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GENERALIZED DOMAINS OF SEMISTABLE
ATTRACTION OF NONNORMAL LAWS

M.M. MEERSCHAERT AND H.-P. SCHEFFLER"?

Abstract. Operator semistable laws are the natural multivariable ana-
logue of semistable laws in one variable. Operator semistable laws occur as
the limit of normalized and centered sums of i.i.d. random vectors when
we consider only the sums which terminate at some k,, with the ratio of
successive k, tending to some constant ¢ > 1. The generalized domain of
semistable attraction of an operator semistable law consists of all such un-
derlying distributions, when we allow normalizing by linear operators. In
this paper we give concise necessary and sufficient conditions for a probabil-
ity distribution to belong to the generalized domain of semistable attraction
of any operator semistable law having no normal component. These results,
together with the case of a normal limit, constitute a more general frame-
work in which an i.i.d. sum of random vectors can be usefully approximated
by a limit distribution. We anticipate a number of applications to multi-
variate analysis for random vectors whose covariance matrix is undefined
because of heavy tails.
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1. Introduction. Suppose that X, X7, X5, X3,... are independent ran-
dom vectors on IR? with common distribution g. Suppose that Y is a ran-
dom vector on IR? whose distribution v is full, i.e. it cannot be supported
on any d — 1 dimensional hyperplane. If there exist linear operators A,, and
nonrandom vectors b,, such that

An(Xa+ -+ X)) —bp =Y (1.1)

for some sequence of natural numbers k,, — oo with ky41/k, — ¢ > 1, then
we say that p belongs to the generalized domain of semistable attraction
of v. The class of all possible limiting distributions is called the operator
semistable laws. Operator semistable laws are the natural multivariable
analogue of the semistable laws in one dimension, see [7] and [11]. They may
also be considered a generalization of the operator stable laws. Operator
stable laws form the class of all possible limiting distributions in (1.1) in
the special case where k,, = n, see [23].

Generalized domains of semistable attraction are important because they
represent a more general context in which the sum X7 + --- + X, of i.i.d.
random vectors can be usefully approximated by a limit distribution. This
allows statistical inference on the distribution of the sum. If E||X]? exists
then the limit is normal, and the central limit theorem applies (see Section
4 below). In the remaining case, the tails of X are too heavy to allow
for the existence of a finite covariance matrix. Heavy tail distributions are
important in a number of real applications. See [8] for an excellent survey
of this area including applications to physics, chemistry, and economics.
Convergence criteria for generalized domains of attraction are known, but
their application requires the assumption of regularly varying tails. This
does not allow for the tail oscillations seen in many real problems, such
as seasonal time series models. The approach of this paper allows such
oscillations. We believe that generalized domain of semistable attraction
will prove useful in many real applications, since it allows a more robust set
of statistical assumptions to be employed.

Full operator semistable laws were characterized in [7]. If ¢ = 1 then the
limiting distribution v in (1.1) is operator stable. If ¢ > 1 then v is still
infinitely divisible, and satisfies

v = Br*d(a) (1.2)
for some invertible linear operator B on R? and some b € IR%. Here v°
is the c-fold convolution product of v, Bv{dxz} = v{B~ldz}, and é(z) is
the unit mass at € RY. We say that v is (B,c) operator semistable.

In this paper we restrict our attention to the case where v has no normal
component. In that case, the complex absolute value of every eigenvalue of
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B must exceed /c. See the Theorem in [7] and [12] for more details about
operator semistable laws.

