
Journal of Graph Algorithms and Applications
http://www.cs.brown.edu/publications/jgaa/

vol. 4, no. 3, pp. 75–103 (2000)

Techniques for the Refinement of Orthogonal
Graph Drawings

Janet M. Six Konstantinos G. Kakoulis Ioannis G. Tollis

CAD & Visualization Lab
Department of Computer Science
The University of Texas at Dallas

P.O. Box 830688, EC 31
Richardson, TX 75083-0688

{janet,kostant,tollis}@utdallas.edu
Abstract

Current orthogonal graph drawing algorithms produce drawings which
are generally good. However, many times the quality of orthogonal draw-
ings can be significantly improved with a postprocessing technique, called
refinement, which improves aesthetic qualities of a drawing such as area,
bends, crossings, and total edge length. Refinement is separate from lay-
out and works by analyzing and then fine-tuning the existing drawing
in an efficient manner. In this paper we define the problem and goals
of orthogonal drawing refinement, review measures of a graph drawing’s
quality, and introduce a methodology which efficiently refines any orthog-
onal graph drawing. We have implemented our techniques in C++ and
conducted experiments over a set of drawings from five well known or-
thogonal drawing systems. Experimental analysis shows our techniques
to produce an average 37% improvement in area, 23% in bends, 25% in
crossings, and 37% in total edge length.

Communicated by G. Liotta and S. H. Whitesides: submitted October 1998; revised
November 1999.

Research supported in part by NIST, Advanced Technology Program grant number

70NANB5H1162 and by the Texas Advanced Research Program under Grant No.

009741-040.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 76

1 Introduction

Graphs are used in numerous applications to represent many information struc-
tures: telecommunication networks, entity-relationship diagrams, data flow charts,
object-oriented software design and much more [34]. Graph Drawing studies the
automated layout of these structures onto a two or three dimensional space
where each node is represented by a polygon or circle and each edge by one or
more contiguous line segments. This visualization can take form in one of many
conventions: e.g., polyline, straight-line, orthogonal planar, or upward [6, 7].

Orthogonal graph drawings represent nodes with boxes and edges with polyg-
onal chains of horizontal and vertical line segments which reside on an underlying
grid. A few key applications for this style of graph drawing are project manage-
ment, PERT diagramming, object-oriented analysis, database navigation, and
VLSI circuit design. Much research has been conducted in this area and various
algorithms exist to produce orthogonal drawings of planar [1, 12, 18, 30, 31, 33],
general maximum degree four [1, 25, 28], and general higher degree graphs
[2, 16, 23]. An extensive experimental study was conducted by Di Battista et.
al. [8] where four general purpose orthogonal drawing algorithms were imple-
mented and compared with respect to area, bends, crossings, edge length, and
running time.

Many papers have suggested ways of evaluating the “goodness” of a graph
drawing (e.g., [9, 11, 19, 22, 32]). Ding and Mateti [9] formalize the quality
of data structure diagrams with nine categories: visual complexity, regularity,
symmetry, consistency, modularity, size, shape, separation, and tradition. Vi-
sual complexity is the measure of ease with which a structure is communicated
and includes the factors ambiguity, geometric complexity, and recognizability.
Ding and Mateti also present the importance of semantic and geometric rec-
ognizability. Of course graph drawers endeavor to develop algorithms which
have high semantic recognizability, but this goal is very difficult since a set of
humans may have multiple interpretations of any one drawing. The authors
of [9] also propose that the geometric complexity (e.g. area, crossings, bends,
edge lengths) of drawings should be low, respecting the concept that the sim-
pler a drawing appears, the simpler it will be to interpret. The last of Ding and
Mateti’s categories addresses a very important issue which the standard quality
measures of a graph drawing do not capture: tradition. People understand a
drawing better if the information is presented in a manner which is familiar.
This is very difficult to qualitatively measure in a general way since people of
different backgrounds may expect to see information in alternate ways.

Tamassia, Di Battista, and Batini present an extensive study of the read-
ability of diagrams in [32]. They suggest several specific quantitative measures
of quality which include: mimimization of area, balance of the drawing with
respect to the horizontal or vertical axis, minimization of bends, maximization
of the number of convex faces, minimization of crossings, minimization of the
difference in size of the largest and smallest nodes, minimization of the total



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 77

length of edges, minimization of the maximum edge length, symmetry of children
in hierarchies, uniform distribution of nodes, and the upwardness of hierarchic
structures. The semantics of the drawing are addressed with the following set
of constraints: place a set of nodes in the center of a drawing, specify certain
nodes to be a specific size, place a set of nodes on the exterior of the drawing
area, cluster a set of vertices, draw a set of nodes in a specific shape and place
a sequence of vertices along a straight line.

The optimization of many of the above aesthetics and constraints is known
to be NP-Hard [6]. Complicating this issue is the experience that maximizing
one particular quality of a drawing causes another to be significantly poor since
some of these qualities work against each other. Therefore most algorithms try
to layout the graph in a manner which is good for some set of aesthetics.

