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Abstract. This paper is an extension of joint work with A. Milani [5].
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0. Introduction. The starting point of our considerations is the system
of Maxwell’s equations:

curlH[—D] =7,

crlE+B = ,

(1)
divB =0,
[divD =gq].

Here E denotes the electric field, H the magnetic field, D electric induc-
tion (displacement current), B the magnetic induction, ¢ the charge density
and finally j = o F, with ¢ > 0 as conductivity, denotes the current den-
sity (for simplicity we assume absence of external current sources). The
terms in brackets in (1) will be ignored based on the rationale that these
terms are small in comparison with the others. The resulting system of
equations plays an important role e.g. in magnetohydrodynamics and the
analysis of transformer cores. It is occasionally referred to as the magneto-
hydrodynamic limit case of Maxwell’s equations. Additionally to the above
(reduced) equations one has the so-called material relation describing the
material properties of the medium:

(2) H =((B),

where ( is assumed to be monotone and Lipschitz continuous (the ’soft” iron
case). As typical domains of interest one may consider e.g. transformer cores
(see [3]):

(3)

or
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As physically natural boundary conditions we have (in classical notation)
(4) n-j=on-E=0, n-B=0 on 01,

where n is the (exterior) normal to 9. Moreover, the current density j is
assumed to be divergence free and so

(5) odivE =divj =0.

Thus we obtain as a first preliminary formulation of our problem:
curl H(t) =c E(t) in Q,t>0,

reduced Maxwell equations (6)
CurlE(t)+B:0 in Q,t>0,

divB(t)=0 in Q,t>0,
divergence conditions (7)
divE(t)=0 in Q,t>0,

material relation H =((B), (8)

n-FElt)=0 on 9Q,t>0,
boundary conditions 9)
n-B(t)=0 on 9Q,t>0,

initial condition B(0+)=B, in Q. (10)
Remark 1. With div By = 0, the divergence conditions (7) are redundant.

As easy as it seems to formulate the above problem in heuristic terms,
the central part of any solution theory is to produce a precise formulation
of the problem yielding the basic requirements of a reasonable solution the-
ory: existence, uniqueness, stability. Thus the formulation of a problem
is inseparably linked to the solution theory. This fact leads to a consid-
erable effort in formulating our problem, since it involves various vectorial
differential operators which need to be generalized suitably. The paper is
organized accordingly. In Section 1 we shall construct a variety of Hilbert
spaces associated with the differential operators grad, curl, div, needed to
formulate our problem in precise terms. Section 1 also provided the proper
setting for formulating the time—dependence of the electro—magnetic field.
In Section 2 we formulate the problem in the precise terminology provided
in Section 1 and the main existence and uniqueness result is given. Section 3
provides the solution theory of parabolic evolution problems in the concep-
tual framework presented in this paper on which the main result of Section 2
was based. As a consequence of the development in Section 3 the following
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section gives a continuous dependence result for the electro-magnetic field.
The last section provides for sake of completeness an elementary derivation
of a Sobolev type estimate used in Section 4.

1. Hilbert spaces of vector fields. To define various Hilbert spaces
needed to precisely formulate our problem we follow a familiar line of rea-
soning. As is common from the theory of Sobolev spaces we shall construct
suitable Hilbert spaces as domains of certain vectorial differential operators.
Let us first consider the differential operators

erad ;(Z*oo(ﬂ)ch(Q) e Ly(9)

(11) curl : C(Q) C Ly(Q) — Ly(Q)
div Coo(Q) CLQ(Q) — LQ(Q)

defined on the linear subspace C () C L2(Q2) of Cu-functions or Cu-

vector fields with compact support. We shall not notationally distinguish
[e] o

C,. () from C ()3, since it will be clear from the context if we are re-
ferring to functions or fields. For the inner product of L2(§2) we assume
that it is linear in the second factor. It can be seen easily that these well-
defined differential operators are closable. We shall use the domains of their
respective closures to introduce the Hilbert spaces