Let GL(IR?) denote the collection of all invertible linear operators on IR%.
If (1.1) holds with all of the norming operators A,, contained in some sub-
collection D of GL(IRd), we say that p belongs to the D-normed domain
of semistable attraction of v. D-normed domains of semistable attraction
where D consists of scalar multiples of the identity, and the case where D
consists of all linear operators whose matrix with respect to the standard
basis for R is diagonal with all positive entries, were characterized in [20].
The paper [9] also characterized the domain of normal attraction of a non-
normal (B, c¢) operator semistable law, in which we assume that k, = [¢"]
and A, = B™". If (1.1) holds with k, = n, we say that p belongs to
the generalized domain of attraction of the operator stable limit law v. A
modern reference on operator stable laws is [10]. Necessary and sufficient
conditions for a probability measure u to belong to the generalized domain
of attraction of some full operator stable law v can be obtained from the
criteria of [19] for convergence of a triangular array of random vectors. The
papers [5] and [13] give alternative necessary and sufficient conditions. In
this paper, we will adapt the methods of [13] to extend the results of [20]
to the general case D = GL(IR?).

2. Preliminaries. The basic tools we will use to study generalized
domains of semistable attraction are the Lévy representation for infinitely
divisible laws, and the standard convergence criteria for triangular arrays
of random vectors. See [1] and [19]. If v is an infinitely divisible probability
measure on IR?, we can write the characteristic function of v in the form
exp(f(t)) where

. 1 ; i(t, )
t) =ila,t) — = t+/ gm0 gy 2.1
s =ife) =500+ [ e el ()
where a € RY, Q(t) is a nonnegative definite quadratic form on RY, and ¢
is a Lévy measure on I' = R?\ {0}. In other words, ¢ is a o-finite Borel
measure on I' such that

/ min{1, =%} ¢{dz} < oo. (2.2)
x#0

The triple [a, @, ] is called the Lévy representation of v. Suppose that
for some sequence k, — oo we have for each n that Z,;,...,7Z,;, are

independent and identically distributed with distribution p,. Then there
exist b, € RY such that Z,1 + -+ + Zuk, — by = Y if and only if
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and

im limsup k, ,x)? pp{de} — @) pn{d})®
g i sup < [ e sy ([ ot })().%)

= lim limin x)? Ty — z x})?
St ([ b= () ) ?)
=Q(t)

for some nonnegative definite quadratic form Q(¢) and some Lévy measure
¢ on T =1R?\ {0}. In this case, the distribution of the limit Y is infinitely
divisible with Lévy representation [a, @, ¢], where a € R depends on the
choice of centering constant b,,. The convergence (2.3a) is vague convergence
in the space of o—finite Borel measures on I'. In this topology we have
v, — v if v,(A) — v(A) for all Borel sets A C T' bounded away from
the origin whose topological boundary has v—measure zero. The centering
constants b,, may be chosen according to the formula

b, = ky, x pp{dr} (2.4)
o<||z||<r
where 7 > 0 is chosen so that the domain of integration in (2.4) is a ¢—
continuity set.

In order to simplify the proofs in the next section, we will use regular
variation. Regular variation is a powerful analytic tool which has found
numerous applications in probability theory, see [3]. Regular variation in IR
was introduced in [14]. The papers [15], [16] contain two applications of the
theory to generalized domains of attraction and operator stable laws in R
In the present context we require a generalization of regular variation called
R-O variation. For a modern reference see [22]. In the case of monotone
functions, R—O variation is sometimes called monotone variation. A Borel
measurable function R(r) is R O varying if it is real valued and positive for
r > A and if there exist positive constants tg > 1,m < 1, M > 1 such that
m < R(tr)/R(r) < M whenever 1 <t <ty and r > A. We will say that the
function R(r,z) is uniformly R-O varying if it is an R—O varying function
of r for each x, and the constants A, ty, m, M can be chosen independent of
z. A necessary and sufficient condition for uniform R O variation is that
mt" < R(tr,z)/R(r,z) < Mt whenever t > 1 and r > A. Here we have
let h =log m/logty and H =log M/log to.
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Suppose that x is a probability measure on IR?, and define the truncated
moments Uy, V,, as in [4], i.e. for a,b > 0 let

Vi(r,z) — / 0 R(dt, )

Uy(r,z) — /0 " R(dt, ) (2.5)
where R(r,z) = p{y : [{z,y)| <r}.