Current orthogonal graph drawing algorithms produce drawings which are
generally good. However, many times the quality of orthogonal drawings can
be significantly improved with a postprocessing step. Refinement is a post-
processing methodology which can be applied to any orthogonal drawing. It
improves the quality of a drawing by first analyzing it and then fine-tuning the
drawing while keeping the majority of the layout intact. The result is a new
drawing which has improved aesthetic qualities including area, bends, crossings,
and edge length. Previous work includes compaction strategies [2, 31, 33] and
movement of stranded nodes [13]. However, the scope of these postprocessing
techniques is limited. A more comprehensive methodology is needed to further
improve the aesthetic qualities of graph drawings. We presented a preliminary
version of our refinement techniques in [29]. At the same conference, Fößmeier,
Heß and Kaufmann discuss four techniques which reduce area, bends, and edge
length, [15], yet they present no experimental results. However, most of the ben-
efits they discuss would also be obtained by our techniques. We have focused
on the development and implementation of several efficient refinement modules
which work on any orthogonal drawing (including degree greater than four). An
example of a drawing before and after refinement is shown in Figure 1.

There are two types of refinement: interactive and static. During the inter-
active refinement of drawings we must maintain the user’s mental map [22] and
are allowed to make only minimal changes. The requirements for this kind of
refinement methodology are very similar to those of interactive graph drawing
algorithms [3, 5, 14, 21, 22, 24, 26]. The fact that the user has already seen a
drawing of a graph means that the refinement techniques must not make changes
so drastic that pieces of the drawing are not recognizable. Static refinement fine
tunes drawings for which we do not have to maintain the user’s mental map:
we are free to make any change in the embedding. Our tool performs static re-
finement on any orthogonal graph drawing. Using a subset of the modules, our
tool can also perform interactive refinement. Certainly refinement cannot be a
cure for a very poor layout because this would require the essential invocation
of some other layout algorithm. Refinement fine-tunes an existing drawing by
improving some layout qualities.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 78

1

2

3

4

5

6

7

8

9

10

11

12

13

1415

1

2

3

4

5

6

7

9

10

13

15

8

11

12

14

Figure 1: A graph as drawn with the GIOTTO component of Brown University’s
Graph Drawing Server on the left. The same drawing after refinement on the
right (same scale). There is a 29% improvement in area, 13% improvement in
the number of bends, 11% in the number of crossings, and 24% in the total edge
length.

Our refinement techniques produced a significant 23% to 37% average im-
provement for each of the generally accepted quality characteristics area, bends,
crossings, and total edge length in experiments over drawings from five algo-
rithms. Since different applications require different classes of drawings and
therefore need to focus on varying kinds of refinement, our system has the flex-
ibility to vary the types and order of refinement modules called, so that a user
may refine drawings in a manner specific for a particular application.

The remainder of this paper is organized as follows: we present techniques
for the refinement of orthogonal graph drawings in Section 2, implementation
details and the results of an experimental study in Section 3, and conclusions
and future work in Section 4.

2 Refinement

During a survey of orthogonal drawings from a variety of sources, we repeatedly
observed extra area, bends, edge crossings, and edge length caused by U-Turns
in edges (as described in [21]), superfluous bends, poor placement of degree two
nodes, two incident edges of a node crossing, nodes stranded very far from their
neighbors, and unused space inside the drawing. See Figure 2 for examples.

Specifically, U-Turns are three contiguous edge segments which form a “U”



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 79

Embedding Embedding

EmbeddingEmbedding

A

B

C

D

E

F

Figure 2: Examples of the problems we solve with a refinement technique: A:
U-Turns, B: superfluous bends, C: poor placement of degree two nodes, D: self-
crossings, E: stranded nodes, and F: extra area.

shape with the middle segment pulled far from the source and target nodes of
those three segments. Superfluous bends are those which exist even if there
is room in the drawing for an edge routing with fewer bends. Clearly U-Turns
and superfluous bends can occur multiple times in edges which have four or
more segments. Also, both U-Turns and superfluous bends can appear in the
same edge. Poorly placed degree two nodes are those which are neither on a
bend nor in the midst of its two incident edges. Self crossings are those which
occur between two edges incident to the same node. Self crossings are divided
into two categories: near and far self crossings. Near self crossings are those
which appear north, south, east, or west of the node. Far self crossings appear
northeast, northwest, southeast, or southwest of the node. A stranded node
is a degree one node which could be placed closer to its neighbor.

Fixing a set of the above defined problems with a sequence of refinement steps
will certainly reduce the visual complexity of the drawings, however we take our
methodology one level further. We reduce the given graph into a simpler one.
First we absorb all chains of degree two nodes into a super edge and then denote
each degree one node to be a super node and determine the minimum distance
needed between it and its neighbor (as is also done in [5, 23]). For example, the
edge crossing between edges (3, 13) and (5, 12) in the left drawing of Figure 1
would not be a self crossing as defined above, but obviously it could be removed.
After the reduction then the crossing between the super edge (3, 13) and the
edge (3, 5) is discovered as a self crossing and can be removed. All refinement



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 80

operations are performed on this simplified graph. The refinement techniques
have been implemented to acknowledge the presence of super nodes and edges
and place them in some appropriate manner. After refinement is complete the
super edges are expanded in order to restore the graph to its original topology.
The reduction operations allow our methodology to detect more of the above
problems and therefore produce better quality drawings.

