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Abstract

We carry out a detailed empirical analysis of simple heuristics and
provable algorithms for bilateral contract-satisfaction problems. Such
problems arise due to the proposed deregulation of the electric utility
industry in the USA. Given a network and a (multi)set of pairs of vertices
(contracts) with associated demands, the goal is to find the maximum
number of simultaneously satisfiable contracts. Four different algorithms
(three heuristics and a provable approximation algorithm) are considered
and their performance is studied empirically in fairly realistic settings us-
ing rigorous statistical analysis. For this purpose, we use an approximate
electrical transmission network in the state of Colorado. Our experiments
are based on the statistical technique Analysis of Variance (ANOVA), and
show that the three heuristics outperform a theoretically better algorithm.
We also test the algorithms on four types of scenarios that are likely to
occur in a deregulated marketplace. Our results show that the networks
that are adequate in a regulated marketplace might be inadequate for
satisfying all the bilateral contracts in a deregulated industry.
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1 Introduction

The U.S. electric utility industry is undergoing major structural changes in an
effort to make it more competitive [21, 17, 19, 11]. One major consequence of the
deregulation will be to decouple the controllers of the network from the power
producers, making it difficult to regulate the levels of power on the network;
consumers as well as producers will eventually be able to negotiate prices to
buy and sell electricity [18]. In practice, deregulation is complicated by the
facts that all power companies will have to share the same power network in the
short term, with the network’s capacity being just about sufficient to meet the
current demand. To overcome these problems, most U.S. states have set up an
ISO (independent system operator): a non-profit governing body to arbitrate
the use of the network. The basic questions facing ISOs are how to decide which
contracts to deny (due to capacity constraints), and who is to bear the costs
accrued when contracts are denied. Several criteria/policies have been proposed
and/or are being legislated by the states as possible guidelines for the ISO to
select a maximum-sized subset of contracts that can be cleared simultaneously
[18]. These include: (a) Minimum Flow Denied: The ISO selects the subset of
contracts that denies the least amount of proposed power flow. This proposal
favors clearing bigger contracts first. (b) First-in First-out: The contract that
comes first gets cleared first; this is the least discriminating to the contractors.
(c) Maximum Consumers Served: This clears the smallest contracts first and
favors the small buyers whose interests normally tend to go unheard.
There are three key issues in deciding policies that entail specific mecha-

nisms for selecting a subset of contracts: fairness of a given policy to producers
and consumers; the computational complexity of implementing a policy, and
how sound a given policy is from an economic standpoint. (For instance, does
the policy promote the optimal clearing price/network utilization etc.) Here we
focus on evaluating the efficacy of a given policy with regard to its computa-
tional resource requirement and network resource utilization. It is intuitively
clear that the underlying network, its capacity and topology, and the spatial
locations of the bilateral contracts on the network, will play an important role
in determining the efficacy of these policies. We do not discuss here the fair-
ness and economics aspects of these policies: these are subjects of a companion
paper. The work reported here is done as part of a simulation based analyt-
ical tool for deregulated electrical power industry being developed at the Los
Alamos National Laboratory.
We experimentally analyze several algorithms for simultaneously clearing a

maximal number of bilateral contracts. The qualitative insights obtained in this
paper can be useful to policy makers who carry the ultimate responsibility of
deploying the best clearing mechanism in the real world. The algorithms were
chosen according to provable performance, ability to serve as a proxy for some
of the above-stated policies, and computational requirement. The algorithms
are as follows; see § 3 for their specification. The ILP-Randomized rounding
(RR) algorithm has a provable performance guarantee under certain conditions.
The computational resource requirement is quite high, but the approach also
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provides us with an upper bound on any optimal solution and proves useful in
comparing the performance of the algorithms. The Largest-First Heuristic
(LF) is a proxy for the Minimum Flow Denied policy. The Smallest-First
Heuristic (SF) serves as a proxy for the Maximum Contracts Served policy.
The Random-Order Heuristic (RO) clears the contracts in the random or-
der. This algorithm was chosen as a proxy for the First-in First-out policy.
Such a policy is probably the most natural clearing mechanism and is currently
in place at many exchanges.
To compare the algorithms in a quantitative and (semi-)rigorous way, we

employ statistical tools and experimental designs. Many of the basic tools are
standard in statistics and their use is common in other fields. But to the best
of our knowledge, the use of formal statistical methods in experimental algo-
rithmics for analyzing/comparing the performance of algorithms has not been
investigated. Analysis of Variance (ANOVA) is one such technique that can help
identify which algorithms and scenarios are superior in performance. We believe
that such statistical methods should be investigated further by the experimen-
tal algorithmics community for deriving more (semi)-quantitative conclusions
when theoretical proofs are hard or not very insightful. For instance, consider a
given approximation algorithm that has a worst-case performance guarantee of
ρ. First, the algorithm may perform much better on realistic instances that are
of interest. Quantifying the special structure of such instances is often hard; this
often makes it difficult to develop further theoretical improvements on the per-
formance of the algorithm. Second, many heuristics that have poor worst-case
performance perform very well on such instances. Statistical methods such as
ANOVA can facilitate the comparison of such heuristics and provable algorithms
in settings that are of interest to the users of such algorithms.
We used a coarse representation of the Colorado electrical power network

(see § 4) to qualitatively compare the four algorithms discussed above in fairly
realistic settings. The realistic networks differ from random networks and struc-
tured networks in the following ways: (i) Realistic networks typically have a very
low average degree. In fact, in our case the average degree of the network is no
more than 3. (ii) Realistic networks are not very uniform. One typically sees
one or two large clusters (downtown and neighboring areas) and small clusters
spread out throughout. (iii) For most empirical studies with random networks,
the edge weights are chosen independently and uniformly at random from a
given interval. However, realistic networks typically have very specific kinds of
capacities since they are constructed with particular design goal.
From our preliminary analysis, it appears that although the simple heuris-

tic algorithms do not have worst-case performance guarantees, they outperform
the theoretically better randomized rounding algorithm. We tested the algo-
rithms on four carefully chosen scenarios. Each scenario was designed to test
the algorithms and the resulting solutions in a deregulated setting. The em-
pirical results show that networks that are capable of satisfying all demand in
a regulated marketplace can often be inadequate for satisfying all (or even a
acceptable fraction) of the bilateral contracts in a deregulated market. Our re-
sults also confirm intuitive observations: e.g., the number of contracts satisfied
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crucially depends on the scenario and the algorithm.
As far as we are aware, this is the first study to investigate the efficacy of

