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Abstract

The existing literature gives efficient algorithms for mapping trees
or less restrictively outerplanar graphs on a given set of points in
a plane, so that the edges are drawn planar and as straight lines.
We relax the latter requirement and allow very few bends on each
edge while considering general plane graphs. Our results show two
algorithms for mapping four-connected plane graphs with at most one
bend per edge and for mapping general plane graphs with at most two
bends per edge. Furthermore we give a point set, where for arbitrary
plane graphs it is NP-complete to decide whether there is an mapping
such that each edge has at most one bend.
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1 Introduction

The problem of mapping the vertices of a graph to points in the plane has
been considered in the past under various objectives depending on the specific
applications. This ranges from the band width minimization problem [17, 8]
where the points are at unit distance on a line and the objective is to minimize
the distance of the points between adjacent vertices to embedding problem
of a guest graph onto a host graph [14] under some objectives like dilation,
congestion, load, etc.

Here we consider a more geometric version of the problem: Originally, the
problem was how to map a given tree T of n vertices at a given set of points
S in the plane such that the edges can be drawn straightline and without
any crossings. Variants of this problem have been explored, either with or
without keeping the position of one specific node fixed [16, 12, 2].

Generalizing the graph class, but still using the required straightline pla-
nar drawing, Gritzmann et al. [11] gave an elegant divide and conquer scheme
to partition the point set and the set of vertices simultaneously. They showed
that using this mapping outerplanar graphs can be drawn without any bends.
In the consequent papers [3] and [1], efficient implementations have been de-
veloped. The latest result in [1] is an O(n · log3 n) time algorithm to find
a straightline drawing for such a graph. Astonishingly enough, the case for
more general planar graphs has not been considered systematically. It is at
exactly this point that we start.

Another similar scenario has been recently considered by Pach and Wenger
[15]. They assume that the mapping of the vertices to the points is already
fixed. The authors prove that O(n) bends per edge are sufficient and that
we can not expect to significantly improve the worst case bound for the
maximum number of bends per edge.

We consider just the first scenario where the mapping of the vertices to
the points is not yet fixed. On the other hand, we preserve the given planar
embedding of the graph. In the next section, a simple scheme is presented,
that provides drawings with at most one bend per edge for a large class of
graphs. Next we generalize the technique so that it will work for any planar
graph and produces drawings with at most two bends per edge. In section
4, we give a class of graphs and a set of points, where we can prove that
there is at least one edge with two bends. Finally, we extend the techniques
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developed so far to a simple proof to the expected NP-completeness result,
namely to decide whether a drawing can be found where each edge has at
most one bend.

Throughout this paper, we deal with triangulated embedded (plane) graphs,
only in the last section do we discuss a more general case. Of course, we al-
ways require the drawings to be planar, even if it is not explicitly stated.

2 A basic technique

In this section, we present the basic technique for the mapping and consider
the following restriction on the graph.

Let G = (V, E) be any plane graph with a hamiltonian cycle C, such that
C has at least one edge, say e, on the outer face of G. We call such a property
’external hamiltonicity’ and a corresponding cycle ’external hamiltonian’. We
assume the vertices of V to be ordered from v1 to vn as being prescribed by
the hamiltonian cycle C. The vertex with the smallest index is chosen such
that the edge e is incident to vn and v1.

Let S be any set of points p1, p2, ..., pn with pi = (xi, yi). Assume the plane
is rotated in such a way to make the x-coordinates of the points pairwise
different. Furthermore assume that the points are ordered with increasing
x-coordinates. Now we map the hamiltonian cycle C = (v1, v2, . . . , vn, v1)
to the points p1, ..., pn, so that the edge e = (vn, v1), is assigned in such a
way that vn = pn and v1 = p1. All edges on C with the exception of e can
be drawn as a straight line so that they extend monotonically in x-direction.
The edge e is drawn from the rightmost point pn to the leftmost point p1 with
one bend b located at a place existing very high above all the other points.
The idea is to choose the segments of e such that their slopes are the same
and they are cone-shaped, c.f. figure 1. The slopes of e is determined by the
maximal slope of the straightline edges on the hamiltonian path C − e. This
also determines the place where the bend of e is located.

More precisely, the slope for a possible straightline segment is computed
by σ′ = maxi|yi+1 − yi|/(xi+1 − xi). To ensure that the segments of e do
not interfere with other segments or points, we have to increase the value σ′

slightly. In fact, we assign the value σ = 2 · σ′ as the slope of a line through
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p1 and −σ should be the slope of another line through pn. The intersection
of the two lines gives the position of bend b.