Procedure: Refine-Orthogonal-Graph-Drawing
Input: An orthogonal graph drawing, Γ, of a graph, G
Output: A new orthogonal drawing, Γ′, of G with a lower visual complexity

1. Build the abstracted graph, G′, of G, such that

(a) Each chain of degree two nodes is abstracted into a super edge.
(b) Each degree one node is denoted to be a super node and the minimum

necessary distance between it and its lone neighbor is calculated. The
minimum distance is directly proportional to the number of absorbed
degree two nodes in the lone incident edge.

2. For each edge, e, in G′

(a) If e contains a sequence of three edge segments which form a U-Turn
edge, then pull in the middle segment of that sequence so that it is
as close as possible to the tips of the U.

(b) If e contains a sequence of three edge segments which have an extra
bend and there exists room for a lower bend edge routing in the draw-
ing then replace the current routing with the lower bend solution.
This technique is very similar to the bend-stretching transformations
of [33].

3. For each node, v, in G′

(a) If v has a near self crossing, expand the node by one row or column
in the appropriate direction and move the attachment point of the
trouble edge to that new row or column. Place any abstracted degree
two nodes so that they do not occlude any node or edge. If v has a far
self crossing and is degree two, then place the node at the location
of the crossing. Otherwise add one row or column and break the
crossing into a knock-knee [20] edge routing. Both of these far self
crossing solutions swap the attachment points of the crossing edges
at v so that neither of the neighbor nodes is moved.

(b) If v is supernode and the distance to its lone neighbor is greater than
the minimum distance calculated in Step 1(b), (i.e. a stranded node)
place the supernode as close to the neighbor node as space allows in
Γ.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 81

4. For each superedge, e, expand e to restore the degree two nodes and verify
that each degree two node is either on a bend or in the midst of its two
incident edges.

5. Perform a VLSI layout compaction [10, 17, 20] to remove extra space in
the drawing. 2

Many improvements may be made without increasing the area of the draw-
ing, but allowing the addition of more area may enable refinement to signifi-
cantly improve other aesthetics of the drawing. For example, adding a row or
column may be necessary to remove a self crossing. However this allowance
should be according to user requirements and must be parametrically defined.
It is possible that more area, bends, crossings, or edge length will be added
with some refinement step, however we have found with our experimental study
that we still gain improvements in these quality measures globally. However, we
still recommend that this refinement methodology be implemented with a set of
parametric options tailored to user requirements. Also, the separate refinement
techniques may be performed in any order.

Refinement is an evolving methodology: we are planning to implement ad-
ditional modules for improving orthogonal drawings as we discover and develop
further techniques.

3 Implementation and Experimental Results

3.1 Implementation

Refine-Orthogonal-Graph-Drawing has been implemented in GNU C++ Version
2.7.2 with Tom Sawyer Software’s Graph Layout Toolkit Version 2.3.1 (GLT)
and a TCL/TK graphical user interface. A set of experiments has been run on
a Sparc 5 running Sun OS 4.3.1.

Many interesting and challenging issues were addressed during the imple-
mentation of our refinement procedure. First we needed a mechanism to search
the space within the given drawing to move pieces of the drawing without oc-
cluding uninvolved nodes and edges. We represent the space of the drawing with
a dynamic orthogonal grid structure in which rows and columns may be added
at any point within the space. Nodes and edges of the drawing are represented
with grid segments.

As mentioned in the previous section, we recommend the use of parametric
options for allowing or disallowing the addition of area, bends, crossings, or
edge length. Furthermore, it is not necessary for these parametric options to
be binary. For example, adding x amount of area is allowable if y crossings are
removed, where x and y are some thresholds. We do not expect that any single
set of parametric options would be appropriate for every application. Therefore,
the definition of this set of options should be decided by the implementor. In



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 82

the experimental study presented in Section 3.2 we used a set of parametric
options which would allow the addition of area, bends, crossings, and edge
length in order to test the strength and weaknesses of the entire set of refinement
techniques. We also allow the movement of edge attachment points. As shown
with the results of this experimental study, Refine-Orthogonal-Graph-Drawing
overall improves these aesthetics although they may be temporarily increased
during a single step.

Each of the refinement modules can be viewed as a local search technique.
The module which shortens U-Turn edges searches the grid starting at the row
or column next to the endpoint of the first or third edge segment (whichever is
placed closer to the middle edge segment) looking for a placement which does
not occlude any nodes or edges. We search the grid toward the old placement
until sufficient space is found. At worst, this will be the old placement. See
Figure 3. It is important to note that the edges involved in the U-Turn may

u

v

uu

v

Figure 3: Fixing a U-Turn edge. The left illustration shows the nodes and edges
in their original positions. The endpoints of the middle segment are shown with
circles and the source and target of the U-Turn with boxes. The right illustration
shows the final placement.

actually represent a chain of degree two nodes, therefore we must detect that
situation and be sure to place those nodes only where there is sufficient space in
the grid. This means that none of the relocated edge segments (or nodes, if this
edge represents a chain of degree two nodes) can overlap any previously placed
node or edge. Also, we examine each set of three contiguous segments in each
edge so that we can catch more of the U-Turns. This is especially important
when we are dealing with degree two chains. It is possible that we can remove
bends with this refinement module. See Figure 4. For example, if there is room
on the top side of node v in Figure 4 (a) for the attachment of edge (u, v) we
can remove one bend. Of course, if this edge is a super edge, we must make
sure that there is room for the placement of each of the degree two nodes in the
grid. The illustration in Figure 4 (b) shows how multiple U-turns in a single
edge can also be fixed.