Theorem 2.1. Suppose that for a probability measure p there exist a se-
quence ky, of natural numbers tending to infinity with kni1/kn, — ¢ > 1 and
linear operators A, such that

knApp — ¢ (2.6)

for some o-finite Borel measure ¢ on T = R\ {0} which cannot be supported
on any d — 1 dimensional subspace of R?, and which satisfies c¢ = B¢ with
|B] > /¢ for all eigenvalues B of B. Define X = min{|5|}, A = max{|3|},
where 3 ranges over the eigenvalues of B. Then for any compact set K C T’
and any € > 0:
(i) If b > log ¢/ log A then for some A >0 and M > 0, we have
Up(tr, x)
Ub (Tv iE)
forallt>1,r> A, and x € K;
(ii) For some A >0 and m > 0, we have

Vo(tr, ) —e—logc/log A
DU > e logc/los 2.8
Vo(r.z) = 28

forallt>1,r> A, andx € K.

< Mtb-!—a—log c/log A (27)

The proof of both parts is similar, and so we will only prove part (ii).
In order to make the proof easier to read, we begin with a few simple
lemmas. In each of these, we assume the hypotheses of the theorem. Since
the absolute value of any eigenvalue of B must exceed y/c > 1, we must have
A > 1. Recall that if 3 is an eigenvalue of B, then ( is also an eigenvalue of
B*, and B! is an eigenvalue of B~

Lemma 2.1. Given o € (1,\) and a relatively compact set S C T, there
erists a positive integer ko such that

I(B*) Fz|| < a™® (2.9)
for all k > ko and all x € S.
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Proof. 1f B1,...,B3, is the spectrum of B, then the spectrum of the lin-
ear operator a(B*) ! is aﬂfl, e, Q ;1, and so the absolute value of any
of these eigenvalues is no larger than a/\ < 1. Thus of||(B*) *z| — 0

uniformly on compact sets, which proves the lemma. ]

The next lemma gives bounds on the tails of ¢. Define

9(z) = o{y : [z, y)| > 1} (2.10)
for all x € T'. Since c¢¢p = B¢, we have cg(z) = g(B*x) for all x € I'. Since
¢ cannot be supported on any proper subspace of R?, we must also have
g(x) > 0 for all z € I', and in fact g(z) is bounded away from both zero and
infinity on any compact subset of I'.

Lemma 2.2. Given a € (1,\) and a relatively compact set S C T, there
ewists to > 1 and dg > 0 such that

9(y)
whenever 1 <t <ty andy € S.

t —logc/ log o

Proof. 1t suffices to prove the lemma for sets of the form S = {y € R? :
a < |ly|| < b}, where 0 < a < b such that I' = |J B¥S where k ranges over
the integers. Now apply Lemma 2.1 and set ty = o*0a. Given y € S and
t € [1,to], we can write y/t = (B*)~*y/ for some k and some 3’ € S. Since

1(B)*y/|| = |ly/t]] > a/ty = a* we see from Lemma 2.1 that k < ko.
Then

gy/t) _ g(B)*y) _ Py

9(y) 9(y) 9(y)

is bounded below by ¢ . L, where L is a lower bound of g(y')/g(y) for
v,y € S. Now compute that ¢=50 = (t5/a)~'°8¢/18e  This proves the
lemma, since now (2.11) holds with &y = Lalos¢/log e O

Define
F(z) = ply - [(z,y)[ > 1} (2.12)
for all z € I'. The next lemma gives bounds on the growth rate of the tail
function F'.
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Lemma 2.3. Given a € (1,\) and a relatively compact set D C T, there
exists t1 > 1, 81 > 0, and ng > 1 such that

FULL/) | 5 toe/tos
F(Ayzx)
whenever n > ngy, 1 <t <ty and x € D.