The remaining edges are drawn each with exactly one bend such that all
the left segments of the edges have the same slope σ and the right segments
will have the slope −σ. They will run in parallel. This is more because of
aesthetic reasons and to simplify the arguments about avoiding some possible
crossings. The edges inside of C are drawn above the polygonal chain C − e,
and the edges outside are drawn below. The following case checking proves
the planarity of the drawing:

Edges inside and outside of C do not cross since they are separated by
the polygonal path C − e. We explain the case of two edges e1 and e2 inside
of C in more detail. Let e1 = (vi, vl) and e2 = (vj , vk). Clearly i ≤ j < k ≤ l
holds because of planarity. Now, since the left segments run in parallel and
the right segments as well and the four end points occur in that order on the
x-monotone polygonal line C − e, there are no crossing segments.

The same holds for the edges outside. The slopes for the segments of the
edges not in C have been chosen large enough such that edges in C cannot
interfere with edges not in C.

Note that by this technique, some of the segments adjacent to the same
vertex might overlap (cf. the second segments of (p2, p8) and (p3, p8) in Fig.
1). We devise a perturbation scheme that resolves those overlappings:

Let ε be the minimum distance between any two non-overlapping parallel
segments, let L be the maximum length of a segment and maxdeg the max-
imum degree. For each vertex v, we sort the pairwise overlapping adjacent
segments according to their length in decreasing order. For each segment s
being the i-th overlapping segment adjacent to v, we rotate s by i · ε

L·maxdeg

downwards. The new intersection points for the segments give new positions
for the bends. This way we ensure that the previously overlapping segments
are spread out, and new intersections are avoided since the rotation angles
are kept small enough.

Theorem 2.1 Let S be an arbitrary set of n points and G be any plane
graph with an external hamiltonian cycle and n vertices. Then G can be
drawn planar with a mapping of the vertices to the points such that each edge
has at most one bend.
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Figure 1: The basic construction

Remarks on the area. Note that the area may be much larger than
the area R occupied by the point set. More precisely, let us assume that the
minimal enclosing rectangle R is a square of width W and δ is the minimal
distance in x-direction between any two points. Clearly, the absolute value
of the slope σ of the segments of edge (vn, v1) is at most 2 · W/δ. Hence the
resulting height is at most 2 · W · W/δ while the width remains the same.
This means that if we assume integer-coordinates (δ = 1), we achieve an area
of O(W 3) for the drawing.

Note that if we would allow 2 bends per edge, we could easily draw the
edges in an orthogonal way and keep the area proportional to the area of
the convex hull of the point set. In this case, the perturbation scheme does
not work anymore and we might have to enlarge the size of the vertices and
assign offsets to the adjacent segments. The details are left to the reader.
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δ

Figure 2: Wasting and saving some area by spending another bend per edge.

3 The general case

In order to apply the technique above we need to find an external hamilto-
nian cycle, namely a hamiltonian cycle including an edge on the outer face.
Testing all possible edges e = (v, w) on the outer face, we could request a
hamiltonian path, which is a well-known NP-complete problem even on pla-
nar triangulated graphs [6]. On the other hand, we know of a linear-time
algorithm to find external hamiltonian cycles by Chiba and Nishizeki [5], if
the graph is four-connected. Since the graphs we consider are triangulated,
the problematic cases appear if there are separating triangles, namely cycles
of length 3 which do not circumscribe single faces. Only such graphs may
not contain external hamiltonian cycles.

First of all, we give a reduction to the four-connected case which will
finally lead to drawings with at most two bends per edge. Then, in the
following section we present a small plane graph with only 12 vertices without
any external hamiltonian cycle and a point set, and we prove that any planar
drawing of this graph on this point set must have at least one edge with 2
bends. This indicates that our simple technique is reasonably good and it
will not normally be beaten by other algorithms with respect to the maximal
number of bends per edge.

Assume G is a plane triangulated graph which is not four-connected.
Let e = (v, w) be an edge of any particular separating triangle which clearly
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exists. Edge e lies adjacent to two triangular faces (v, w, s) and (v, w, t).
We destroy those triangles by inserting a dummy vertex z on e, deleting e
and connecting z by four new edges to the vertices v, w, s and t. Note that
by each single operation, the number of separating triangles decreases and
no such triangles are created anew. The dummy vertices z do not appear
in any separating triangle. We perform this operation until all separating
triangles are destroyed. The separating triangles can be efficiently found by
the algorithm of Chiba and Nishizeki [4]. Then the new graph G′ is four-
connected and triangulated.

We now apply the basic technique described in the previous section to
G′. The only modification is the handling of the dummy vertices z. Figure
3 gives an example.
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Figure 3: An example for the construction of graphs without external hamil-
tonian cycle. Vertices z1 and z2 are dummies. They arise when destroying
the separating triangles. The figures to the right indicate the solutions with
three and two bends respectively.

