components. An R-node is drawn as an
elliptical ring. The admissible operations on an R-node are reversion, i. e., in-
verting the iteration direction of its children in the same way as for Q-nodes,
and a new one, rotation. A rotation corresponds to rotating the graph around
the centre and moves a subsequence of the children of an R-node from the be-
ginning of the children list to its end, or vice versa, while maintaining their
relative order. See Figure 8 for an example. This happens implicitly by using
circular lists. Therefore, R-nodes (as well as Q-nodes) can be implemented with
the improved symmetric list data structure [4]. This is an encapsulated data

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 72

1

2

3

4

5

6 7

1

3
4

5

2

(a) The inner ring R, where γR = 1
and δR = 4.

89

10

1112

13

1

3
4

5

2

(b) The outer ring S, where αS = 2
and βS = 5.

1

3
4

5

2

8 1112 9

10

13

2

5

4

1 3

7 6

(c) R nested in the centre face of S.

Figure 7: Nesting of rings.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 73

X1 Xi Xi+1 Xt

(a) An R-node with children X1, . . . ,
Xt.

X1 XiXi+1 Xt

(b) Figure 8(a) after rotation.

Figure 8: Rotation of an R-node.

structure where insertions, reversions and rotations can be done in constant
time. This is crucial for the linear running time of the test.

Lemma 9 During the radial planarity test the admissible edge permutations
can be stored such that R-nodes only occur as the root of PQR-trees.

Proof: At any time in the wavefront sweep the leaves of a PQR-tree represent
edges to vertices of the unvisited part of the graph. When a ring R is encoun-
tered, radial planarity implies that there are no such edges left originating from
a component nested within the centre face of R. Otherwise, an edge would cross
a cycle of R which encloses the centre. Hence, it is sufficient that R-nodes never
have siblings and thus they only occur at the root of PQR-trees. This follows
from the definition of PQ-trees, since P-nodes or Q-nodes must have at least
two children, see [5, p. 339]. As we see later, R-nodes can have a single child,
and thus chains of R-nodes representing nested rings would be possible. This is
unnecessary since it suffices to keep only the outermost ring. The embedding of
the inner components can be left unchanged. 2

4.2 New Templates

For the R-nodes twelve new templates are needed to implement REDUCE on
PQR-trees, some of them being analogous to the Q-node templates adopted
from PQ-trees. They are given in Figure 9 and Figure 10. A new R-node
is generated only by the templates P8, Q4, and Q6. The displayed children
are optional, as long as the child sequence of the resulting R-node starts and

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 74

ends with pertinent children and has at least one empty child. Obviously, in
these cases it is impossible to apply any of the standard templates, i. e., the
graph is no more level planar. An R-node is created only when needed, i. e.,
if newly encountered edges transfer a represented biconnected component from
level planar into a ring. By Lemma 9 templates P8, Q4, and Q6 may only be
applied to the root of a PQR-tree. This is different from the restriction that
some PQ-tree templates may only be applied to the pertinent root.

The meet level between two children of an R-node which are direct siblings
or are both endmost is defined and maintained analogously to the meet levels
between children of a Q-node, cf. p. 61. In order to know what fits below a ring
component we define the following:

Definition 4 For an R-node X with children X1, X2, . . .Xt let

minML = min{ML(Xi,Xi+1) | 1 ≤ i ≤ t,Xt+1 = X1 }.

In analogy to the templates Q0–Q3 and Q6 it is necessary to provide the
new templates R0–R4 from Figure 10 to treat patterns with an R-node as root.
Before an R-template can be applied it may be necessary to rotate the R-node.
R0, R2, R3, and R4 are the straightforward transformations of Q0, Q2, Q3, and
Q6, respectively. For technical reasons we introduce a pseudo Q-node X ′ in R1
as a parent of all full children. Its R-parent preserves the information that the
PQR-tree represents a ring component and allows the computation of a value
minML in order to know what fits below this ring component. The single meet
level at the root is set to ML(X ′,X ′) = minML.

In P8 and Q6 a Q-node may be boundary partial, i. e., it may have pertinent
children at the boundaries, enclosing some empty children in the middle. In
radial level planar graphs this can occur if the root of the PQR-tree is already
an R-node or becomes an R-node during the current reduction step and thus
if a rotation is possible thereafter, see Figure 11. Then the front and the back
can be connected by cut edges. Of course, every child of every ancestor of the
boundary partial Q-node Z which is not on the path from Z to the root must
be full. All pertinent children become children of the R-node and can be made
consecutive by a rotation. If no template matches for a boundary partial Q-
node during REDUCE, the graph is not radial level planar because its PQR-tree
contains non-consecutive pertinent nodes. Observe that the templates prohibit
that a boundary partial Q-node is created at the pertinent root because this
always results in a non consecutive pertinent sequence, except in one special
case: Because of R1, an R-root is the only internal node which may have a
single child in a valid PQR-tree. If this single child later becomes boundary
partial and would be the pertinent root during REDUCE, we must explicitly
set the pertinent root to its father R-node to allow the application of R4 and a
rotation thereafter.