various policies for contract satisfaction in a deregulated power industry. Since
it was done in fairly realistic settings, the qualitative results obtained here have
implications for policy makers. Our results can also be applied in other settings,
such as bandwidth-trading on the Internet. See, e.g., [2]. Also, to our knowledge,
previous researchers have not considered the effect of the underlying network
on the problems; this is an important parameter especially in a free-market
scenario.
The rest of this paper is organized as follows. The problem definitions and

algorithms considered are described in Sections 2 and 3 respectively. Our
experimental setup is discussed in Section 4. Section 5 presents our experimental
results and analyzes them and Section 6 concludes the paper. In the appendix,
we discuss interesting optimization issues that arise from deregulation, and also
show problem instances on which our algorithms do not perform well.

2 Problem Definitions

We briefly define the optimization problems studied here. We are given an
undirected network (the power network) G = (V,E) with capacities ce for each
edge e and a set of source-sink node pairs (si, ti), 1 ≤ i ≤ k. Each pair (si, ti)
has: (i) an integral demand reflecting the amount of power that si agrees to
supply to ti and (ii) a negotiated cost of sending unit commodity from si to
ti. As is traditional in the power literature, we will refer to the source-sink
pairs along with the associated demands as a set of contracts. In general, a
source or sink may have multiple associated contracts. We find the following
notation convenient to describe the problems. Denote the set of nodes by N .
The contracts are defined by a relation R ⊆ (N × N × � × �) so that tuple
(v, w, α, β) ∈ R denotes a contract between source v and sink w for α units of
commodity at a cost of β per unit of the commodity. For A = (v, w, α, β) ∈ R
we denote source(A) = v, sink(A) = w, flow(A) = α and cost(A) = β.
Corresponding to the power network, we construct a digraph H = (V ∪S ∪T ∪
{s, t}, E′) with source s, sink node t, capacities u : E′ → � and costs c′ : E′ → �
as follows. For all A ∈ R, define new vertices vA and wA. Let S = {vA | A ∈ R}
and T = {wA | A ∈ R}. Each edge {x, y} from G is present in H as the two
arcs (x, y) and (y, x) that have the same capacity as {x, y} has in G, and with
cost 0. In addition, for all A = (v, w, α, β) ∈ R, we introduce: (i) arcs (vA, v)
and (w,wA) with infinite capacity and zero cost; (ii) arc (s, vA) with capacity
flow(A) = α and cost 0; and (iii) arc (wA, t) with capacity flow(A) = α and
cost equaling cost(A). By this construction, we can assume without loss of
generality that each node can participate in exactly one contract. A flow is
simply an assignment of values to the edges in a graph, where the value of an
edge is the amount of flow traveling on that edge. The value of the flow is
defined as the amount of flow coming out of s (or equivalently the amount of
flow coming in to t). A generic feasible flow f = (fx,y ≥ 0 : (x, y) ∈ E′) in
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H is any non-negative flow that: (a) respects the arc capacities, (b) has s as
the only source of flow and t as the only sink. Note that for a given A ∈ R,
in general it is not necessary that fs,vA = fwA,t. For a given contract A ∈ R,
A is said to be satisfied if the feasible flow f in H has the additional property
that for A = (v, w, α, β), fs,vA = fwA,t = α; i.e., the contractual obligation of
α units of commodity is shipped out of v and the same amount is received at
w. Given a power network G(V,E), a contract set R is feasible (or satisfied)
if there exists a feasible flow f in the digraph H that satisfies every contract
A ∈ R. Let B = supply(s) = demand(t) =

∑
A∈R flow(A).

In practice, it is typically the case that R does not form a feasible set. As
a result we have two possible alternative methods of relaxing the constraints:
(i) relax the notion of feasibility of a contract and (ii) try and find a subset
of contracts that are feasible. Combining these two alternatives we define the
following types of “relaxed feasible” subsets of R. We will concern ourselves
with only one variant here. A contract set R′ ⊆ R is a 0/1-contract satisfaction
feasible set if, ∀A = (v, w, α, β) ∈ R′, fs,vA = fwA,t = α.

Definition 2.1 Given a graph G(V,E) and a contract set R, the (0/1-Version,
Max-Feasible Flow) problem is to find a feasible flow f in H such that∑

A∈R′ f(A) is maximized where R′ forms a 0/1-contract satisfaction feasible
set of contracts. In the related (0/1-Version, Max-#Contracts) problem,
we aim to find a feasible flow f in H such that |R′| is maximized, where R′

forms a 0/1-contract satisfaction feasible set of contracts.

Though such electric flow problems have some similarities with those from
other practical situations, there are many basic differences such as reliability,
indistinguishability between the power produced by different generators, short
life-time due to inadequate storage, line effects etc. [22]. The variants of flow
problems related to power transmission studied here are intuitively harder than
traditional multi-commodity flow problems, since we cannot distinguish between
the flow “commodities” (power produced by different generators). As a result,
current solution techniques used to solve single/multi-commodity flow problems
are not directly applicable to the problems considered here.

3 Description and Discussion of Algorithms

We work on the (0/1-Version, Max-#Contracts) problem here. Let n and
m respectively denote the number of vertices and edges in the network G. In
[5], it was shown that (0/1-Version, Max-#Contracts) is NP-hard; also,
unless NP ⊆ ZPP , it cannot be approximated to within a factor of m1/2−ε for
any fixed ε > 0, in polynomial time. Thus, we need to consider good heuris-
tics/approximation algorithms. First, there are three simple heuristics. The
Smallest-First Heuristic considers the contracts in non-decreasing order of
their demands. When a contract is considered, we accept it if it can be feasi-
bly added to the current set of chosen contracts, and reject it otherwise. The
Largest-First Heuristic is the same, except that the contracts are ordered
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in non-increasing order of demands. In the Random-Order heuristic, the
contracts are considered in a random order.
We next briefly discuss an approximation algorithm of [5]. This has proven