Let C ′ be the external hamiltonian cycle as found by the algorithm of
Chiba and Nishizeki. Clearly, C ′ visits z, and immediately before and after-
wards, it visits two vertices a, b ∈ {v, w, s, t}. We place a new dummy point
pz exactly between the points assigned to a and b.

Then the graph can be drawn as described above. Finally, we remove
the edges (s, z) and (t, z) and join the (at most) two segments of (v, z) and
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(z, w). This immediately gives a drawing with at most 3 bends per edge,
since there is at most one dummy vertex on each edge.

Lemma 3.1 Given an arbitrary plane graph with n vertices and a set of n
points in the plane. In time O(n log n), we can find a mapping of the vertices
to the points, so that the edges can be drawn planar and with at most 3 bends
each.

Markus Eiglsperger suggested a way of saving one bend (out of three) by
drawing some of the segments of the edges vertically. In the third part of
Figure 3, we indicate the idea.

Lemma 3.2 Given a solution with at most three bends for each edge con-
structed by the algorithms above, we can modify the drawing so that it remains
planar and the maximal number of bends is two. The used area might grow
exponentially.

Proof: Let P be the designated hamiltonian path along the points
p1, . . . pn such that the edges (pi, pi+1) are drawn as a straight line. P in-
duces a partition of the drawing plane into an upper and a lower part. Note
that for each edge e with two or three bends there is a dummy vertex de

placed on an edge (pi, pi+1) where the edge e crosses path P . Following the
construction above, it is clear that each edge crosses P once at most, hence
the two segments of e incident to the dummy vertex de may be able to be
drawn vertically. We discuss now the implications of such operations:

We consider just the section in the upper part of the drawing, the lower
part is handled analogously. Let e be the edge under consideration with
segments s1 and s2 where s2 ends at dummy vertex de. Let α1 and α2 be the
angles indicating the slopes of the segments as shown in figure 4.

Stretching s1 such that α1 remains the same, the angle α2 increases to
90o and the segment s2 becomes vertical. We will call it s′2 now. Planarity
is eventually violated if there are some segments s with angle β crossing the
cone between s2 and s′2. We can correct this easily by rotating the segment
s such that β also increases. This process is iterated if necessary. Obviously
it ends after at most m steps since we only proceed from left to right and
never backtrack. The proper nesting of the edges (halfedges) in the upper
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Figure 4: The configuration before and after rotating segment s2 in vertical
position.

part of the drawing ensures that for each edge only m rotations are necessary,
implying a quadratic running time.

Combined with a corresponding process for the lower part we end when
the segments incident to any dummy vertices are vertical and the correspond-
ing bend is saved.

In the second part of the proof we sketch a situation where the area grows
exponentially. The next figure shows two nested edges with corresponding
dummy vertices on different sides (left and right).

We assume that the slopes are at 45o to start with and the points and
bends lie on integer coordinates. When we perform the modifications de-
scribed above, so that the segments incident to the dummy vertices become
vertical, the drawing grows by more than a factor of two.

Now assume that we have n/2 of such pairs nested, as indicated in the
next figure. Consider the i-th pair from the inside. The drawing of Gi−1

includes an axis-parallel rectangle Ri determined by the length of the vertical
segments of the edges from the i−1-th pair. Next, we see that the two edges
from pair i have to circle around this rectangle using only two bends and
one vertical segment in the middle. It follows quite easily that the lengths of
these segments must be quite large compared to the height of the rectangle
Ri−1 and that a new rectangle Ri of height at least twice as large as the height
of Ri−1 results. Hence, we can conclude that the height of the drawing grows
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exponentially, at the very least.
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Figure 5: The recursive definition of the graph with exponential height.

We conclude with a note regarding the runtime. Clearly the first part
of the construction works in linear time, since we can use the linear time
algorithm of Chiba/Nishizeki [4] to determine the separating triangles. Then
the saving of the third bends by rotating some of the segments might cause
a quadratic number of steps.

Theorem 3.3 Any plane graph can be mapped on any given point set in the
plane and can be drawn with at most three bends per edge in linear time and
with at most two bends per edge in quadratic time.

4 The lower bound

Next, we show that this bound is optimal in the worst case. Consider the
following triangulated graph discussed in the example from figure 3.

Although there is a hamiltonian path in G, there is no external hamilto-
nian path. We try to map G on a set of 12 points with the same y-coordinate
Y . This point set has the property that each edge with only one bend must
lie completely above or completely below the Y -line. Any edge segment that
crosses the Y -line must belong to an at-least-two bend edge.