For the boundary partial Q-nodes we must provide the additional templates
P7–P9 and Q5–Q7. P7 is the straightforward transformation of P6 if P6 is not
applied to the pertinent root. The full children are grouped by a new P-node
which is inserted into the Q-node. It is admissible to place it at either boundary

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 75

not root
−−−−−−−−−−−→
not pertinent root

(a) Template P7.

root
−−→

(b) Template P8.

not root
−−−−−−−−−−−→
not pertinent root

(c) Template P9.

root
−−→

(d) Template Q4.

not root
−−−−−−−−−−−→
not pertinent root

(e) Template Q5.

root
−−→

(f) Template Q6.

not root
−−−−−−−−−−−→
not pertinent root

(g) Template Q7.

Figure 9: Templates P7–P9 and Q4–Q7 for radial level planarity testing. The
grey shading indicates pertinent subtrees.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 76

root
−−→

(a) Template R0.

root
−−→

(b) Template R1.

root
−−→

(c) Template R2.

root
−−→

(d) Template R3.

root
−−→

(e) Template R4.

Figure 10: Templates R0–R4 for radial level planarity testing.

Figure 11: Iterative merges of boundary partial Q-nodes.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 77

of the Q-node. The only difference between these two positions is whether or not
the edges represented by the descendant leaves later become cut edges. This
holds accordingly for the new P-node created in P8 or P9. P8 can only be
applied to the root, otherwise P9 is applied. Template Q5 is basically the same
as Q4, but it treats non-roots. Q4 and Q5 are the inversion of Q3. Templates
Q6 and Q7 are used for Q-nodes with only full children except for one boundary
partial child. The former is used for the root and the latter for a non-root. Now
we are ready to establish another important property of R-nodes.

Lemma 10 If an R-node is created, it is preserved until its host PQR-tree is
deleted.

Proof: There is no template which destroys or replaces an R-node. Further-
more, R1 ensures that an R-node never becomes full, which means that it is
never replaced by an application of REPLACE. 2

4.3 Merge Operations on PQR-Trees

Since radial level planarity works on graphs which are not necessarily hierar-
chies, merges of PQR-trees are needed by the same reason as for PQ-trees. If
there is no R-node, the merge conditions for PQR-trees are the same as for
PQ-trees described in Section 2.2. Because of Lemma 8 merge condition E can-
not be applied if any of the trees has an R-root. As a consequence a merge
operation may fail in contrast to the non-radial case, where condition E always
is admissible if no other condition applies. For PQR-trees with an R-node as
its root we have to provide two additional merge conditions. If the root of T v

e

is an R-node then the merge operation fails and the input graph is rejected as
radial level non-planar, see proof of Lemma 9. For an R-root X of the host
PQR-tree T v

1 , condition B and C collapse to the new condition CR. This is
because R-nodes can be rotated such that the merge can be done on its interior
children. Similarly, if X is the root of the pattern of condition D and X is an
R-node we obtain DR.

Merge Condition CR The root of T v
e is not an R-node. The node X is

an R-node with ordered children X1, X2, . . . , Xt, X ′ = Xi, 1 < i < t, and
ML(Xi−1,Xi) < LL(T v

e) and ML(Xi,Xi+1) < LL(T v
e). Then replace X ′ with a

new Q-node Y with X ′ and T v
e as children.

v

T
e

v

v

X

X
i 1+

X
t

X
0

T
1

v

X
1

X
i 1-

→

v

Y

v

X

X
i 1+

X
tX

0

T
1

v

X
1

X
i 1-

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 78

Merge Condition DR The root of T v
e is not an R-node. The node X is an

R-node with ordered children X1, X2, . . . , Xt, X ′ = Xi, 1 < i < t, and

ML(Xi−1,Xi) < LL(T v
e) ≤ ML(Xi,Xi+1).

Then attach T v
e as a child of X between Xi−1 and Xi. If

ML(Xi,Xi+1) < LL(T v
e) ≤ ML(Xi−1,Xi)

then attach T v
e as a child of X between Xi and Xi+1.

v

T
e

v

v

X

X
i 1+

X
t

X
0

T
1

v

X
1

X
i 1-

→

v

v

X

X
i 1+

X
t

X
0

T
1

v

X
1

X
i 1-

Merge Condition E The node X ′ is the root of T v
1 . X ′ and the root of T v

e

are not R-nodes. Reconstruct T v
1 by inserting a new Q-node Y as the new root

with X ′ and T v
e as children.

v

T
e

v

v

T
1

v

X
0 →

vv

Y

X
0

T
1

v

4.4 Nesting of Processed Non-Rings

In level planar graphs separate components can always be placed next to each
other without violating planarity. This is not necessarily true for radial level
planar graphs. If a component of the input graph G contains a ring, it must
be checked that each other component detected so far fits into an inner face
of the ring or into its outer face. First we consider the case that the other
components do not contain a ring. For the efficient execution of the additional
checks the algorithm maintains the lowest level minLL where an insertion of
such a component is necessary.

Definition 5 A completely processed PQR-tree is a PQR-tree representing a
component of the graph not having any vertices on the current or on higher
levels. minLL = min({LL(T) | T is a completely processed PQR-tree without
an R-root }∪{∞}). If there is no completely processed tree T then minLL =∞.