(2.13)

Proof. 1t suffices to prove the lemma for sets of the form D = {y € R? :
b < |ly| < d}. Apply Lemma 2.2 with S = {y : b/2 < |jy|| < 2d}, and
then let 1 = tp/2. It follows easily from (2.6) that k,F(A)z,) — g(z)
whenever z,, — x, provided that H(z) = {y : |(z,y)| > 1} is a ¢ continuity
set. Let K = {y:b/t1v/2 < ||y|| < V/2d} and note that F(A%z)/F(A%x') —
g(z)/g(z") uniformly over all z,2" € K such that both H(z) and H(z') are
¢—continuity sets. Given any z € D and t € [1,t1], we may always choose
1 < s < /2 such that both H(z/st) and H(sx) are ¢—continuity sets. Now
observe that

F(A:z/t) - F(Arz/st) . g(x/st)

F(Axz) — F(Afsx) g(sx)
uniformly in 2 € D and 1 < s < v/2 such that both H(z/st) and H(sz) are
¢ continuity sets. Choose € > 0 small and let ng be sufficienctly large to
make |F(Afx)/F(ALx") — g(x)/g(z")| < € for all n > ng and all z,2" € K
such that both H(z) and H(z') are ¢—continuity sets. Since sz € S and
1 < st < ty, we can apply the lower bound of Lemma 2.2 along with the
uniform convergence to see that the expression on the left hand side of (2.13)
is bounded below by dopt, loge/logar _ - phjg proves the lemma, since now
(2.13) holds with &; arbitrarily close to 2~ 1°8¢/198 5, depending on e. [

Lemma 2.4. The sequence {(A}, )" A%} is relatively compact.

Proof. Suppose S is a ¢—continuity set with positive ¢ measure of the form
S={a<y<b}for0<a<b Let a, = k,Au(S), a = ¢(5) and let
Un, v denote the restriction of the measures o, 'k, A, 1o to the set S.
Then v, = v as probability measures and it is easy to see that v is full.
Define T, = cA,+14,, 1 and observe that 7},14, = v. Then the convergence
of types theorem of [2] implies that {7},} is relatively compact. Now take
the inverse transpose of T}, and multiply by c. ]
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Proof of Theorem 2.1. Given =z € K, we define n(r,z) = sup{n
[[(Ax)~1z|| < r}. In order that (2.6) holds where ¢ cannot be supported an
any proper subspace of IR?, we must have that p is full, and A,pu — 5(0).
Then ||A,|| — 0, and so [|A% || — 0 as well. It follows that ||(AZ)~lz| — oo
uniformly on compact subsets of I', and so n = n(r,z) is well-defined, and
tends to infinity uniformly in z € K. Define y, = (A4%) (z/r). Then
for some positive reals a and b we have by virtue of Lemma 2.4 that
alyl < 4545 yll < byl for all y € R Then [Jya|| < 1 while
(A1) " Asynll > 1, so that y, € D = {y : 1/b < [ly[| < 1} for all
n. In particular, the sequence {y,} is relatively compact. Note also that
Vo(r,z) = F(z/r), so that by Lemma 2.3 we have

‘/()(tT, iE) . F(A:;,yn/t) —log ¢/log o
Vo(r,z)  F(ASyn)
whenever 1 < t < t1, z € K, and r > ry, where ry is sufficiently large
to make n(r,z) > ng for all z € K. Since Vj is monotone, we have now
shown that V) is R O varying, uniformly on x € K. Then (2.8) follows by a
standard argument, see for example [22, Theorem A.2]. This concludes the

proof of part (ii). The proof of part (i) is similar, using results analogous to
those of Lemmas 2.1 through 2.4. O

(2.14)

3. Results. In this section we will characterize the generalized domain of
semistable attraction of an arbitrary nonnormal (B, c) operator semistable
law. As usual nonnormal means a law without a Gaussian component, i.e.
with Lévy representation [a, 0, ¢]. We will use the basic theory of infinitely
divisible laws and triangular arrays, along with the regular variation theory
developed in the previous section. The following theorem generalizes the

results of [9], [13], and [20].