performance only when all source vertices si are the same; however, this algo-
rithm extends naturally to the multi-source case which we work on. An integer
linear programming (ILP) formulation for the problem is considered in [5]. We
have indicator variables xi for the contract between si and ti, and variables zi,e

for each (si, ti) pair and each edge e. The intended meaning of xi is that the
total flow for (si, ti) is dixi; the meaning of zi,e is that the flow due to the con-
tract between (si, ti) on edge e is zi,e. We write the obvious flow and capacity
constraints. Crucially, we also add the valid constraint zi,e ≤ cexi for all i and
e. In the integral version of the problem, we will have xi ∈ {0, 1}, and the zi,e

as non-negative reals. We relax the condition “xi ∈ {0, 1}” to “xi ∈ [0, 1]” and
solve the resultant LP; let y∗ be the LP’s optimal objective function value. We
perform the following rounding steps using a carefully chosen parameter λ > 1.
(a) Independently for each i, set a random variable Yi to 1 with probability
xi/λ, and Yi := 0 with probability 1 − xi/λ. (b) If Yi = 1, we will choose to
satisfy (1 − ε) of (si, ti)’s contract: for all e ∈ E, set zi,e := zi,e(1 − ε)/xi. (c)
If Yi = 0, we choose to have no flow for (si, ti): i.e., we will reset all the zi,e to
0. A deterministic version of this result based on pessimistic estimators, is also
provided in [5]; see [5] for further details.

Theorem 3.1 ([5]) Given a network G and a contract set R, we can find
an approximation algorithm for (0/1-Version, Max-#Contracts) when all
source vertices are the same. Let OPT be the optimum value of the problem,
and m be the number of edges in G. Then, for any given ε > 0, we can
in polynomial time find a subset of contracts R′ with total weight Ω(OPT ·
min{(OPT/m)(1−ε)/ε, 1}) such that for all i ∈ R′, the flow is at least (1− ε)di.

4 Experimental Setup and Methodology

To test our algorithms experimentally, we used a network corresponding to a
subset of a real power network along with contracts that we generated using
different scenarios. The network we used is based on the power grid in Colorado
and was derived from data obtained from PSCo’s (Public Service Company of
Colorado) Draft Integrated Resources Plan listing of power stations and major
sub stations. The network is shown in Figure 1. We restricted our attention to
major trunks only.

Sources: The location and capacities of the sources was roughly based upon
data obtained from PSCo’s Draft Integrated Resources Plan listing of power
stations and major sub stations.

Sinks: The location and capacity of the sinks were roughly based upon the
demographics of the state of Colorado. In order to determine the location and
capacity of the sinks we used the number of households per county obtained from
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Figure 1: This shows the network with node numbered as they are referenced
in all scenarios and edge capacities labeled at values used for Scenarios 1 &
2. The placement of the nodes and edges are what is probably the final form.
The least number of edges cross and the nodes in the upper right are spread out
a little bit maintaining the general feel of the distribution while allowing easier
reading.
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the US Census bureau. By assigning counties (load) to specific sub stations (sink
nodes) the data for the sinks were derived.

The following three websites can be accessed to obtain the necessary informa-
tion:

• http://www.census.gov/population/estimates/county/co-99-1/
99C1 08.txt gives the population per county as of 1995.

• http://www.census.gov/datamap/www/08.html contains a map of Col-
orado counties.

• Finally, http://ccpg.basinelectric.com/ is the PSCo Colorado Web-
site.

Edges: The edge capacities were derived from test data obtained by running
the network through a max-flow program with the source and sink capacities
at maximum and no capacity limits placed upon the connecting edges. The
total sink capacity equaled the total source capacity. The sink capacity was
distributed to the various sink nodes in correspondence with population per-
centages assigned to each sink node. The edge capacities were then roughly
assigned and the model was rerun through the max-flow program until all edge
limits were defined. The criteria used for defining all of edge limits was that the
network must be feasible under the condition of maximum source/sink capacity.
Once the feasibility criteria was satisfied, some edge limits were set at capac-
ity, while others were set higher than capacity in order to provide flexibility in
contract development for the later problems.

Software and Data Format. DIMACS (http://dimacs.rutgers.edu) has de-
veloped a standard format for storing network data for input into existing net-
work solvers. For the network being examined the need exists to include two
directed arcs for each edge since the network is undirected. Addition of a mas-
ter source and a master sink node with edges to the individual source and sink
nodes was needed in order to conform to the format requirement of a single
source and a single sink node. The edge capacities of the edges from the master
source and sink nodes were set to be the capacities of the respective individual
source or sink node.

4.1 Creation and Description of Test Cases

All the test cases were generated from the basic model. The general approach
we used was to fix the edge capacities and generate source-sink contract combi-
nations, using the capacities and aggregate demands in the basic model as upper
bounds. To ensure that the test cases we generated corresponded to (1) difficult
problems, i.e. infeasible sets of contracts, and (2) problems that might reason-
ably arise in reality, we developed several scenarios that included an element of
randomness (described in § 4.2).
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4.2 Description of Scenarios

The current implementation is still based upon a network which should be fea-
sible only if the total source capacity is greater than the total sink capacity
and the only requirement is that the total sink capacity be satisfied regard-
less of which source provides the power. Scenarios 1, 2, 3 and 4 are based
around the network with total generating capacity 6249 MW, and reduced
sink capacities near 4400MW combined. See Figures 2–4.

1. Scenario 1: This scenario is based upon the network with a total sink
capacity (i.e. customer demand) of 4400MW. The source capacity (sup-
plier’s maximum production capacity) was reduced by a constant propor-
tion from the total generating capacity based upon population density
of Colorado counties. The source capacity of the network was reduced
until the running the Maxflow code indicated that the maximum flow
in the network to be slightly less than the demand. This reduction in
the sources total production capacity increased the chances of refusing
customers (contracts).

2. Scenario 2: For this scenario, we took the basic network and increased
the sink capacity while the source capacity remained fixed.

3. Scenario 3: For generating instances for this scenario, the edge capacities
were adjusted, reduced in most cases, to limit the network to a maximum
flow of slightly more than 4400MW given its source and sink distribution.
Here, if the load is allowed to be fulfilled from any source (as is normally
done with centralized control), the network and the edge capacities are
enough to handle a total of 4400MW. However, if we insist that a particular
source needs to serve a particular sink (as is done in bilateral contract
satisfaction), then the capacities may not be enough to handle the same
load of 4400MW.