The superfluous bends module examines each set of three contiguous edge
segments in every edge. For each set, call one endpoint of the middle edge



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 83

u

v

u

v

u

v

(a)

u

v

u

v

(b)

Figure 4: Removing bends with the U-Turn module. The illustration marked
(a) demonstrates how one bend of a U-turn can be removed. The illustration
marked (b) demonstrates how an edge with multiple U-turns is handled by
Refine-Orthogonal-Graph-Drawing.

segment x and the other y. Define a and b to be the points shown in Figure 5.
If space in the drawing allows, then place x at a or y at b. No occlusions are
allowed. Again, it is possible that superfluous bends may appear multiple times
in an edge, this is the reason for examining each set of three contiguous edge
segments.

The self crossing module removes crossings as specified in Step 3 of our
refinement procedure. Since the grid is dynamic, we insert the new gridlines
inside the node to fix a near self crossing on the appropriate side and that
automatically forces the node to grow. It is possible that a node will be grown
multiple times. For far self crossings of a degree three or higher node, a row
or column is inserted at that crossing (see Figure 6 for examples). If adding
a row increases the size of some node, but adding a column does not, then
our refinement procedure will use the solution which adds a column. The first
far self crossing solution is for the case where the node is degree two while
the second solution is for higher degree nodes. If the node is degree two, our
procedure for refinement searches the space in the grid at the self crossing to
determine if the there is enough space for the node to be placed there. If so, the
node is moved and the endpoints of the incident edges are updated at the newly
moved node. The positions of the neighbors are always maintained. The second
solution adds two bends and therefore the superfluous bends refinement module



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 84

a

b

x y

a

b

y

a

b

x

x

y

Figure 5: Superfluous bend solutions. The old edge routing is shown with a
dashed line in the two illustrations on the right.

should be run on the new drawing to remove these extra bends if possible.
The user has a parametric option for this module to allow the addition of rows
and columns as necessary to avoid adding any crossings or to allow crossings
to remain. This option gives the user the ability to decide to give priority to
area or crossing reduction. We believe that reducing the number of crossings is
paramount and chose the first parametric option for our experiments. In part,
this decision was influenced by the study presented in [27] which showed the
number of crossings to have a very significant effect on quality. This is certainly
not to say that avoiding crossings will always cause the addition of area. In fact
we found in our experimental study that in many drawings, the area will still be
reduced while avoiding crossings. Also, note that the attachment points of the
two crossing edges may be swapped so that the self crossing is removed while the
positions of the neighbors are not changed. If this movement of the attachment
points is not acceptable, the user can set a parametric option preventing this
action.

The stranded node module searches the grid from the placement of the neigh-
bor towards the old placement of the stranded node in order to find available
space for the stranded node to be moved. At worst, this will be the old place-



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 85

<--- new row

(a) (b)

Figure 6: Near(a) and far(b) self crossing solutions. Old node placements and
edge routings are shown with dashed lines.

ment. If the lone incident edge of the stranded node represents a chain of degree
two nodes, then this process is iteratively carried out for degree two node from
the neighbor node (i.e. the node with degree higher than two) to the stranded
node. See Figure 7.

A

B

A B

Figure 7: Fixing stranded node B with an incident edge that represents a degree
two chain. The refined solution appears on the right. Notice that not only are
we placing related nodes closer to each other, but also unwrapping a poorly
routed set of edges.

The module which fixes poor placement of degree two nodes, first expands
the super edges and then visits each newly restored degree two node to verify
that it lies either on a bend or in the midst of its two incident edges. See
Figure 8. These refinements reduce the number of bends and produce drawings
with a better distribution of node placements for the incident edges. Since the
refinement modules described in this paper can be applied in any order, if there
are any more refinements to be done after the completion of this module, any
degree two chains should be reduced again.

The implementation of the compaction module is inspired by one dimensional
VLSI layout compaction [10, 17, 20]. A one dimensional graph-based compaction
is performed once each for the horizontal and vertical directions. Compaction



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 86

Figure 8: Refining poor placement of degree two nodes. The illustration on the
left shows the movement of degree two nodes to remove bends while the right
demonstrates a node placement with better distribution.

is a NP-Hard problem [20] and therefore efficient one-dimensional compaction
techniques are not guaranteed to produce optimal solutions. Similar types of
compaction modules have also been successfully used in [2, 31, 33].