The detection of a processed PQR-tree T works as follows: After every call
of REPLACE-SINGLE we check whether T consists of a single leaf (or an R-
node with one leaf) and whether the vertex represented by this leaf is a sink of

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 79

the graph. As soon as a PQR-tree T is classified as completely processed after
REPLACE-SINGLE, minLL is updated by min{minLL,LL(T)}. All processed
PQR-trees are discarded as in the JLM testing algorithm. It suffices to check
whether the component C of the completely processed PQR-tree starting at
the lowest level fits into an internal face. For all other processed (non-ring)
components there is enough space to embed them in the same face as C. Inner
faces are always closed by a call of REPLACE-SINGLE for a vertex v. If there
is a processed PQR-tree without an R-root, i. e., if minLL <∞, we check if the
newly created inner face starting at the lowest level can include C. Here we
use the same mechanism as JLM do for v-singular forms and compare minML
with the new PML/QML value, see p. 61. If minLL > PML or minLL > QML,
we set minLL = ∞. Otherwise, we need not care whether another processed
component smaller than C and whose PQR-tree has already been discarded can
be nested inside a face without violating planarity. These will fit later when a
face for C is found. If no such face can be found, the graph is not radial level
planar. Recall that a processed PQR-tree with an R-root cannot be included in
this way. Their nesting is described in the next section.

4.5 Nesting of Processed Rings

Our algorithm maintains the invariant that at any time while testing a radial
level graph there is at most one PQR-tree TR with an R-root. TR may be
processed. A link vertex v denotes the vertex for which the reduction of all
leaves labelled with v makes a ring out of the component represented by the
PQR-tree. At the start of the algorithm TR is undefined and the invariant is
obviously true. In the further process it is maintained as follows: If the algorithm
detects a ring for the very first time, TR is defined and remains defined until
the end of the algorithm, although the tree for TR may change. If another
PQR-tree T gets an R-root by the application of template P8, Q4 or Q6 during
the reduction of a link vertex v, we proceed as described by Algorithm 7.

Algorithm 7: TREAT-NEW-RING

Input: The PQR-tree T of a newly encountered ring, the link vertex v,
TR, and minLL

Output: A boolean value indicating whether radial level planarity is
preserved

if TR 6= NULL then

if TR is not processed and TR is not v-singular then return false

minML← min{ML between the children of the root of TR}
if minML ≥ LL(T) or minML ≥ minLL then return false

delete TR

end

TR ← T

return true

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 80

If there is a PQR-tree TR with an R-node as root, it must be either com-
pletely processed or v-singular. Otherwise, G is not radial level planar as we
have seen in Section 4.3. The algorithm checks whether minML is small enough
for T to fit below TR. Moreover, the tree with the smallest low indexed level
minLL and thus all other trees must fit between T and TR. Recall that before
the nesting TR must be rotated and squeezed such that all its jags are embed-
ded into the space above v and that the indentation of TR with the minML
meet level encloses all inner jags of T . See Figure 12 for an illustration. The
rotation of TR is not done explicitly because TR is discarded anyway.1 If any
of the checks fails then by Lemma 8 G is not radial level planar. Finally TR is
updated. The algorithm is constructed to preserve the following invariant:

Lemma 11 At any time while testing a radial level graph, the collection of trees
T contains at most one PQR-tree with an R-node as its root.

4.6 Completion

Finally, if there is no PQR-tree TR representing a ring graph, the graph is
level planar. Otherwise, if no other trees have occurred after TR has been
detected, the graph is radial level planar. This is the case if minLL = ∞. If
minLL <∞ it remains to check whether the other PQR-trees fit below TR, i. e.,
minML < minLL. Otherwise, G is not radial level planar.

4.7 Correctness

For the correctness of the algorithm every computed embedding of a ring must
be level optimal, and this property is granted by our algorithm.

Lemma 12 Our algorithm for testing radial level planarity induces a level op-
timal embedding for every ring.

Proof: Let R be a ring of the given graph. As long as the corresponding PQR-
tree does not contain an R-node, the centre of the concentric levels lies in the
outer face. Only the templates P8, Q4, and Q6 introduce a new R-node which
closes the centre face. This does not cover the case shown in Figure 13, where
two nested rings share a common vertex on a lower level than the link vertex of
the outer ring. Then the centre face of the outer ring is closed by the application
of template R4.

As these four templates are only applied if no other template matches, there
is no admissible permutation which allows to close the centre face on a higher
level. Hence, the centre face ends on level βR. Note that inserting v-singular
forms into the centre face of R does not influence βR.

Each PQR-tree representing a ring R has an R-node as its root. At any
time during the application of the algorithm the indentations of the outer face

1When computing an embedding this has already be done by an earlier application of the
embedding variant of template R1 as we will see later in Section 5.2.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 81

T
R

T

v

T
0

T
00

(a) T R is completely processed.

T
R

T

v

T
0

T
00

(b) T R is v-singular.

Figure 12: Schematic nesting of rings. T ′ and T ′′ correspond to two other
completely processed components.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 82

1

2

3
4

4

12

3

5 6

7

8

(a) Vertex 4 links two rings.

78 8

(b) Before closing the outer
ring at link vertex 8.