’

Theorem 3.1. A probability measure p on R? belongs to the generalized

domain of semistable attraction of a full nonnormal (B, c) operator semistable
law v on R? if and only if there exist linear operators A, and natural num-

bers ky, — oo with kyy1/kn — ¢ > 1 such that

knApp — ¢ (3.1)

for some o—finite Borel measure ¢ on R?\ {0} which cannot be supported
on any d — 1 dimensional subspace of R?, and which satisfies

ch = B (3.2)
with |B| > +/c for all eigenvalues 8 of B.
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Proof. Suppose that p belongs to the generalized domain of semistable at-
traction of v full, and apply the standard convergence criteria to the trian-
gular array Z,; = A,X;. The convergence (3.1) follows immediately from
(2.3a), and (3.2) can be obtained by substituting (1.2) into the Lévy repre-
sentation (2.1). Since v is full and Q(¢) = 0 for all t € RY, it follows easily
that the Lévy measure ¢ cannot be supported on any proper subspace of
R?, and we know from [7] that |3] > /c for all eigenvalues 3 of B. This
proves the direct half of the theorem. As to the converse, the condition
(3.1) is again equivalent to the first condition (2.3a) for convergence of the
triangular array. It remains to show that (2.3b) holds with Q(¢) = 0 for all
t € R
The Schwartz inequality implies that both expressions under the limit
in (2.3b) are nonnegative, and so the first (limsup) convergence implies
the second. For this it is sufficient to establish the convergence with the
squared integral term deleted. Note that it is sufficient to show this for
|lt]l = 1. Finally, there is no harm in enlarging the domain of integration.
All together, we see that it will suffice to show that for any unit vector
t € R? we have
lim lim sup &, [(t, x)|? Appu{dz} = 0. (3.3)
e—=0 n—oo 0<|(t,z)|<e
Write A%t = r,0, where ||0,]] = 1 and r, > 0. Then after a change of
variable the expression under the limit in (3.3) becomes k,r2Us(e/7y,0,).
Apply Theorem 2.1 (ii) to see that Vy(r,0) is uniformly R-O varying on
the unit sphere {||0|| = 1}, and recall that A > /¢, so that we can write
—e — loge/log\ = 6 — 2 for some 6 > 0. Now apply a result of [4,
p. 289 to see that for Vy(r,0) uniformly R-O varying we must have
72V (r,0)/Ua(r,6) bounded away from zero independent of § and r suffi-
ciently large. (The result of [4, p. 289] is only for R O variation, but the
lower bound can be explicitly computed, and depends only on the constants
A,a,m, M in the definition of R—O variation, and so the same proof shows
that the result holds for uniform R-O variation as well.) Then we have
knr%Ug(a/rn,On) < clkne:QVo(s/rn,Gn) for some ¢; > 0. Now use (2.8) to
see that this is bounded above by coek, Vo (171, 0n) = coe’ k(A7 H(t)) for
all large n, where H(t) = {z : [(t,z)| > 1}. Use the portmanteau theorem
for finite measures to bound this quantity above by cae®¢(H (t)), where H (t)
denotes the closure. This quantity tends to zero as ¢ — 0, which concludes
the proof. O

One advantadge of the regular variation methods used in the proof of
Theorem 3.1 is that centering results can be obtained with little additional
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effort. The following corollary extends the results of [4, p. 289] in R! and
[15] in IR%, who only considered the (generalized) domain of attraction. For
domains of semistable attraction, the following result is new even in IR!.

Corollary 3.1. Suppose X is a random vector whose distribution u belongs

to the generalized domain of semistable attraction of a nonnormal (B, c)

semistable law. Then the centering constants by, in (1.1) may be taken as:
(a) by, = k,E(A,X1) if A < ¢, so we center to zero expectation;

and

(b) by =0 if A > c.