It is recognized that different users may want different types of drawings and
need to refine a specific aesthetic quality. Also different algorithms merit the use
of different types of refinement: classes of orthogonal drawing algorithms inher-
ently have strengths and weaknesses with respect to different aesthetic criteria.
Static orthogonal graph drawing algorithms either planarize and then embed
with a planar algorithm or proceed in an essentially incremental fashion. While
the problems described in the previous section occur with all of the orthogonal
algorithms surveyed, some types of problems occur more frequently in a par-
ticular class of orthogonal algorithms. For example, planarization algorithms
have a tendency to have some very long edges and place nodes far away from
their neighbors. Incremental algorithms tend to have superfluous bends. Our
refinement methodology automatically detects these problems and fixes them
regardless of the class of algorithm used to create the drawing. Furthermore,
the quality of a drawing before refinement depends heavily on a chosen algo-
rithm, and even more heavily on the implementation of that algorithm. Our
refinement methodology fixes problems caused by both the algorithms and their
implementations.

Our implementation communicates with the user via a graphical user in-
terface which allows the user to perform a desired set of refinements in any
order. This flexibility adds power to refinement in that the user can refine any
orthogonal drawing in a manner which is application specific. Figure 9 shows
the user interface of our tool. Note the nine square buttons on the left side of
the interface. These buttons invoke the refinement modules. Our design and
implementation allows the user to choose the types and order of refinement to be
performed. For example, if the user would like to remove only the self crossings,
then that button is chosen. The refined drawing quickly appears on the can-



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 87

Figure 9: The Graphical User Interface for The Refinement Tool. Buttons for
individual and combined refinement types appear on the left while statistics
for the drawing appear at the top. The user also has options to save postscript
images and view the drawings at different scales. This functionality is contained
within the menu bar. In this example, refinement reduces the area by 29%,
crossings by 11%, bends by 12%, and total edge length by 24%.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 88

vas and the statistical information at the top of the interface shows how many
crossings were removed. The user can also choose to perform the refinement
modules which deal with just the edges by selecting the “Edges” button. For
the quickest application of all the refinement modules, the user chooses “ALL”.
The refinements are performed in the same order as their respective buttons
appear on the interface. This ordering may easily be configured for each user:
the individual techniques work in the same manner although the final outcome
may be different.

We have designed and implemented all of our refinement techniques to take
linear time with respect to the number of grid segments. Typically the num-
ber of grid segments is bounded by the number of nodes and edges and hence
refinement takes O(n + m) time, where n is the number of nodes and m is the
number of edges.

3.2 Experimental Results

We have conducted a set of experiments with an implementation of our refine-
ment procedure. The source drawings are 1400 layouts of the graphs used in the
experimental study of [8], which we will refer to as the Rome Graphs, (avail-
able at http://www.inf.uniroma3.it/people/gdb/wp12/ LOG.html) which
range in size from 10 to 65 nodes and are produced by the Bend-Stretch, Col-
umn, Giotto, and Pair algorithms as implemented at Brown University’s Graph
Drawing Server [4] (http://loki.cs.brown.edu:8081/graphserver/), and by
GLT. Each drawing was given as input to our refinement implementation and
data collected as to the improvements made in area, bends, edge crossings, and
total edge length for each drawing. A table summarizing the average percent
improvement for this set of aesthetics over drawings from the five layout algo-
rithms is given in Figure 10.

In the table, the left column of percentages for each algorithm represents the
average improvement over all drawings. This includes the drawings for which our
techniques are unable to improve the drawing with respect to that aesthetic. The
second column of percentages for each layout technique represents the average
percent improvement for those drawings which our approach was able to strictly
improve. The row marked δ, represents the average percent improvement made
with respect to all four aesthetics for that particular algorithm. ∆ represents
the average percent improvement made for area, bends, crossings or edge length
over all of the experimental source drawings. Note that refinement acts on
the input drawing which is produced by a specific implementation of a chosen
algorithm. As such, refinement improves aesthetic qualities caused by possible
problems of both a chosen algorithm and the implementation of that algorithm.

Our implementation of refinement makes a 37% improvement on average in
both area and total edge length. This huge improvement is due largely to the
modules of our techniques which shorten long edges. As it is well known in
the VLSI circuit design field, the area is usually dominated by the amount of



J.Six
et

al.,R
efinem

ent
of

O
rthogonal

D
raw

ings,
JG

A
A
,
4(3)

75–103
(2000)89

30

All Better

Bend-Stretch

All Better

Column

All Better All Better All Better All Better

∆GLTPair

Area

Bends

Crossings

Edge Length

29

18

10

31

32

21

29

32

53

45

49

55

53

45

51

55

7

2

2

15

12

18

61

42

39

53

61

43

45

53

33

10

23

22

37

25

30

26

37

23

25

37

40

29

35

3822 24

δ 22 29 51 51 8 17 49 51 22

Giotto

F
igure

10:
Sum

m
ary

of
results

from
experim

entalstudy.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 90

wiring. Likewise, the area of graph drawings is often dominated by the edge
lengths. So our methods which shorten the total edge length also inherently
decrease the area. Hence we see a proportional improvement in both area and
total edge length. In addition the area is also reduced by the compaction phase.
Although several orthogonal layout algorithms already use a compaction phase,
our compaction has such a significant effect since other phases of refinement have
simplified the drawing by reducing its geometric complexity. Therefore, pieces
of the drawing have more freedom to move and can therefore be compacted
more efficiently.