H (grad,Q), H (curl,Q), H (div,Q).
In other words, these spaces are the completion of C__(2) functions or vector
fields with respect to the graph norms

VI P+ lerad - 2, /1 P+ Jeurl - 2, /] P+ |div - |2

of grad , curl, div, respectively.
It is well-known that

p€H (grad,), Pe€H (curl,Q), Ve H(div,Q)

generalize the classical boundary conditions
'"o=0", '"nx®=0 and n-¥=0.
We emphasize that no trace results with respect to 9€2 and therefore no

regularity assumptions on 0€) are needed for this generalization. The null
spaces of the closures of the operators grad, curl, div are denoted by

HO(gradaQ)a HO(CUTI,Q), HO(diV7Q)a
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respectively. The first space is listed only for systematic reasons, since we
o

find H,(grad, Q) = {0}.
The domains of the adjoints of the operators grad, curl, div as defined
above are denoted by

H(div,Q), H(curl,Q), H(grad,Q).

These are again Hilbert spaces with respect to the induced graph norm. In

harmony with the rules of integration by parts, we shall use again '— div’,

‘curl’ and '—grad’ to denote these adjoints. This is well-justified since

these are extensions of —div, curl, —grad as previously defined. As a

consequence we have generalized the differential operators div, curl, grad.
Moreover, we have

(12) H (div,Q) c H(div,Q), H (curl,Q) C H(curl,Q),

H (grad,Q) C H(grad,),

o s curl | o Vo 5
H (grad Q) H (curl Q) H (div,Q)
are indeed the above mentioned closures of the initially defined operators

o . We will denote
C.(Q

0 ()

Consequently, the restrictions grad

9

grad = grad |o , curl = curl |o , div = div
C..(Q c.,
the null spaces of div, curl, grad by
Hy(div,Q), Hoy(curl,), Hp(grad, ).

Again the latter space is of little interest here and has only been listed
for systematic reasons. Indeed, Hp(grad,) is spanned by the character-
[0}

’

istic functions of the connected components of 2. Note that H (grad, (),

H(grad,$2) are the well-known Sobolev spaces H,(£2), H1(f2) (see e.g. [1]).

We are now able to formulate the spatial part of our problem more pre-
cisely. We are seeking E/, H, B with E(t), H(t) € H(curl,Q), B(t) € L2(Q)
for ¢ > 0 satisfying

13 curl H(t) = oFE() in Q,t>0,
(13) carl E(t) + B(t) = 0 in Q,t>0,
(14) H =((B),

E(t) € Hy(div, ),
(Boundary conditions

B(t) € Hy(div, Q)

’

(16) B(0+)=By in Q.
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Here we specify ¢ : Lo(2) — Lo(2) now as a monotone, Lipschitz contin-
uous mapping. Monotonicity means here

(17) Re (w1 — w2 [C(p1) —C(p2) )o = €0 ll 1 — 2 o,

for all p1, 2 € Lao(£2) (g9 > 0).

The formulation generated so far is still heuristic since we have not made
precise our understanding of the ¢-dependence appearing in the list of re-
quirements. But even the spatial part of the formulation is still incomplete
as will become clear from the final formulation of our problem. We need
further conditions involving the space of harmonic Neumann vector fields:

H,(div, Q) N Hy(curl, ).

Let B denote an orthonormal basis of the (usually finite-dimensional) space
of harmonic vector fields. Then we require additionally that F, B satisfy
the conditions

(18)  (B(t),h)o = wg(t), (E(t),h)o =0 for B€B and tecRT,

where wg are given functions. The latter set of conditions implies by an
elementary application of the projection theorem (see [9])

(19) E(t) € curl H (curl,) for ¢ eRT.

[e]
As it will turn out the space Hy := curl H (curl, Q) will play a central role
in solving the above problem. It is only now, that in order to go on with
our deliberations that we need further assumptions on 2. We shall assume
that the domain € is such that

(20) H (curl,Q)n H(div,), H (div,Q)nN H(curl,Q)
are compactly imbedded in Ly (£2).