4. Scenario 4: For this scenario, we took the network of Scenario 3 and
biased the selection of source nodes towards the lower valued source units.

4.3 Methodology

We worked with the four scenarios and ran all four algorithms for each. For the
three greedy heuristics the implementations are fairly straightforward, and we
used public-domain network flow codes. Implementing the randomized round-
ing procedure requires extra care. The pessimistic estimator approach of [5]
works with very low probabilities, and requires significant, repeated re-scaling
in practice. Thus we focus on the randomized version of the algorithm of [5];
five representative values of ε varying from .1 to .5 were chosen. We believe
that satisfying a contract partially so that a contract is assigned less than .5
of the required demand is not very realistic. For each scenario, and for each of
the 5 values of ε, the programs implementing the algorithms under inspection
produced 30 files from which the following information could be extracted:
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Figure 2: Shows the maximum capacities of the nodes and edges at the values
used in Scenario 2. The positioning of the nodes and edges have not been
changed to the same as the previous figure.
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Figure 3: Shows the same network as the maximum capacities except the edges
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associated with the edges are the flow values not the capacities. The edges with
no flow have been changed to dotted lines although one or two of the dotted
lines may look solid.
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sink capacities reduced to a total of 4400 MW. These are the basic capacities
used in the creation of Scenarios 1, 2, 3, & 4.
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1. The running time of each algorithm.

2. Total number of satisfied contracts by each algorithm.

3. The LP upper bound on the IP and thus an upper bound on the approx-
imations given by the algorithms.

4. The IP approximation and objective function value.

The number 30 was chosen to ensure that a statistically “large” sample of
each measure would be provided in order to make valid statistical inference. We
consider two parameters to measure the performance of our algorithms – (i) the
running time and (ii) the quality of the solution obtained. More attention is
given to the quality of solution measure since from a social standpoint contract
satisfaction may leave little room for finding solutions that are far from optimal.
We now describe how these measures are used to make inferences about

the qualitative performance of these algorithms with respect to one another
and independently. Since the intent is to make inferences concerning solution
quality, a measure of this sort must be derived from the data generated. To do
this, the data provided by the LP relaxation is examined. The �y∗AS� = �y∗�
provides the best-case number or upper bound on the objective function value
our algorithms can produce for a scenario. Hence, if an algorithm produces an
objective function value of �y∗AS�, it has produced an optimal solution for a
given scenario. For a given algorithm A and scenario S, let V alueAS denote
the number of contracts that are satisfied by A under S. The fraction

pAS =
V alueAS
�y∗AS�

provides a measure of the quality of the algorithm’s solution.

4.4 Experimental Objective

The objective of our experiments was to find out which, if any, of the algorithms
discussed here performs better than the others, in terms of quality of solution
and running time for different contract scenarios. The design of the experiment
was developed keeping this objective in mind. Since the performance depends
on the type of algorithm used and the contract scenario, these are our factors of
interest. As mentioned in the section 4.3, for a given ε, 30 runs were performed
for each algorithm-scenario pair. We perform two separate sets of experiments,
one for the quality of solution as measured by pA and the other for running
time. This was done because the quality of solution and running time were
independent of each other. The number of contracts satisfied do not depend
upon the length of the time it takes to run the algorithm.
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5 Results and Analysis

5.1 General Conclusions

We first present general conclusions obtained from our results and experimental
analysis. These will be elaborated on subsequently.
1. Although there exist instances where the three heuristics produce solutions
as large as Ω(n) times the optimal fractional solution, most of our tests show
that we could find integral solutions fairly close to optimal.
2. Our experiments show that different scenarios make a significant difference
in the type of solutions obtained. For example, the quality of solution obtained
using the fourth scenario is significantly worse than the first three scenarios.
The sensitivity to the scenarios poses interesting questions for infrastructure
investment. The market will have to decide the cost that needs to be paid for
expecting the necessary quality of service. It also brings forth the equity-benefit
question: namely, who should pay for the infrastructure improvements?
3. It is possible that for certain scenarios, the underlying network is incapable
of supporting even a minimum acceptable fraction of the bilateral contracts.
This observation – although fairly intuitive – provides an extremely important
message, namely, networks that were adequate to service customers in a com-
pletely regulated power market might not be adequate in deregulated markets.
This makes the question of evicting the bilateral contracts more important.
4. One expects a trade-off between the number of contracts satisfied and the
value of ε, for the randomized rounding algorithm: as ε increases, and the
demand condition is more relaxed, a higher number of contracts should get
satisfied. But our experiments show that the change in the number of contracts
satisfied for different values of ε is insignificant. Also, λ = 2 gave the best
solutions in our experiments.
5. In practical situations, the Random-Order heuristic would be the best to use
since it performs very close to the optimal in terms of quality of solution and has
very low running time. Furthermore, though the Smallest-First heuristic does
even better on many of our experiments, Random-Order is a natural proxy to
model contracts arriving in an unforeseen way. Also, since the heuristics deliver
solutions very close to the LP upper bound, we see that this LP bound is tight
and useful. To further evaluate the randomized rounding algorithm, we need to
implement its deterministic version [5], which is a non-trivial task.

5.2 Statistical Background

We use a statistical technique known as analysis of variance (ANOVA) to test
whether differences in the sample means of algorithms and scenarios reflect
differences in the means of the statistical populations that they came from or
are just sampling fluctuations. This will help us identify which algorithm and
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scenarios perform the best.1

ANOVA has the following three advantages over individual t-tests2 when the
number of groups being compared is greater than two. See [9] for more details.
In our case, we have four algorithms and four scenarios. Standard statistics
terminology for a hypothesis that we wish to test, is null hypothesis.

• It gives accurate and known type-I error probability.3

• It is more powerful i.e. if null hypothesis is false, it is more likely to be
rejected.

• It can assess the effects of two or more independent variables simultane-
ously.