Figure 13: Linked and nested rings.

are represented by the ML-values between two siblings. The meet levels stored
between a node and its siblings are always less or equal to those between its
children. Thus the least values are stored between children of the root and
minML represents the highest indentation of the outer border of R, i. e., the
border of the outer face of R in the embedding. The value of minML can only
change if an inner face is closed by REPLACE-SINGLE. Then there may be
several faces which can be closed due to the freedom of rotation. Which one
is taken only depends on the templates applied in REDUCE. Only template
R1 has multiple options. Since R1 always preserves the minimum meet level as
shown in Section 4.2, it is guaranteed that the highest possible indentation is
preserved whenever this is possible. Thus the outer radius γR = minML is level
optimal in the induced embedding. 2

Lemma 13 The REDUCE operation, extended by the new templates from Fig-
ure 9 and Figure 10, correctly computes the new set of admissible permutations
for radial level planarity.

Proof: We follow the corresponding arguments for PQ-trees in [5, p. 348f]. It
must be shown that no template violates radial level planarity. This is obvious
because the templates are constructed exactly that way. Further, it must be
shown that any radial level planar graph can be processed successfully, i. e.,
no further templates are necessary. This is true because in all cases where no
template can be applied, the graph is not radial level planar. This is shown
easily by considering all possible constellations of node types and the order of
empty, full, and (boundary) partial children. 2

In analogy to Jünger et al. [24–26,28] this implies our first main theorem:

Theorem 1 There is an O(|V |) time algorithm for testing radial k-level pla-
narity.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 83

5 Radial Level Planar Embedding

Algorithm 6 describes the algorithm of Jünger et al. [24, 25, 28] for computing
level planar embeddings of level planar graphs. This algorithm can be extended
to compute radial level planar embeddings of radial level planar graphs. In
addition to an ordering of the vertices our algorithm determines clockwise and
counterclockwise cut edges. We extend the upward embedding algorithm of
Chiba et al. [9] to work with PQR-trees instead of PQ-trees and present a
new algorithm for generating a radial level planar embedding from the upward
embedding.

5.1 Meet Levels between Ignored Siblings

When computing an embedding, PQ-trees can contain ignored nodes, see Sec-
tion 2.3. Since we use the same strategy for computing radial embeddings, we
have to treat ignored nodes. This is particularly important when minML is
computed because we have to consider ML-values between any pair of adjacent
children of the R-node. This includes ignored children. Therefore, we have to
ensure that the ML-values of ignored nodes are computed correctly. For exam-
ple, the outer ML-values have to be initialised when a Q-node with outermost
ignored children is inserted into another one. This is straightforward and can
be done in constant time.

5.2 Embedding the Edges

We not only have to compute a vertex ordering on each level j but also the edge
routing. It is not necessary to sort the adjacent edges of each vertex as it has
been done in [9], but it suffices to determine cut edges. Cut edges are detected
by the st-embedding creation step described in Section 5.4 and not during the
augmentation phase.

Initially there are no edges marked as cut edges. They are recognised as
follows: For an R-node we introduce a new child denoted by ray indicator and
labelled with $ which marks where the ray splits the children. Like the sink
indicators the ray indicator is ignored throughout the algorithm and it always
remains a child of the R-node. It is created with every R-node by modified
templates P8, Q4, and Q6, see Figure 14.

R1 has to be modified, too. Recall that R1 creates a pseudo Q-node X ′.
Before this is done the R-node is rotated such that the two siblings with minML
in between become the end vertices of X ′. Otherwise, level optimality can get
lost. See Figure 15 for an illustration.

The ray indicator $ may divide the children of X ′ into two parts. Thus before
X ′ is created it is necessary to drag one part over $ because it must remain a
child of the R-node. The leaves of all pertinent subtrees that are dragged over
the ray indicator represent cut edges. They can be computed by DFS without
violating the O(|V |) time bound since REPLACE removes the subtrees from
the PQR-tree after each drag operation. Accordingly, if the ray indicator in

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 84

root
−−→ $

(a) Template R1.

root
−−→ $

(b) Template P8.

root
−−→

$

(c) Template Q4.

root
−−→

$

(d) Template Q6.

Figure 14: Radial level planarity with level embedding templates.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 85

1

2

3
4

1

2

3

5 6

7

5

4

(a) Not level optimal.

1

2

3
4

1

2

3

5 6

7

5

4

(b) Level optimal.

7

5
6

$

ML=2

ML=3

7

(c) Initial PQR-
tree on level 4.

56

$

ML=2

ML=3

7 7

(d) After rota-
tion.

7

56

7

ML=2

ML=3

$X
0

(e) Final PQR-
tree.

Figure 15: Preserving level optimality.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 86

2

1

0

1

2

3

3

4

(a) The input graph.

3 44

1 2

(b) The PQR-tree
before Q4.

$ 3 44

1
2

(c) Figure 16(b) after
REDUCE.

$ 3 44

2
1

(d) (1, 4) is dragged

over $.

Figure 16: Detection of a cut edge while reducing the leaves of vertex 4.

REPLACE lies within the pertinent sequence, one part of the pertinent sequence
is dragged over the ray indicator before the pertinent sequence is replaced. For
an example consider the graph shown in Figure 16(a). Figure 16(b) shows its
corresponding PQR-tree before the reduction of all leaves with label 4, whereas
Figure 16(c) shows the resulting PQR-tree after the reduction by template Q4.
As shown in Figure 16(d) the leaf representing the edge (1, 4) is dragged over $
in REPLACE and thus the edge (1, 4) becomes a cut edge.