Let x1, . . . , x12 be the x-coordinates of the points in increasing order.
Since the outer face of G is a triangle with vertices a, b, c it is clear that
in any one bend drawing {x1, x12} ⊂ {xa, xb, xc} (With xa, we mean the x-
coordinate vertex a is mapped to). We examine the case where x1 = xc, x12 =
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Figure 6: The candidate for the lower bound proof.
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Figure 7: Edge (b, f) needs two bends in this drawing.

xa. Both of the other cases are similar or symmetric. Next we want to draw
the outer face. For that we map b to xb, (x1 < xb < x12) and draw the outer
face edges such that (a, c) bends above the Y -line and (a, b), (b, c) bend below.
Next we draw the edges of the triangles b, d, a and b, c, d. W.l.o.g., we map
vertex d to xd, (xa < xd < xb) and draw (a, d), (d, c) with a bend above the
Y -line. We draw the edge (d, b) with a bend above the Y -line and show that
one edge within triangle {b, d, a} cannot be drawn with only one bend (since
{b, c, d} and {b, d, a} are symmetric, we could show the same for {b, c, d} if
we would draw edge (d, b) with no bend or a bend below the Y -line).

Now we want to draw the edges from d to e, f and h. Since we do not
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want to change the embedding and edge (d, b) bends above the Y -line, these
edges must also bend above the Y -line and the x-coordinates of their end
points must obey the order xb < xh < xf < xe < xc. Next we draw the edges
from a to e, f and g. Since (d, e) bends above the Y -line the edges (a, f) and
(a, g) must bend below the Y -line. The order of the coordinates is nearly
fixed by now: xd < xb < xg, xh < xf < xe < xa. Now we are at a point
where we cannot draw edge (b, f) without letting it cross the Y -line, since
(d, h) and (a, g) have their bends in opposite directions. See Figure 7.

Theorem 4.1 There is a plane triangulated graph with only 12 vertices such
that for every placement of the vertices on a straight line at least one edge
must bend at least twice in the resulting drawing.

5 The NP-completeness result

In this section we prove

Theorem 5.1 Given any plane graph G with n vertices and n points on a
line. The mapping problem of the vertices at the points so that the edges are
drawn planar and with at most one bend each is NP-complete.

Proof: To show that the 1-bend drawability problem is NP-complete, we
reduce it to the hamiltonian cycle problem for plane graphs.

First, note that the external-hamiltonian-cycle problem for plane graphs
is NP-complete since it can be used to solve the hamiltonian-cycle problem
for plane graphs by an iteration over all faces of the embedding.

We call a plane graph G = (V, E) (external) hamiltonian-extensible if
some edges E ′ can be inserted without destroying the previous planar em-
bedding enabling G′ = (V, E ∪ E ′) to become (external) hamiltonian. The
problem as to whether a given planar graph G can be made (external) hamil-
tonian by inserting at most k ≥ 0 edges is clearly NP-complete since its
variant with k = 0 is equivalent to the (external) hamiltonian-cycle problem
for planar graphs.

Let G = (V, E) be a given plane graph. The following argument shows
that solutions for the problem to make G (external) hamiltonian-extensible
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can be converted in polynomial time into a 1-bend drawing for G with a set
of points on a straight line and vice versa.

If G is external-hamiltonian extensible, we take the corresponding ex-
ternal hamiltonian cycle C and apply our basic technique from section 2 to
achieve 1-bend drawings. On the other hand, if G has a mapping M : V → P
on the points of the horizontal line L such that a 1-bend drawing D(G) ex-
ists, there is clearly no edge which crosses line L. Otherwise, it would bend
twice. Let w.l.o.g. M be the mapping such that M(vi) = pi for i = 1, . . . , n.
Hence we can easily extend the embedding of G by edges between any vertex
vi and vi+1 for i = 1, . . . , i−1 if necessary. such that this extension completes
a hamiltonian path. The last (external) edge between vn and v1 completing
the hamiltonian cycle can also be inserted if it does not already exist. This
proves the NP-hardness of the drawing problem.

From the ‘equivalence’ of the problem to make G (external) hamiltonian
and the 1-bend drawability problem for G with a set of points on a straight
line we derive that the latter problem is in NP since like the hamiltonean-
cycle problem, the extensibility problem is in NP.

6 Discussion

One might argue that we are cheating regarding the lower bound example
since all points with the same y-coordinate contradict the commonly used
assumption of a general position of the points. On the other hand, the
scenario seems quite realistic. If the objects (vertices) are required to be
arranged in linear order horizontally or vertically, we get exactly the given
set of points which we have already proved to be hard. Open problems:

1. Improve the area bounds, especially for the general case.

2. Extend the lower bound proof and the NP-completeness result to a set of
points in general position.

3. Note that the complexity of the no-bend variant is still open, although
NP-completeness is also conjectured [1].
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