5.3 Mathematical Model

Quality of Solution: We first describe the experiment for the quality of solu-
tion i.e. pAS . We use a two-factor ANOVA model since our experiment involves
two factors which are:

1. The algorithms: Ai, i = 1, 2, 3 and 4.

2. The scenario: Sj , j = 1, 2, 3 and 4.

Following classical statistics terminology, we will sometimes refer to algo-
rithms as treatments and the scenarios as blocks. We will use A to denote the
set of algorithms and S to denote the set of scenarios. For each algorithm-
scenario pair we have 30 observations (or replicates). When testing the efficacy
of the algorithms, we use 4 algorithms, each having 120 observations (30 for
each scenario) from the corresponding population. The design of experiment
used here is a fixed-effect complete randomized block. Fixed-effect because the
factors are fixed as opposed to randomly drawn from a class of algorithms or sce-
narios; the conclusions drawn from this model will hold only for these particular
algorithms and scenarios. Complete implies that the number of observations are
the same for each block. Randomized refers to the 30 replicates being drawn
randomly. We wish to test the hypothesis:

1The populations in each of the groups are assumed to be normally distributed and have
equal variances. The effect of violation of ANOVA assumptions of normality and homogeneity
of variances have been tested in the literature ([10]) and the results show:

• Non-normality has negligible consequences on type-I and II error probabilities unless
the populations are highly skewed or the sample is very small.

• When the design is balanced, i.e. the number of observations are the same for each
group, violation of homogeneity of variance assumption has negligible consequences on
the accuracy of type-I error probabilities.

2t-test checks for the significance of the difference in the means of two samples. It can
assess whether the difference in sample means is just due to sampling error or they really are
from two populations with different means.

3The probability of rejecting a null hypothesis when it is actually true.
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Is the mean quality of solution provided by different algorithms the
same, against the alternative hypothesis that some or all of these
means are unequal?

The model for randomized block design includes constants for measuring the
scenario effect (block effect), the algorithm effect (treatment effect) and a pos-
sible interaction between the scenarios and the algorithms. The appropriate
mathematical model is as follows:

Xijk = µ+ τi + βj + (τβ)ij + εijk,

where Xijk is the measurement (pAS) for the kth sample within the ith al-
gorithm and the jth scenario. τi is the algorithm effect. βj is the scenario
effect. (τβ)ij captures the interaction present between the algorithms and the
scenarios. εijk is the random error. See [8, 9] for further details on ANOVA.
We use S-Plus [15] software to run two-factor ANOVA to test the following

three different null hypotheses.

1. Are the means given by the 4 different algorithms equal? The null hy-
pothesis here is, H0 : τ1 = τ2 = τ3 = τ4.

2. Are the means given by the 4 different scenarios equal? The null hypoth-
esis here is, H0 : β1 = β2 = β3 = β4.

3. Is there any interaction between the two factors? The null hypothesis here
is, H0 : (τβ)ij = 0.

The results of two-factor ANOVA are shown in Table 1 and Table 2. In
the following discussion, we explain the meaning of each column in Table 1.
DF refers to the degrees of freedom, SS refers to the sum of squared deviations
from the mean. MS refers to the mean square error, which is the sum of squares
divided by the degrees of freedom.4

4The sum of squares for the algorithm factor can be calculated as:

SSA = nJΣi(Xi·· − X ···)2

where n is the number of replicates, J is the number of scenarios, Xi·· is the mean of algorithm
i across all scenarios and X··· is the grand mean across all algorithms and scenarios. Recall
that in our case n = 30 and J = 4 yielding a total sample size of 120.
The sum of squares for scenario factor can be calculated as:

SSS = nIΣj(X ·j· − X···)
2

where as before n is the number of replicates, I is the number of algorithms and X·j· is the
mean of scenario j across all algorithms. Again, in our case n = 30 and I = 4.
The sum of squares for algorithms and scenario interaction is:

SSAS = nΣjΣi[Xij· − (X··· + τ̂i + β̂j)]
2

Here Xij· is the mean of observations for the algorithm i scenario j pair. τ̂i and β̂j are
respectively the estimated least square values of τi and βj . The sum of squares “within”
refers to the squared difference between each observation and the mean of the scenario and
algorithm of which it is a member. It is also referred as the residual sum of squares. This can
be calculated as:

SSW = nΣjΣiΣk(Xijk − Xij·)
2
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The p-value gives the smallest level of significance at which the null hypoth-
esis can be rejected.5 The lower the p-value, the lesser the agreement between
the data and the null hypothesis. Finally the F -test is as follows. To test the
null hypothesis, i.e., whether the population means are equal, ANOVA com-
pares two estimates of σ2. The first estimate is based on the variability of each
population mean around the grand mean. The second is based on the variability
of the observations in each population around the mean of that population. If
the null hypothesis is true, the two estimates of σ2 should be essentially the
same. Otherwise, if the populations have different means, the variability of the
population mean around the grand mean will be much higher than the variabil-
ity within the population. The null hypothesis in the F -test will be accepted if
the two estimates of σ2 are almost equal.
In a two-factor fixed-effect ANOVA, three separate F -tests are performed:

two tests for the factors, and the third for the interaction term. The null
hypothesis for the first factor can be written as:

HA
0 : µ1·· = µ2·· = · · · = µj··

which is equivalent to writing: H0 : τ1 = τ2 = τ3 = τ4. The F -test is:

FA =
SSA/(I − 1)

SSW/IJ(n− 1)
and the null hypothesis for the second factor can be written as:

HS
0 : µ·1· = µ·2· = · · · = µ·j·

which is equivalent to writing: H0 : β1 = β2 = β3 = β4. The F -test is:

FS =
SSS/(J − 1)

SSW/IJ(n− 1)
and the null hypothesis for the interaction term can be written as:

HAS
0 : (τβ)ij = 0.