This is the case if e.g. ) has a Lipschitz boundary which is certainly the
case for the above example configurations (see [8], for other characterizations
see [12], [11], for more singular boundaries compare [13]).

Our assumption has as important consequences (see [4], 6], [7],[8],[9]):

(21) B s finite,

(22) curl H(curl,Q), curl H (curl,Q) are closed in L(2).

The solution theory developed here (as well as the one in [5]) hinges on the
following proposition.
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Proposition 1. Let N denote the orthogonal projection N onto the ortho—
complement Hy of the subspace Hy(curl, )

N : Ly(Q) — Ho = curl H (curl, Q).
Then
(23) N (curl H(curl,Q) N H (curl,)) ={¢ € Ho|curl p € Hp } .

Proof.
A) Let ¢ € curl H (curl, ), curl ¥ € curl H (curl,2). Then

curl ¥ = curl 6,

with a unique 6 € curl H(curl,Q) N H (curl,(2). Thus, as above
p=N§.

B) The converse is also clearly true:

N6 e N (curl H(curl,Q) N 13 (curl,2)) C curl f; (curl,Q),
and
curl N 0 = curl 6 € curl I-; (curl, ).
This concludes the proof of the proposition. O

This proposition eventually proves the selfadjointness of curl. We first
o

observe that since curl C__(2) is dense in H and clearly

curl C(2) CHy:={¢ € Hy|curl p € Hp } ,
we have
(24) H1 densein Hy,

and
0]

Ho = curl (H (curl,Q)) = curl (curl H(curl, Q)N I-; (curl,))
= curl N (curl H(curl, )N hof (curl,Q))
= curl Hq,

ie.
(25) curl H1 = Hp.

Moreover, we have indeed
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Lemma 1. curl : H; C Hg — Hy is self adjoint.

Proof.
A) To see symmetry we note that according to the above proposition for
¢, ¥ € Hy there are
oo, Yo € curl H(curl, Q)N H (curl,Q),
such that
N¢0:¢v N¢0:¢7
and
(curl ¢ |9p) = (curl N ¢o|N o) = (curl ¢o| o),
= (¢o|curl ¢y),
= (N ¢o|curl Nyy) = (¢|curl ¢).

B) For n € Hyp to be in the domain of the adjoint of this densely defined
operator means

(curl ¢ |n) = (¢| f) for some f€Hy andall ¢ € Hy.
Since Hy is orthogonal to Ho(curl, Q) in Lo(€2), this implies
(curl p|n) =(¢|f) forall ¢ € H(curl,Q) such that curl ¢ € Hy.

[e)

Specializing to ¢ € C(2) we see that n € H(curl,2) and f = curl 7, i.e.
(curl ¢|n) = (¢|curl ) for all ¢ € H (curl,Q)

such that curl ¢ € Hy.

Now specializing to ¢ € Hy(curl, ) we see that curl n is orthogonal to
Hy(curl, 2) and so curl n € Hy. This shows that the domain of the adjoint
is in fact in H;. O

Remark 2. As consequences of the above reasoning we find

curl* : D# ¢ Hy(div,Q) — Hy(div, Q)
with

D# = { Y EH (curl,Q)ﬂHO(div,Q)\curl@EHO} .

curl *# . D## c H (div,Q) — H (div,Q)
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with
D## = {ap € H(curl,Q) ﬁf; (div, Q) |curl ¢ € Ho} ,
curl ### . D### < H(div,Q) — H(div,Q)
with
D### = { o € H(curl,Q) N H(div,Q) |curl p € Hp } ,
and

curl ###H# . Lo e H(curl, Q) |curl ¢ € Hy } € La(Q) — Lo(Q)

are all self-adjoint in their respective base spaces.
It is

curl C curl® C curl ## C curl #¥## C curl ##HH
These operators differ only with respect to their null-spaces:
= {0},
o
= Hy(div,curl,Q),