Our experiments also show about 24% improvement on average with respect
to bends and crossings. This is due to the modules which particularly refine
those elements.

Refinement significantly improves drawings created by each of these orthog-
onal algorithms. As mentioned earlier, every layout algorithm has a set of
strengths and weaknesses. These strengths and weaknesses with respect to area,
bends, crossings and total edge length are apparent in the numbers collected for
each algorithm in our experiments. Giotto is the most evolved implementation
of the Graph Drawing Server (GDS) and thus refinement has a lesser impact
on these drawings. One of the main steps of Giotto finds the minimum number
of bends of the embedded planarized graph [33]. Our refinement improved the
number of bends by an average 2%. Improvement is possible since some of our
refinement modules slightly modify the embedding. When our tool was able to
improve the number of bends, the improvement was on the average 12%, with
some improvements up to 33%. The planarization step of Giotto causes some
nodes to be placed far from their neighbors, hence we see a more significant
improvement of 22% with respect to total edge length.

Likewise we notice similar behavior with GLT. Their implementation allows
each edge to have at most one bend. So the average improvement in the number
of bends is 10% compared to the average 23%. Column and Pair drawings ex-
perience very significant improvements of each aesthetic. Especially notice the
average 45% and 42% improvements in the number of bends and the average
55% and 53% improvements in total edge length. This is related not only to the
nature of these algorithms, but also to the implementation of these algorithms
in the GDS. Instead of dividing input graphs into biconnected components and
performing a layout on each component, the GDS implementations of Column
and Pair augment graphs to make them biconnected and then perform the lay-
out on the augmented graph. The augmenting edges are removed during the
final step and the resulting drawing shows only the input graph. This imple-
mentation decision has increased the geometric complexity of many Column
and Pair drawings. Our refinement techniques provide a 10% to 31% average
improvement of Bend-Stretch drawings for all aesthetics considered.

It is important to note the difference between the “All” percentages and
the “Better” percentages. All five of these orthogonal algorithms produce good
drawings: sometimes the number of crossings and bends is already very low, or



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 91

even optimal in a few cases. Of course, the refinement tool cannot reduce the
number of bends in a drawing which already has the lowest possible number of
bends. Also, some layouts do not allow the embedding to be refined much.

Example drawings from Bend-Stretch, Column, Giotto, Pair, and GLT along
with their refined drawings are included in Figures 11 - 19. Another such ex-
ample for Giotto appears in Figure 1.

4 Conclusions and Future Work

In this paper we presented efficient postprocessing techniques to improve aes-
thetic qualities of any orthogonal graph drawing. Specifically, we focused on
reducing the area, number of bends, number of crossings and total edge length.
An experimental study conducted over a set of drawings from five well known
algorithms produced very good results. An average 37% improvement was made
in area, 23% in bends, 25% in crossings, and 37% in edge length.

Refinement is an evolving methodology. We plan to implement more modules
of refinement as we develop further techniques to improve orthogonal graph
drawings. Also, we plan to further enhance the graphical user interface of our
refinement tool so that the refinement process can be even more tailored to an
individual user’s needs. More parametric options will be added. Further, we
would like to capture the user’s modal interactions with the nodes and edges so
that we can further improve the quality of given drawings to some application-
specific standard.

Acknowledgments

The authors would like to thank Uğur Doğrusöz and Therese Biedl for their
technical advice. We are also grateful to Stina Bridgeman, Roberto Tamassia
and the Graph Drawing group at Brown University for the Graph Drawing
Server which is a great resource. We also wish to thank the referees for several
useful suggestions.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 92

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

1819

20
21

22

2324

25

26

27

28

29

3031

32

33

34

35

36

37

38

1

2

3

7

10

12

13

14

16

1819

20

22

2324 26

27

28

29 33

34

35

36

38

37
8

4

525

302131

32

6

9 11

15

17

Figure 11: One of the Rome graphs as drawn with Bend-Stretch on the top.
The same drawing after refinement on the bottom (same scale). There is a
34% improvement in area, 24% in the number of bends, 33% in the number of
crossings, and 39% in the total edge length.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 93

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 1

2

3

6

7

8

9

10

11

12

13

14

17

4

16

18

15 19

5

Figure 12: One of the Rome graphs as drawn with Column on the left. The same
drawing after refinement on the right (same scale). There is a 47% improve-
ment in area, 42% improvement in the number of bends, 40% in the number of
crossings, and 56% in the total edge length.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 94

1

2

3

45

6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

2324

25

1

2

3
4

5
6

7

8

9

10

13

15

18

19

20

22

23

25

12

17

1124

16

21

14

Figure 13: One of the Rome graphs as drawn with GLT on the top. The
same drawing after refinement on the bottom (same scale). There is a 34%
improvement in area, 40% improvement in the number of bends, 100% in the
number of crossings, and 36% in the total edge length.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 95