The F -test is:

FAS =
SSAS/(I − 1)(J − 1)

SSW/IJ(n− 1)
If this F -ratio is close to 1, the null hypothesis is true. If it is considerably

larger – implying that the variance between means is larger than the variance

The total sum of squares is

SST = SSA + SSS + SSAS + SSW

5To obtain a p-value for say FA, the algorithm effect, we would look across the row associ-
ated with 3 degree of freedom in the numerator and 464 degrees of freedom in the denominator
in the F -distribution table and find the largest value that is still less than the one obtained
experimentally. From this value, we obtain a p-value of 0 for FA.
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Source DF SS MS F -test p-value
Scenario (Block) 3 0.14 0.05 43.38 0

Algorithm (Treatment) 3 22.78 7.59 6792.60 0

Scenario:Algorithm 9 0.12 0.01 15.90 0

Residuals 464 0.40 .0008

Total 479 23.45

Table 1: Results of Two-Factor ANOVA: This table shows results of two-
factor ANOVA where the factors are algorithms and scenarios. The measure-
ment is the quality of solution, given by pAS . The p-values show that the
algorithm effect, scenario effect and the interaction between the algorithms and
scenarios are all significant at any level of confidence.

within a population – the null hypothesis is rejected. The F distribution table
should be checked to see if the F -ratio is significantly large.
The results in Table 1 show that all the above three null hypothesis are

rejected at any significance level. This implies that the performance (mea-
sured by pAS) of at least one of the algorithms is significantly different from
the other algorithms. Also, different scenarios make a difference in the perfor-
mance. Finally, the scenarios and the algorithms interact in a significant way.
The interaction implies that the performance of the algorithms are different for
different scenarios.

5.3.1 Contrasts

The next question of interest is what really caused the rejection of the null
hypothesis; just knowing that at least one of the algorithms is different does not
help us identify which algorithm is significantly different. To answer this we use
a procedure called contrast. A contrast C among I population means (µi) is a
linear combination of the form

C = Σiαiµi = α1µ1 + α2µ2 + · · ·+ αIµI

such that the sum of contrast coefficients Σiαi is zero. In the absence of true
population means, we use the unbiased sample means which gives the estimated
contrast as:

Ĉ = ΣiαiX i = α1X1 + α2X2 + · · ·+ αIXI .

The contrast coefficients α1, α2, · · ·, αI are just positive and negative numbers
that define the particular hypothesis to be tested. The null hypothesis states
that the value of a parameter of interest for every contrast is zero, i.e., H0 : C =
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Performance Measure: Quality of Solution (in %)

RR SF LF RO Scn. Means

Scn. 1 X11·=48.68 X21·=99.73 X31·=97.97 X41·=97.78 X·1·=86.02

Scn. 2 X12·=46.91 X22·=99.56 X32·=98.38 X42·=98.93 X·2·=85.94

Scn. 3 X13·=45.69 X23·=99.25 X33·=97.10 X43·=98.82 X·3·=85.22

Scn. 4 X14·=46.99 X24·=98.03 X34·=88.65 X44·=93.41 X·4·=81.77

Algo.
Means

X1··=47.07 X2··=99.14 X3··=95.51 X4··=97.24 X··· = 84.74

Table 2: The Mean Values of the Quality of Solution: This table shows
the mean values of the quality of solution for each algorithm and each scenario.

0. The value of the contrast is tested by an F -test to see if the observed value
of the contrast is significantly different from the hypothesized value of zero.
Table 2 shows the average value of the quality of solution for each algorithm-

scenario pair. e.g. X11· means that we fix i = 1 and j = 1 and take the average
of Xijk over all k. From Table 2, it is clear that the randomized rounding
algorithm (RR) is different from all the other algorithms for all four scenarios.
On an average, RR algorithm satisfies 49% less contracts than the Largest-First
(LF) heuristic and 50% less than the Random-Order (RO) heuristic and 52%
less contracts than the Smallest-First (SF) heuristic. The difference between
SF, RO and LF heuristics appears only marginal. Based on this observation, we
constructed the following contrast that tests if RR is statistically significantly
different from the other three algorithms:

C1Q =
1
3
(X2··) +

1
3
(X3··) +

1
3
(X4··)−X1··

Using the value of algorithm means from Table 2 we can calculate the value
of C1Q (Q stands for the quality of solution) to be equal to 0.50.6 The sum of
squares of a contrast is expressed as:

SS(C1Q) =
(C1Q)2

Σiα2
i /Ni

Here αi are the coefficients of the contrast and Ni = 120 is the number of
observations (i.e. sample points for each algorithm across all scenarios). This
results in SS(C1Q) = 22.68. Now we can use the following F-test to see the
significance of the contrast:

SS(C1Q)/MSE ∼ F (1, 464)

6The table values are shown in percentages, but here we use actual values.
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MSE stands for the mean square error of the residuals. The contrast has
one degree of freedom and residuals have 464 degrees of freedom (see table 1).
F = 22.68/.0008 = 28350, since the observed value of F-test is greater than the
critical F -value given in the F -distribution table, for any significance level, the
null hypothesis is rejected. This confirms our earlier observation that the RR
algorithm is significantly inferior in performance compared to the other three
algorithms. The sum of squares of SS(C1Q) = 22.68 shows that 98% of the
variation in factors sum of squares (total factors sum of squares being 23.05
i.e. total SS - residual SS, see table 2) is due to the difference in RR algorithm
versus the other three algorithms.
Table 2 shows that the first three scenarios clear about 86% of the optimal

number of contracts while under the fourth scenario, the number of contracts
cleared is less than 82% of the optimal. Even though the difference in the
number of cleared contracts is not very big, one would be curious to find out if
the difference in performance under the first three scenarios versus the fourth
scenario is significant or not. To answer this we created the following contrast
which is orthogonal7 to the first contrast (C1Q):

C2Q =
1
3
(X ·1·) +

1
3
(X ·2·) +

1
3
(X ·3·)−X ·4·

Just like C1Q, we can calculate the value of C2Q using table 2:

SS(C2Q)/MSE ∼ F (1, 464) = 0.14/.0008 = 175

Again, the null hypothesis is rejected implying that the fourth scenario is indeed
significantly different from the other three scenarios.
Now we look at two more contrasts to check if SF and LF are significantly

different (C3Q) and LF and RO are significantly different (C4Q).

C3Q = X2·· −X3··

C4Q = X3·· −X4··

SS(C3Q)/MSE ∼ F (1, 464) = 2.178/.0008 = 2722.5

SS(C4Q)/MSE ∼ F (1, 464) = 1.038/.0008 = 1297.5

For both C3Q and C4Q, the observed value of the F-test is greater than the
critical F -value given in the F -distribution table, the null hypothesis in both
cases are rejected, implying that SF provides a better solution than LF and also
that RO performs significantly better than LF.