5.3 Augmentation to an st-Graph

The processed PQR-trees from Section 4 are now called ignored PQR-trees be-
cause they consist of ignored nodes only, cf. Section 2.3. However, the LL-value
of the highest ignored PQR-tree minLL is not sufficient here. We also must
store the ignored PQR-trees, because their sinks must later be augmented with
edges if a ring is closed by template P8, Q4, or Q6. Then all sinks are connected
to the link vertex w on which REDUCE was called and which closes the ring.
The embedding of ignored components within a newly encountered ring never
introduces crossings because φ(w) > φ(u) for each ignored sink u. Further, it
can be the case that connecting to a vertex v is necessary if a face is closed by
REPLACE-SINGLE for v. Hence, we maintain a collection T * which stores all
ignored PQR-trees in addition to the active collection T .

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 87

When an R-node is created, an existing PQR-tree with an R-root is nested
into the centre face. This includes an ignored PQR-tree with an R-root. Only
a single PQR-tree TR is left. In analogy to Lemma 11, this leads directly to the
following property:

Lemma 14 T ∪T *contains at most one R-rooted PQR-tree TR.

If a vertex v closes a face, it does not suffice to test whether the highest PQR-
tree fits into this face after REPLACE-SINGLE. If it fits, additionally all sinks
in T * are connected to v and T * is emptied. Similar to the radial level planarity
test, if there exists an ignored R-rooted PQR-tree TR, this step is omitted for
a face different from the centre face. Rings cannot be embedded within faces
not containing the centre. The other PQR-trees in T * are embedded later in
the same face as TR. If they do not fit in this face, the graph is not radial level
planar because previous tests have shown that they do not fit in an inner face
of the ring represented by TR, too.

The tests whether minLL and the LL-value of a newly detected ring are
greater than the minML-value of an enclosed ignored ring can be omitted as
an optimisation. These checks are done in the bottom up phase with the single
hierarchy rooted at t. However, the sinks have to be connected to the link
vertex.

If a PQR-tree contains ignored nodes, the templates P8, Q4, and Q6 can be
applied to nodes other than the root of a PQR-tree. There may be a path from
the PQ-node X to the root which is the only non-ignored path from the root
downwards, i. e., all predecessors of X have only one non-ignored child. Then all
vertices represented by nodes that are not descendants of X can be embedded
within the ring represented by the new R-root. Therefore, these nodes are
removed and the corresponding sinks are connected to the link vertex. The
O(|V |) time bound is preserved. If the test on the above situation fails either
the input graph is not radial level planar and the algorithm rejects or there is
a similar situation to the one shown in Figure 11 and other templates fit. This
case can be checked in O(1) time since there is no node chain in a PQR-tree and
thus the parent Q-node of X has at least one other non-ignored child. If the test
does not fail, the traversed nodes are removed. Hence, the total computation
time remains linear.

5.4 Computation of an st-Embedding

To compute an st-embedding Est of the graph Gst (see Algorithm 6) the algo-
rithm of Chiba et al. [9] is used. It is based on the vertex addition method
of [17, 29] and needs an st-graph. But in our case Gst has no st-edge (s, t).
If G is a ring graph, s and t are not in the same face of any planar level em-
bedding El of G, i. e., s does not lie in the outer face as t does, cf. Lemma 4.
Therefore, the introduction of a new edge (s, t) as in the JLM algorithm is not
possible since it may destroy radial level planarity and the st-embedding al-
gorithm would fail. Thus we omit introducing the edge (s, t) and obtain only

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 88

an induced st-numbering by numbering the vertices level by level in ascending
order. After augmentation each vertex except s and t has at least one incoming
and at least one outgoing edge. There are no other sources than s and no other
sinks than t. Without the st-edge, Gst may be not biconnected.

If an embedding is computed by the standard vertex addition method [9,17,
29], the edge (s, t) is similar to the ray in the radial level planarity test. The
st-edge is real, however, and therefore no other edge is allowed to cross it. Thus
cyclic reductions, i. e., cut edges, are not allowed and need not be considered.
Without (s, t) cyclic reductions are admissible. We adopt our ideas from extend-
ing the level planarity test to the radial case. The standard planar embedding
algorithm is updated with the PQR-tree data structure to realise cyclic reduc-
tions. Again, we omit ENTIRE-EMBED of Chiba’s algorithm for computing an
st-embedding Est from the upward st-embedding Eu, cf. Section 2.3. Here the
reason is both efficiency and correctness. In the radial case the upward embed-
ding Eu can be seen as an inward embedding. In our approach it is possible to
route edges around s. The routing around t is not allowed because we consider
only monotone level planar graphs. Figure 17(b) without the dashed st-edge is
a radial level planar drawing of the graph shown in Figure 17(a). If cut edges
exist, Chiba’s DFS may provide an invalid edge ordering around each vertex.
The adjacency lists of vertices 0 and 2 in Figure 17(d) are incorrect, while in Eu
the orderings of the incoming edges are correct, see Figure 17(c). Thus, we use
Eu instead of Est to compute a radial level planar embedding El in Section 5.5.