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

2

3

4

6

7

8

14

23

5

19

22

1

12

20

9

21

13

10

11

18

15

16

17

Figure 14: One of the Rome graphs as drawn with Column on the left. The same
drawing after refinement on the right (same scale). There is a 46% improvement
in area, 73% improvement in the number of bends, 100% in the number of
crossings, and 68% in the total edge length.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 96

1 23

4

5

6

7

8
9

10

11

12

13

14

15

16

17

18

19

20

21
22

23

24

25

26
27

28

29

30

31

32

33
34

35

1
2

3

4

5
7

8
9

10

12
13

15

16 17

18

19
20

22
24

26

27

30

31

35
28
14

6
29

33
34

113221 23

25

Figure 15: One of the Rome graphs as drawn with PAIR on the left. The same
drawing after refinement on the right (same scale). There is a 65% improve-
ment in area, 35% improvement in the number of bends, 56% in the number of
crossings, and 66% in the total edge length.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 97

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

3132

33

34

35

36

37

38

39

13

5

7

9

12

13

15

16 20

21

22

23

24

25

26

27

28

29

30

3132

33

34

36

37

17

24

18

1910

11

14

3538

39

6

8

Figure 16: One of the Rome graphs as drawn with Giotto on the top. The
same drawing after refinement on the bottom (same scale). There is a 19%
improvement in area, 6% improvement in the number of bends, 20% in the
number of crossings, and 17% in the total edge length.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 98

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1

5

6

7

11

12

14

15 19

20

22

24

2113

2

8

9 3

17

23

10 4

16

18

Figure 17: One of the Rome graphs as drawn with PAIR on the left. The same
drawing after refinement on the right (same scale). There is a 49% improve-
ment in area, 64% improvement in the number of bends, 50% in the number of
crossings, and 60% in the total edge length.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000) 99

1

2

3

4

56

7

8

9

10

11
12

1314

15

16

1718

19

20

21

222324

25

26
27

28 29

30

31

32

33

34

35

36

37

383940

41

42

43 44

45

46

47

48

49

50

5152

1

3

4

69

10

1112

1314

15

16

17

19

20

21

2224

25
27

28

30

31

34

35

37

38

41

42

43

48

5152

49

29

2

5

7

8

18
2347

50

26

3246

33

363940

44

45

Figure 18: One of the Rome graphs as drawn with Bend-Stretch on the top.
The same drawing after refinement on the bottom (same scale). There is a
35% improvement in area, 10% in the number of bends, 43% in the number of
crossings, and 26% in the total edge length.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000)100

1

2

3

4

5

6

7

89

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42
43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

2

3

4

6
7

89

10

11

12

13

14

15

18

19

20

22

23

24

26

27

28

30

31

32

33

35

37

39

41

42

44

45

47

48

50

51

52

54

58

17

36

61

34

46

1 62

60

38

40

43

49

53

55

56

57

21

25

29

59

5

16

Figure 19: One of the Rome graphs as drawn with GLT on the left. The same
drawing after refinement on the right (same scale). There is a 42% improve-
ment in area, 30% improvement in the number of bends, 36% in the number of
crossings, and 41% in the total edge length.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000)101

References

[1] T. Biedl and G. Kant, A Better Heuristic for Orthogonal Graph Drawings,
Computational Geometry: Theory and Applications, 9(1998), 1998, pp. 159-
180.

[2] T. C. Biedl, B. P. Madden and I. G. Tollis, The Three-Phase Method:
A Unified Approach to Orthogonal Graph Drawing, Proc. GD ’97,
LNCS 1353, Springer-Verlag, 1997, pp. 391-402. Also available at
http://www.utdallas.edu/∼tollis.

[3] S. Bridgeman, J. Fanto, A. Garg, R. Tamassia and L. Vismara, Interactive
Giotto: An Algorithm for Interactive Orthogonal Graph Drawing, Proc.
GD ’97, LNCS 1353, Springer-Verlag, 1997, pp. 303-308.

[4] S. Bridgeman, A. Garg and R. Tamassia, A Graph Drawing and Translation
Service on the WWW, Proc. GD ’96, LNCS 1190, Springer-Verlag, 1997,
pp. 45-52.

[5] R. F. Cohen, G. Di Battista, R. Tamassia and I. G. Tollis, Dynamic Graph
Drawings: Trees, Series-Parallel Digraphs, and Planar ST-Digraphs, SIAM
J. Computing, 24(5), October 1995, pp. 970-1001.

[6] G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Algorithms for
Drawing Graphs: An Annotated Bibliography, Computational Geome-
try: Theory and Applications, 4(5), 1994, pp. 235-282. Also available at
http://www.utdallas.edu/∼tollis.

[7] G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis, Graph Drawing:
Algorithms for the Visualization of Graphs, Prentice-Hall, 1999.

[8] G. Di Battista, A. Garg, G. Liotta, R. Tamassia, E. Tassinari and F. Vargiu,
An Experimental Comparison of Four Graph Drawing Algorithms, Com-
putational Geometry: Theory and Applications, 1997, pp. 303-325. Also
available at http://www.cs.brown/∼rt.

[9] C. Ding and P. Mateti, A Framework for the Automated Drawing of Data
Structure Diagrams, IEEE Transactions on Software Engineering, 16(5),
1990, pp. 543-557.