N (curl

N (curl #

N (curl###) = H(div,Q) N Hy(curl,Q),

)
)
N (curl##) — H (div,Q) N Ho(curl, Q) ,
)
N (curl ####) = [y(curl, Q)

Note that by our general assumption on € we have
Hi — Hp is compactly imbedded ,

with respect to the graph norm of curl. Since A = 0 is clearly not in the
point spectrum of the operator curl, we know that curl has a (completely)
continuous inverse defined on Hy. Thus we may equip H; with the norm
|| - |[1+ = curl - ||op to obtain curl as a unitary mapping curl : H; — Hp.

In preparation of our final formulation of the problem we need to con-
struct a suitable Gelfand triplet. For this purpose we introduce Hilbert
spaces

Hy =D (|curl |¥) =D (curl®), ke N,
As norms we shall use

I eurl £ - [lo = [ eurl® - [,
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Correspondingly, we have dual spaces
Hy=H_}, k€ZT,
and we choose to identify
Hy = Ho -
This way we obtain a chain of compactly imbedded Hilbert spaces

'cclgl M CCIE;] My C}E;l Ho C}gl Mo, cclgl M, C}E;l .
joined by the now unitary operators curl : Hy — Hi_1, k € Z. Here for
k < 0 the operator curl is extended by duality. We shall use the suggestive
notation to re-use (-|-),0,0 for the duality pairing between Hy and H_y.

We are now ready to discuss the open question of specifying the t—depen-
dence.

To formulate a suitable time-dependence we introduce (for some v > 0
to be specified later)

(26) Hy,o:= Ly (RT, e 27 dt).

To obtain a sufficiently weak solution concept we introduce analogous to
(Hp)x the Hilbert spaces

H,p:=D(|0*)=D(8h), keN,
based on the natural self-adjoint realizations of
| 80 | ’

derived from the essentially normal operator (see [10])

[¢]

80 : Coo(Q) C H,,’O — H,,’(),

in a completely analogous way as for (Hy), above.
As norms we shall use

11801* - llo = 1185 - llvo-
Correspondingly, we have dual spaces
H, i, keZ",
and we identify
;0 =H,g.

Since || 95 ' || < v~ !, we obtain a chain of continuously and densely imbed-
ded Hilbert spaces (H, i )rez. Thus we have constructed a lattice of Hilbert
spaces

(27) (Hyk @ Hj),jez
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inheriting its lattice structure from Z2, i.e.
Hi,®H;CH,,@Hpj<=k>2nANj>m, jk mnecZ.
We shall utilize only a small portion of this lattice, namely

(28) (Huk @ Hj)k=-10,1, j=—2,-1,0,1 -

2. Formulation of the problem and the main result. We are now
ready to formulate our initial value problem precisely. In terms of the spaces
introduced in Section 1 we shall look for a solution pair (E, B) with

FE e H,/,_]_ ®HOQHV70 Q@H-1,
(29) o
B e H,p® Hy(div, )

of the following problem.

Problem (MX):

curl H=0F in H, 1QHoNH,0®@H_1,
cul B+ 0y B=36®By in Hy,_1®Hy(div,Q),
H=((B) in Hyo® Ly(Q),
EcH, 1 Hydiv,Q) N H,yoH_ 1,
B e Hyo® Hy(div,Q).,
B(04+) —By=0 in H_g,,
(Blo®B)uvo0=(ws|P)vo, BEB, ¢ € Hyp,
(El¢®@B)oo=0,3€e€B, pcH,y.

(30)

Here the time-dependence of wg is assumed to be of the type
(31) wg € Hyp, wgwgoh € H,1, B € B, suppwg CR,

for some wgg € C, 8 € B.