The procedure UPWARD-EMBED of [9, p. 67f] relies on the fact that the
leaves which are removed from the PQR-tree by REPLACE for storing the
represented edges in Eu are in an admissible order except for reversion. Possible
subsequent reversions of a parent Q-node are handled by direction indicators.
Reversions of a parent R-node X are accomplished accordingly. However, if
the ray indicator occurs within the pertinent sequence of X, we have to drag a
part of the sequence over it. This is done before the removal of the pertinent
sequence. Later in the algorithm there is the possibility of a rotation of X and
thus of an implicit rotation of its children. However, this only means a rotation
of the whole graph including the ray. Hence, the ordering of the stored sequence
remains valid. If an R-node has only pertinent children then it is admissible
to move the ray indicator arbitrarily, leading to different cut edges and thus
to different embeddings. This is not significant because we are interested in a
single admissible embedding. Thus analogously to UPWARD-EMBED of Chiba
et al. we obtain a valid inward embedding.

5.5 Computation of a Radial Level Embedding

In this section we assume that in the upward embedding Eu the incoming edges
of every vertex are sorted in clockwise order. Before we present our algorithm
for computing a radial level embedding El we establish further properties.

Lemma 15 Let Gst = (Vst, Est) be the augmented st-graph. Then every vertex
v ∈ Vst − {s} has at least one incoming non-cut edge.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 89

0

1 2

4

5

3

1

2

3

4

s

t

(a) A planar
graph.

0

1 2

34

5

1

2

3

4

s

t

(b) A planar draw-
ing.

0

1

2

3

4

5

0

0

1

1

2

2

24 3

(c) Eu.

0

1

2

3

4

5

0

0

1

1

2

2

24 3

1 2

3 4

5 3 4

5

5

(d) Est.

Figure 17: Embedding an edge around s without the (dashed) st-edge. The
numbers in the vertices not only show their label but also represent their induced
st-numbers.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 90

s

v

v
1

v
2

e
1 e

2

e
c

w

Figure 18: No cut edge can be between two non-cut edges.

Proof: Gst is an induced st-graph without an st-edge. Thus every vertex
v ∈ Vst − {s} has at least one incoming edge. An edge is only marked as a
cut edge in REPLACE or if in template R1 the ray indicator lies within the
pertinent sequence. In both cases there are PQ-leaves representing edges on
both sides of the ray indicator. They must be placed on the same side of the
ray indicator. Thus the edges which are not dragged over $ are non-cut edges.
If $ already is at the beginning or at the end of the pertinent sequence, there
are no cut edges. 2

Corollary 1 To any vertex v ∈ Gst there exists a path from s not containing a
cut edge.

Lemma 16 In any upward embedding Eu the ordered adjacency list of a vertex
v never contains a cut edge between two non-cut edges.

Proof: Assume that v has adjacent incoming edges in the ordering e1, ec, e2,
where e1 and e2 are non-cut edges and ec is a cut edge, see Figure 18. Let v1 be
the source vertex of e1 and v2 the source vertex of e2. Then v1 6= v2. Thus there
exist two paths p1 and p2 from s to v1 and from s to v2, respectively, which
according to Corollary 1 differ in at least one edge. The cut edge ec violates
planarity by crossing the boundaries of the face between p1 and p2, which is a
contradiction. 2

This leads to two different types of cut edges according to their position in
the adjacency list. We call them clockwise or counterclockwise according to the
implicit direction from lower to higher levels.

Definition 6 A cut edge is called clockwise with respect to Eu if it occurs at
the right end of the incoming adjacency list of its target vertex. Otherwise, it is
called counterclockwise.

Lemma 17 All cut edges of a radial level planar embedding that end on the
same level have the same direction (clockwise or counterclockwise) and the same
target vertex.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 91

s

(a)

s

(b)

Figure 19: In a radial level planar graph all cut edges ending on the same level
have the same direction and the same target vertex.

Proof: First we show that all cut edges with their target vertex on the same
level have the same direction. Assume two cut edges with different directions
ending on the same level. Their target vertices need not be different. The
obtained crossing, see Figure 19(a) for an illustration, contradicts radial level
planarity. This crossing cannot be avoided because there are paths from s to
the source vertices of the cut edges according to Corollary 1.

It remains to show that there is at most one vertex with incoming cut edges
on a level. Assume a level with two vertices which both have an incoming
cut edge. We have already shown that they have the same direction. Then
the inner cut edge crosses a path from s to the target of the other cut edge, see
Figure 19(b) for an illustration. Such a path always exists because of Corollary 1.
This contradicts radial level planarity. 2

Because of the above lemmata we introduce Algorithm 8, CONSTRUCT-
LEVEL-EMBED. El[j] denotes the ordered vertex list of the radial level j. The
algorithm is a sequence of ordered backward DFS traversals in Eu which use no
cut edges. The first of these traversals starts at the sink vertex t and inserts
every visited vertex v at the right end of El[φ(v)]. The part of the graph visited
in this first step is called trunk, see Figure 20. Source vertices of discovered
cut edges are placed into a queue together with the information on which side
of the trunk they have to be placed later. It is important that these vertices
are inserted into the queue in the correct order, from right to left for incoming
clockwise cut edges and from left to right for incoming counterclockwise cut
edges. The subsequent DFS traversals start at a vertex from the queue and
insert visited vertices at the respective side of El. Source vertices of newly
detected cut edges are again inserted into the queue. The algorithm terminates
when the queue is empty and thus all vertices have been visited. For proving
the correctness of the algorithm we introduce another lemma.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 92