7Two contrasts C1 and C2 are said to be orthogonal if the sum of the products of their
corresponding coefficients is zero. It is desirable to have independent or orthogonal contrasts
because independent tests of hypotheses can be made by comparing the mean square of each
such contrast with the mean square of the residuals in the experiment. Each contrast has only
one degree of freedom.
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Source DF SS MS F -test p-value
Scenario (Block) 3 21152 7050.8 56.97 0

Algorithm (Treatment) 3 2161199 720399.8 5821.07 0

Scenario:treatment 9 28156 3128.5 47.78 0

Residuals 464 30381 65.5

Total 479 2240888

Table 3: Results of Two-Factor ANOVA: This table shows results of two-
factor ANOVA where the factors are algorithms and scenarios. The measure-
ment is the running time of the algorithm-scenario pair. The p-values show that
the algorithm effect, scenario effect and the interaction between the algorithms
and scenarios are all significant at any level of confidence.

In summary, all algorithms show significantly different performance when
measured in terms of quality of solution. On an average, the best solution is
given by the SF heuristic and the worst by the RR.

Running Time: Tables 3 and 4 show results of the same experiment when
performance is measured by the running time of the algorithm. The factors,
number of observations, kinds of tests, etc. remain the same as before, except
the performance measure. Table 3’s results clearly demonstrate that different
algorithms take significantly different time to run and that different scenarios
have significantly different running time. The interaction term is significant
at any level of confidence implying that the running time of an algorithm is
different for different scenarios.
Table 4 shows that the RR algorithm takes noticeably more time to run as

compared to the other three heuristics. Among the three heuristics, LF and RO
take about the same time but SF takes about 19 megaticks more than the LF
and RO. Similarly, scenario 3 and 4 take about the same time but scenario 1
and 2 look different. To test all the above mentioned observations, we create
the following different contrasts:

C1t =
1
3
(X2··) +

1
3
(X3··) +

1
3
(X4··)−X1··

C2t =
1
2
(X3··) +

1
2
(X4··)−X2··

C3t = X3·· −X4··

C4t = X ·1· −X ·2·
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Performance Measure: Running Time (in Megaticks)

RR SF LF RO Scn. Means

Scn. 1 X11·=163.33 X21·=41.23 X31·=24.57 X41·=25.50 X·1·=63.66

Scn. 2 X12·=218.23 X22·=49.63 X32·=29.73 X42·=30.23 X·2·=81.96

Scn. 3 X13·=181.70 X23·=45.70 X33·=23.30 X43·=26.43 X·3·=69.28

Scn. 4 X14·=184.33 X24·=44.53 X34·=27.00 X44·=27.27 X·4·=70.78

Algo.
Means

X1··=186.90 X2··=45.27 X3··=26.15 X4··=27.36 X ··· = 71.42

Table 4: The Mean Values of the Running Time: This table shows the
mean values of the running time for each algorithm and each scenario.

All the above contrasts are orthogonal to each other. The first contrast, C1t

(here t stands for running time), checks if the RR algorithm takes more time
to run than the other three heuristics. The second contrast, C2t, will find if the
SF heuristic is significantly different from the LF and RO heuristic. The third
contrast, C3t, checks if the LF and RO heuristics take about the same time to
run. Finally, contrast C4t, check if the first scenario takes less time to run than
the second scenario. The results of all the contrasts are shown below.

SS(C1t)/MSE ∼ F (1, 464) = 2133700.9/65.5 = 32575.5

SS(C2t)/MSE ∼ F (1, 464) = 27424.4/65.5 = 418.69

SS(C3t)/MSE ∼ F (1, 464) = 72.6/65.5 = 1.11

SS(C4t)/MSE ∼ F (1, 464) = 20093.4/65.5 = 306.76

As can be seen by looking at the F-distribution table, all the above contrasts
except C3t show that the observed value of the F -test is greater than the critical
F -value. Hence the null hypothesis i.e. H0 : Cit = 0 where i = 1, 2, 4 can
be rejected at any level of significance. This confirms our earlier hypothesis
that RR indeed takes longer to run than the other three heuristics. SF takes
more time to run than the LF and RO heuristics and the second scenario takes
significantly more time to run than the first scenario.
The mean difference in running time across different algorithms shows that

all algorithms are significantly different in terms of running time except for
the Largest-First and the Random-Order heuristics. These two heuristics take
about the same time to run and indeed a contrast done i.e. C3t on LF and RO
proves that and the null hypothesis, H0 : C3t = 0, is accepted.
The randomized rounding algorithm takes significantly more time to run

than any of the other heuristics. The gap in running time narrows when RR is
compared against SF. RR takes 141 megaticks more time than the SF heuristic,
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160 megaticks more than the LF and RO. SF takes more time to run than LF
and RO but it clears more contracts than LF and RO.
All the above analysis was performed while keeping the value of ε constant at

0.1. The performance of the randomized rounding algorithm8 does not change
in any significant way, both in terms of pAS and running time when ε varied
from 0.1 to 0.5. So all the above results hold for ε = 0.1, 0.2, 0.3, 0.4 and 0.5.9

Summary: It is clear that SF heuristic clears the most contracts, almost as
good as the optimal but takes more running time as compared to LF and RO.
However, it takes only a quarter of the time as compared to RR. As far as sce-
narios go, the first scenario clears most contracts in the least amount of time.
From a practical standpoint, the RO heuristic seems to be the best since it
performs very well both in terms of running time and quality of solution and is
trivial to implement. It performs very close to optimal in terms of clearing con-
tracts and yet takes minimal time to do it as compared to the other algorithms.
The RR algorithm, although it gives good theoretical lower bounds, is not very
appropriate for real-life situations where both time and a high level of contract
satisfaction have a very high priority.