Proof. If A < ¢, then EX exists by virtue of [21, Theorem 4.1]. From (2.4)
we obtain
by, = knp, x App{dz} (3.4)
lzll<R
for any R > 0 such that the domain of integration is a ¢-continuity set.
Part (a) states that in (1.1) we can take b, = k, F'(A4,X1). Hence we want
to show that

d, = ky, x App{dzr}
ll=lI>R
can be made arbitrary close to zero for all large n by taking R > 0 sufficiently
large. For any ||t|| =1 and 7y, 6, as in the proof of Theorem 3.1 we have

(ds )] < EonrnVi (R, 00) + b / (o, )] App{dz}  (3.5)
AR,

where A(R,t) = {z : |jz|| > R, [(z,t)] < R}. The second integral on
the right is bounded above by Rk, A,u(A(R,t)) which is again bounded by
KRp(A(R,t)) for all n. Arguing as in the proof of Lemma 2.2 we see that
for any 0 > 0 there exists a Ry > 0 such that ¢(A(R,t)) < ¢{z : |z| >
R} < KR loge/log A+ o1 gl R > Ry. Since A < ¢ we get for a suitable
choice of § > 0 that the second integral in (3.5) can be made arbitrary small
by taking R > 0 sufficiently large. Now in order to bound the first term in
(3.5) we apply Theorem 2.1 to see that Us(r,#) is uniformly R-O varying,
and recall that A < ¢, so that we can write 24+-e—logc/log A = 1—¢ for some
0 > 0. An application of the result of [4, p. 289] yields k,r,Vi(R/rp,0,) <
Kr2R 'Uy(R/ry,0,). Now use (2.7) to see that this is bounded above by
Kik,r2R™°Us(r;1,6,,). Using uniform R—O variation and the result of [4, p.
289] again this is bounded by KoR %k, Vo(r, 1, 0,) = KoR Ok, A u(H(2)).
Using (3.1) we see as in the proof of Theorem 3.1 that this can be made
arbitrary small by taking R large enough.
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The proof of part (b) is similar: Apply Theorem 2.1 to see that Vj(r,0) is
uniform R—-O varying. Since A > ¢ we can write —¢ — loge/log A = —1+§
for some ¢ > 0. Using the result of [4, p. 289] we get

|<bn t>| < knrnUl(R/Tna en) < KRkn‘/O(R/Tnv en) < KIR(SknAmu(H(t))

and the result follows as in the proof of Theorem 3.1 by taking R > 0 small
enough. This concludes the proof. U

4. Remarks. Inherent in Theorem 3.1 is information about the tails of a
probability measure g which belongs to the generalized domain of semistable
attraction of a nonnormal limit. The estimates of Theorem 2.1 show that
the tails of such a distribution must tend to zero no faster than ¢—1og¢/logA
and no slower than t=1°8¢/108A  n order to characterize the growth rate
of R—O varying functions, it is common to employ the Matuszewska index,
see for example [3]. In view of Theorem 2.1 it is reasonable to believe
that Vj is R-O varying with lower index —log¢/log A and that Us is RO
varying with upper index 2 — logec/log A, but we have not been able to
prove this. Related to the tail behavior is the existence and nonexistence of
moments. The paper [21] contains moment results for generalized domains
of semistable attraction.

It is also of some interest to describe the generalized domain of semistable
attraction in the case of a normal limit, or a limit with both a normal and
a nonnormal component. In [17] we consider this problem. From [18],
theorem 6 we get that the generalized domain of semistable attraction of an
operator stable law (for example, a normal law) is exactly the same as the
generalized domain of attraction. In other words, in this case there is no
loss of generality in assuming that k, = n in (1.1). Using this fact, we also
show that the generalized domain of semistable attraction of a mixed limit,
with both a normal and a nonnormal component, can be described in terms
of the generalized domain of semistable attraction of each component.

Theorem 3.1 extends the result of [13] for nonnormal operator stable laws.
It may also be possible to extend the results of [5] to obtain a different
characterization of the generalized domains of semistable attraction.
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