Algorithm 8: CONSTRUCT-LEVEL-EMBED

Input: The upward embedding Eu and the st-graph Gst = (Vst, Est)
Output: A level embedding El

procedure DFS(v, dir)
if visited[v] = false then

visited[v]← true

if dir = left then insert v at the left end of El[φ(v)]
else insert v at the right end of El[φ(v)]

foreach incoming non-cut edge e of v scanned in direction dir do
DFS(source(e), dir)

end

if v has incoming clockwise cut edges then
foreach incoming cut edge e of v scanned from right to left do

insert(Q, source(e), left)
else

foreach incoming cut edge e of v scanned from left to right do

insert(Q, source(e), right)
end

end

end

foreach v ∈ Vst do visited[v]← false

Queue Q // stores pairs
insert(Q, t, right)
while Q not empty do DFS(delete first(Q))

return El

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 93

s

t

1

2

3

4

5

trunk

Figure 20: Successive and ordered attachments of faces to the sides of the trunk.

Lemma 18 Let G be a level graph with a single sink assuming edge directions
from lower to higher levels. Then an upward embedding of G induces a unique
level embedding.

Proof: Assume two different level embeddings of G. Then there are two vertices
u and v on the same level whose relative positions differ in the two embeddings.
From both vertices there exists a path to the sink. Let w be the first common
vertex on these paths and let u′ and v′ be the direct predecessors on the respec-
tive paths, see Figure 21. Since the paths from u to u′ and from v to v′ are
disjoint and do not cross, the edges (u′, w) and (v′, w) have different relative
positions in the incoming adjacency list of w and thus contradict the common
upward embedding. 2

Theorem 2 Algorithm 8 constructs a valid radial level planar embedding of the
given upward embedding Eu in O(|V |) time.

Proof: Since the algorithms performs DFS only with different parts of the
graph one after the other, the O(|V |) running time is obvious. To see the
correctness the algorithm starts at t and first traverses the trunk. This is the
same mechanism as in Algorithm 6. A branch is a subgraph that is traversed
with a single invocation of DFS. Since each branch is level planar and meets the
requirements of Lemma 18, there is a unique level embedding for it. Because
the side of the trunk on which the branches are placed is determined by the cut
edges that led to them, it only remains to be shown that they are attached in
the correct order. This ensures the processing order of the cut edges, which are

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 94

u

w

v

t

u
0

v
0

Figure 21: An upward embedding induces an unique level embedding.

attached on the left side of the trunk from right to the left, on the right side of
the trunk from left to right, and in each case from bottom to the top. 2

6 Conclusion

We have presented new linear time algorithms for testing radial level planarity
and computing radial level planar embeddings. They can easily be extended to
circle planarity testing and embedding [2], where edges having both vertices on
the same level are allowed.

Further investigations are required to expand the test algorithms for level
planarity for detecting the so called minimum level non-planar subgraph patterns
(MLNP-patterns) if the tested graph is level non-planar. MLNP-patterns for
level graphs are characterised in [19] and are the counterparts of the Kuratowski
Graphs K3,3 and K5 for graph planarity which can efficiently be computed
[27, 30, 35]. Similar patterns for the radial case are desirable, see [1] for first
steps in that direction. As already mentioned in the conclusion of [28, p. 211] the
detection of MLNP-patterns can also be used to verify the results of a (radial)
level planarity test. Since such a test is a non-trivial algorithm and thus it is
not unlikely that an implementation is faulty, it is desirable to not only prove
planarity by an embedding or by a drawing but also to show non-planarity on
the basis of MLNP-patterns.

Another interesting topic is the generalisation to non-monotonic edges while
the levels of the vertices remain fixed. How can a graph be tested and embedded
efficiently for non-monotone variations of (radial) level planarity?

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 95

References

[1] C. Bachmaier. Circle Planarity of Level Graphs. Dissertation, University
of Passau, 2004.

[2] C. Bachmaier, F. J. Brandenburg, and M. Forster. Track planarity test-
ing and embedding. In P. Van Emde Boas, J. Pokorný, M. Bieliková, and
J. Štuller, editors, Proc. Software Seminar: Theory and Practice of Infor-
matics, SOFSEM 2004, volume 2, pages 9–17. MatFyzPres, 2004.

[3] C. Bachmaier, F. Fischer, and M. Forster. Radial coordinate assignment
for level graphs. In L. Wang, editor, Proc. Computing and Combinatorics,
COCOON 2005, volume 3595 of LNCS, pages 401–410. Springer, 2005.

[4] C. Bachmaier and M. Raitner. Improved symmetric lists. Technical Report
MIP-0409, University of Passau, October 2004.

[5] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property,
interval graphs, and graph planarity using PQ-tree algorithms. Journal of
Computer and System Sciences, 13:335–379, 1976.

[6] U. Brandes, P. Kenis, and D. Wagner. Centrality in policy network draw-
ings. In J. Kratochv́ıl, editor, Proc. Graph Drawing 1999, volume 1731 of
LNCS, pages 250–258. Springer, 1999.

[7] U. Brandes, P. Kenis, and D. Wagner. Communicating centrality in pol-
icy network drawings. IEEE Transactions on Visualization and Computer
Graphics, 9(2):241–253, 2003.