[10] J. Doenhardt and T. Lengauer, Algorithmic Aspects of One Dimensional
Layout Compaction, IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 6(5), 1987, pp. 863-879.

[11] C. Esposito, Graph Graphics: Theory and Practice, Computers and Math-
ematics with Applications, 15(4), 1988, pp. 247-253.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000)102

[12] S. Even and G. Granot, Rectilinear Planar Drawings with Few Bends in
Each Edge, Tech. Report 797, CS Dept., Technion, Israel Inst. of Tech.,
1994.

[13] Jody Fanto, Postprocessing of GIOTTO drawings, Student project, Brown
University, Summer 1997.

[14] U. Fößmeier, Interactive Orthogonal Graph Drawing: Algorithms and
Bounds, Proc. GD ’97, LNCS 1353, Springer-Verlag, 1997, pp. 111-123.

[15] U. Fößmeier, C. Heß and M. Kaufmann, On Improving Orthogonal Draw-
ings: The 4M-Algorithm, Proc. GD ’98, LNCS 1547, Springer-Verlag, 1998,
pp. 125-137.

[16] U. Fößmeier and M. Kaufmann, Algorithms and Area Bounds for Non-
planar Orthogonal Drawings, Proc. GD ’97, LNCS 1353, Springer-Verlag,
1997, pp. 134-145.

[17] M. Y. Hsueh, Symbolic Layout and Compaction of Integrated Circuits,
Ph.D. Thesis, University of California at Berkeley, Berkeley, CA, 1979.

[18] G. Kant, Drawing Planar Graphs Using the Canonical Ordering, Algorith-
mica, 16(1), 1996, pp. 4-32.

[19] C. Kosak, J. Marks and S. Shieber, Automating the Layout of Network Dia-
grams with Specified Visual Organization, IEEE Transactions on Systems,
Man, Cybernetics, 24(3), 1994, pp. 440-454

[20] Thomas Lengauer, Combinatorial Algorithms for Integrated Circuit Layout,
John Wiley and Sons, 1990.

[21] K. Miriyala, S. W. Hornick and R. Tamassia, An Incremental Approach to
Aesthetic Graph Layout, Proc. Int. Workshop on Computer-Aided Software
Engineering (Case ’93), 1993, pp. 297-308.

[22] K. Misue, P. Eades, W. Lai and K. Sugiyama, Layout Adjustment and
the Mental Map, J. of Visual Languages and Computing, June 1995, pp.
183-210.

[23] A. Papakostas, Information Visualization: Orthogonal Drawings of Graphs,
Ph.D. Thesis, University of Texas at Dallas, 1996.

[24] A. Papakostas, J. M. Six and I. G. Tollis, Experimental and The-
oretical Results in Interactive Orthogonal Graph Drawing, Proc. GD
’96, LNCS 1190, Springer-Verlag, 1997, pp. 371-386. Also available at
http://www.utdallas.edu/∼tollis.



J. Six et al., Refinement of Orthogonal Drawings , JGAA, 4(3) 75–103 (2000)103

[25] A. Papakostas and I. G. Tollis, Algorithms for Area-Efficient Orthogo-
nal Drawings, Computational Geometry: Theory and Applications, 9(1998)
1998, pp. 83-110. Also available at http://www.utdallas.edu/∼tollis.

[26] A. Papakostas and I. G. Tollis, Issues in Interactive Orthogonal Graph
Drawing, Proc. GD ’95, LNCS 1027, Springer-Verlag, 1995, pp. 419-430.
Also available at http://www.utdallas.edu/∼tollis.

[27] H. Purchase, Which Aesthetic has the Greatest Effect on Human Under-
standing, Proc. of GD ’97, LNCS 1353, Springer-Verlag, 1997, pp. 248-261.

[28] M. Schäffter, Drawing Graphs on Rectangular Grids, Discr. Appl. Math.,
63(1995), pp. 75-89.

[29] J. M. Six, K. Kakoulis and I.G. Tollis, Refinement of Orthogonal Graph
Drawings, Proc. GD ’98, LNCS 1547, Springer-Verlag, 1998, pp. 302-315.
Also available at http://www.utdallas.edu/∼tollis.

[30] J. Storer, On Minimal Vertex-Cost Planar Embeddings, Networks 14(1984),
pp. 181-212.

[31] R. Tamassia, On Embedding a Graph in the Grid with the Minimum Num-
ber of Bends, SIAM J. Comput., 16(1987), pp. 421-444.

[32] R. Tamassia, G. Di Battista and C. Batini, Automatic Graph Drawing
and Readability of Diagrams, IEEE Transactions on Systems, Man, and
Cybernetics, 18(1), 1988, pp. 61-79.

[33] R. Tamassia and I. G. Tollis, Planar Grid Embeddings in Linear Time,
IEEE Trans. on Circuits and Systems CAS-36, 1989, pp. 1230-1234.

[34] I. G. Tollis, Graph Drawing and Information Visualization, ACM
Computing Surveys, 28A(4), December 1996. Also available at
http://www.utdallas.edu/∼tollis/.