6 Discussion and Concluding Remarks

We carried out an empirical study to evaluate the quality and running time
performance of four different market clearing mechanisms. A novel aspect of
our work is the use of statistical technique, Analysis of Variance, to compare
the performance of different market clearing mechanisms. This technique allows
us to formally test which algorithm performs better in terms of each of the
performance measures.
One heuristic was based on using a relaxation of integer linear program fol-

lowed by randomized rounding of the fractional solution to yield an approximate
integral solution. Although the algorithm had a provable performance guaran-
tee, experiments suggest that the algorithm is not likely to be practically useful
given the running time and the quality of solution produced. The result is not
entirely unexpected; it has been observed that many approximation algorithms
that are designed to work in the worst case typically do not have a very good
average case behavior.
We also studied three different simple heuristics: experimental results sug-

gest that each is likely to perform better than the theoretically provable approx-
imation algorithm. This is in spite of the fact that it is very easy to construct
instances where the heuristics have unboundedly poor performance guarantee.
One of the heuristics: the random-order heuristic was studied to emulate

a simple “first-come first-serve” type clearing mechanism that is currently em-
ployed by many ISO. The heuristic performs surprisingly well even compared to
a bound on an optimal solution obtained via linear programming. The results

8Other heuristics do not depend on the value of ε.
9The results are available from the authors upon request.
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suggest that this simple clearing mechanism currently employed might result in
near-optimal utilization of the network resources.
Our overall assessment is that for the purposes of developing large-scale

microscopic-simulations of the deregulated power industry, the three heuristic
methods give sufficiently good performance in terms of the quality of solution
and the computational time requirement.
An interesting direction for future research is to study (both theoretically

and experimentally) the performance of these algorithms when we have flow
constraints modeling resistive networks. The additional constraints imposed on
the system could conceivably make the problem easier to approximate. See [1]
for further discussions on this topic.
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Appendix

A Illustrative Examples

Example 1. This example illustrates the issues encountered as a result of
deregulation. Figure 5(a) shows an example in which there are two power plants
A and B, and two consumers. Let us assume that each consumer has a demand
of 1 unit. Before deregulation, say both A and B are owned by the same
company. If we assume that the plants have identical operating and production
costs, then the demands can be satisfied by producing 1 unit of power at each
plant. Now assume that due to deregulation, A and B are owned by separate
companies. Further assume that A provides power at a much cheaper rate
and thus both the consumers sign contracts with A. It is clear that both the
consumers now cannot get power by A alone. Although the total production
capacity available is more than total demand and it is possible to route that
demand through the network under centralized control, it is not possible to
route these demands in a deregulated scenario.
Example 2. Here, the graph consists of a simple line as shown in Figure 5(b).
We have three contracts each with a demand of 1. The capacity of each edge is
also 1. A feasible solution is f(s1, t3) = f(s2, t1) = f(s3, t2) = 1. The crucial
point here is that the flow originating at si may not go to ti at all — since power
produced at the sources are indistinguishable, the flow from si joins a stream
of other flows. If we look at the connected components induced by the edges
with positive flow, we may have si and ti in a different component. Thus we do
not have a path or set of paths to round for the (si, ti)-flow. This shows a basic
difference between our problem and standard multi-commodity flow problems,
and indicates that traditional rounding methods may not be directly applicable.

s1 s2
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t 2

1

1
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Figure 5: Figures for Examples 1 and 2

Example 3: In this example, we illustrate how different policies can yield
different solutions. The graph is shown in Figure 6 with edge capacities as
listed. Again, we have three contracts, whose details are given as follows:
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1. Contract 1 – (s1, t1) demand d1 = 2 and cost/unit c1 = .5

2. Contract 2 – (s2, t2) demand d1 = 1 and cost/unit c1 = 1

3. Contract 3 – (s3, t3) demand d1 = 1 and cost/unit c1 = 2

The various solutions obtained under different policies are given below:

1. (0/1-Version, Max-Feasible Flow): Two possible solutions:
(i) f(s1, t1) = 2, (ii) f(s2, t2) = f(s3, t3) = 1. Both solution route 2 units
of flow in the network.

2. (0/1-Version, Max-#Contracts): In contrast to the previous case
only one solution is possible: f(s2, t2) = f(s3, t3) = 1. This also routes 2
units of flow.
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Figure 6: Example illustrating the various solutions under different contracts.

B Worst-Case Examples

The three heuristic methods of § 3 can be shown to have worst case perfor-
mance guarantee that is Ω(n). (Recall that the performance guarantee of an
approximation algorithm for a maximization problem Π is the supremum of the
ratio of the optimal solution to the heuristic solution over all instances I of Π.)
Example 4 shows that all the heuristics can perform poorly w.r.t. an optimal
solution. This is not too surprising given that the optimal solution gets to look
at all of the input before clearing the contracts.

Example 4: Consider a network with two nodes A and B joined by an edge
(A,B). The capacity of the edge (A,B) is C < 1. There is an even number n of
contracts (s1, t1), . . . , (sn, tn). Odd-numbered contracts have demand of 1 unit
and the sources and sinks of these contracts are distributed as follows: source-
nodes s1, s3, . . . sn−1 are located at node A and their corresponding consumers
t1, t3, . . . tn−1 are located at B. Let us call this set Odd-Set. For the even
numbered contracts (denoted Even-set) we have a demand of 1+ C

2n per contract
and the source sink locations are reversed: the sources are located at B and the
sinks at A. Note that
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1. All Odd-set contracts have demand that is less than every contract in
Even-Set.

2. In the absence of any other contracts, only one Odd-set contract can be
cleared; similarly, exactly one Even-set contract can be cleared.

Now consider how many contracts can be satisfied by the each of three
heuristic methods.

1. Smallest-First Heuristic will clear only one contract (s1, t1).

2. Largest-First Heuristic will also clear exactly one contract (s2, t2).

3. Random-Order heuristic will also perform poorly with high probabil-
ity. This is because there is are a total of n! ways to arrange the contracts
and roughly only O((n2 )!(

n
2 )!) good ways to do it.

4. An optimal solution can clear all the contracts simultaneously, since the
flows fromOdd-set appropriately cancel the flows from Even-Set. Thus the
performance guarantee of the Smallest-First Heuristic and Largest-
First Heuristic is Ω(n). The performance guarantee of Random-
Order heuristic is also Ω(n) with high probability.

Example 5: Again, we have a single edge as the network. Denote the edge by
(A,B) as before, with the endpoints being A and B respectively and the edge
capacity being 1. We have n contracts. As before we divide them into Even-
Set and Odd-set of contracts. The contracts’ demands are strictly increasing:
the ith contract has demand 1 + (i − 1)ε. The value ε is chosen so that 0 <
ε < 1 and (n − 1)ε > 1. It is clear that Smallest-First Heuristic can
clear all the contracts, while Largest-First Heuristic can clear exactly one
contract. Again, a simple calculation shows that Random-Order heuristic
will perform poorly with high probability.