[8] M. Chandramouli and A. A. Diwan. Upward numbering testing for tricon-
nected graphs. In F. J. Brandenburg, editor, Proc. Graph Drawing 1995,
volume 1027 of LNCS, pages 140–151. Springer, 1996.

[9] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for
embedding planar graphs using PQ-trees. Journal of Computer and System
Sciences, 30:54–76, 1985.

[10] H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting Fáry embed-
dings of planar graphs. In Proc. ACM Symposium on Theory of Computing,
STOC 1988, pages 426–433. ACM Press, 1988.

[11] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on
a grid. Combinatorica, 10:41–51, 1990.

[12] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall, 1999.

[13] G. Di Battista and E. Nardelli. Hierarchies and planarity theory. IEEE
Transactions on Systems, Man, and Cybernetics, 18(6):1035–1046, 1988.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 96

[14] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal
on Computing, 25(5):956–997, 1996.

[15] V. Dujmović, M. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin,
N. Nishimura, P. Ragde, F. Rosamond, M. Suderman, S. Whitesides, and
D. R. Wood. On the parameterized complexity of layered graph drawing. In
F. Meyer auf der Heide, editor, Proc. European Symposium on Algorithms
2001, volume 2161 of LNCS, pages 488–499. Springer, 2001.

[16] P. Eades. Drawing free trees. Bulletin of the Institute of Combinatorics
and its Applications, 5:10–36, 1992.

[17] S. Even. Algorithms, chapter 7, pages 148–191. Computer Science Press,
1979.

[18] P. Healy and A. Kuusik. The vertex-exchange graph: A new concept for
multi-level crossing minimisation. In J. Kratochv́ıl, editor, Proc. Graph
Drawing 1999, volume 1731 of LNCS, pages 205–216. Springer, 1999.

[19] P. Healy, A. Kuusik, and S. Leipert. Characterization of level non-planar
graphs by minimal patterns. In D.-Z. Du, P. Eades, V. Estivill-Castro,
X. Lin, and A. Sharma, editors, Proc. Computing and Combinatorics, CO-
COON 2000, volume 1858 of LNCS, pages 74–84. Springer, 2000.

[20] L. S. Heath and S. V. Pemmaraju. Recognizing leveled-planar dags in linear
time. In F. J. Brandenburg, editor, Proc. Graph Drawing 1995, volume 1027
of LNCS, pages 300–311. Springer, 1996.

[21] L. S. Heath and S. V. Pemmaraju. Stack and queue layouts of directed
acyclic graphs: Part II. SIAM Journal on Computing, 28(5):1588–1626,
1999.

[22] L. S. Heath and A. L. Rosenberg. Laying out graphs using queues. SIAM
Journal on Computing, 21(5):927–958, 1992.

[23] C. Hundack, P. Mutzel, I. Pouchkarev, and S. Thome. ArchE: A graph
drawing system for archeology. In G. Di Battista, editor, Proc. Graph
Drawing 1997, volume 1353 of LNCS, pages 297–302. Springer, 1998.

[24] M. Jünger and S. Leipert. Level planar embedding in linear time. In
J. Kratochv́ıl, editor, Proc. Graph Drawing 1999, volume 1731 of LNCS,
pages 72–81. Springer, 1999.

[25] M. Jünger and S. Leipert. Level planar embedding in linear time. Journal
of Graph Algorithms and Applications, 6(1):67–113, 2002.

[26] M. Jünger, S. Leipert, and P. Mutzel. Level planarity testing in linear
time. In S. H. Whitesides, editor, Proc. Graph Drawing 1998, volume 1547
of LNCS, pages 224–237. Springer, 1998.

C. Bachmaier et al., Radial Level Planarity , JGAA, 9(1) 53–97 (2005) 97

[27] A. Karaberg. Classification and detection of obstructions to planarity. Lin-
ear and Multilinear Algebra, 26:15–38, 1990.

[28] S. Leipert. Level Planarity Testing and Embedding in Linear Time. Disser-
tation, Mathematisch-Naturwissenschaftliche Fakultät der Universität zu
Köln, 1998.

[29] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing
of graphs. In P. Rosenstiehl, editor, Proc. of Theory of Graphs, Interna-
tional Symposium, Rome, pages 215–232. Gordon and Breach, 1967.

[30] K. Mehlhorn and S. Näher. LEDA, A Platform for Combinatorial and
Geometric Computing. Cambridge University Press, 1999.

[31] H. C. Purchase. Which aesthetic has the greatest effect on human under-
standing? In G. Di Battista, editor, Proc. Graph Drawing 1997, volume
1353 of LNCS, pages 248–261. Springer, 1997.

[32] B. Randerath, E. Speckenmeyer, E. Boros, P. Hammer, A. Kogan,
K. Makino, B. Simeone, and O. Cepek. A satisfiability formulation of
problems on level graphs. Rutcor Research Report RRR 40-2001, Rutgers
Center for Operations Research, Rutgers University, 2001.

[33] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding
of hierarchical system structures. IEEE Transactions on Systems, Man,
and Cybernetics, 11(2):109–125, 1981.

[34] J. D. Ullman. Computational Aspects of VLSI, chapter 3.5, pages 111–114.
Computer Science Press, 1984.

[35] S. G. Williamson. Depth-first search and Kuratowski subgraphs. Journal
of the ACM, 31(4):681–693, 1984.