The details of this formulation are based on the usual philosophy that
a problem is well-posed if a unique and stable solution exists. Thus the
particular demands on the solution will become clear from the derivation of
the main result.
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Theorem 1. Let wg € Hy o, wg—h ®wgo € Hy1, wgo € C, B € B, and
By € hc;o(div ,§) be such that

(Bo|B)o=wpp, PBeB (compatibility condition).
Then there exists a unique solution of problem (MX):

EEHU’_1®HQDHV70®H_1, B e HU’O(X)HO(diV,Q).

Proof.
Uniqueness:
Let E;, B;, i = 1,2, be two solutions for the same data. Then with

EZ:El—EQ and B::Bl—BQ

we have
EFEcH,_1®HoNH,o®H_1, Be€H,o®Ho,
curl ( (By) —curl ((B2) =0 F,
and
OyB;=—curl E;, +0® By, i =1,2.
We obtain

curl (¢ (—curl 80_1E1+h®Bo) — ¢ (—curl 80_1E2+h®BO) —oE.
Multiplying this by — 861 E=cul 'Be H,,® Hi we obtain
(—0y " E|curl (¢ (—curl 85" By +h®By) — ¢ (—curl 85" Ea+h® Bo) )u,0,0

= (—curl Oy E[¢ (—curl 97 By + h @ By)
—¢(—curl 5t B2+ h® By) )00

= 0(-0,'E|E)00=0(—E|QE),-10,
By taking real parts and estimating:
eo || curl 65 E ||12/,0,0 <-ov|E Hg,q,o <0,
Thus 0 = curl 80_1E = - B=0and F = curl 9y B = 0, as well as
H = ((B1) — ¢ (B2) = 0. This proves the desired uniqueness. O

Existence: .
Noting Hy(div, ) = curl H (curl, Q) & span (B), we expect that

(32) B =curl ¥+ fy,
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where

(33) Bo € Hy,1 ® span (B),

so that

(34) B—-pBy€Hyo®Hp.

Then

(35) Y =curl 1 (B-p3) € H,o®H.

The harmonic field §y is uniquely determined by

(36) (Ble®B)uo0=(Bole®B)uoo=(wsl¥)o,

in terms of wg, B € B, alone. In fact, o = Y wg ® . [y has a vector
potential ’

(37) Xo =curl ng € H,p ® Hp .

Indeed, by the Riesz representation theorem we have unique existence of a
solution

(38) no € Hyo® (curl H(curl, Q)N P; (curl, ))

of the equation

(39) curl curl g = By € Hyp @ H_1.

Thus we have

(40) B =curl (¢ +x0), Bo=curl (¢ + x0,0)

and so

curl (E+ 8y +dx0 — 6@ — 8 ® x00) =0,

in H, 1® f;o(div ,Q), i.e. in particular

(41) E+0ov + 00 x0 — 6 ® (Yo + x0,0) € Hy 1 ® Ho(curl, Q).
Since Hy L Hy(curl,Q) and E € H

(42) E+ 08¢+ (xo—h®+x00) —d®@¢%o =0,

in the sense of H, 1 ® La(£2).
Thus, we will be looking for a solution

¢€HV,O®H1?
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of the equation

curl ¢ (B) = curl (¢ (curl ¥ + By)
= —000y =00y (xo—h® x0,0)+ 00
= oF.

This is an evolution equation of parabolic type for ¥ (involving a monotone
operator), which can be solved along essentially known lines of reasoning.
For this it is important to realize that

NC(-+Bo) : Hyo®Ho — Hy,po®Ho

remains a monotone, Lipschitz continuous operator.
The matching initial condition is given by

¢ (0+) = ¢o = curl ' (By— o (0+)) € Ha,
and is well-defined, since
By — 5o (0+) € Hp . (by compatibility condition)

The desired existence result now follows from a corresponding result for the
parabolic evolution problem:

Problem (PB):
(43) A(W)+00 =7+,
where A is monotone (coercive would be sufficient) and Lipschitz continuous

mapping from H, o ® Hi to H,o @ H_1, %o € Ho, j € Hyo @ H_1.

Theorem 2. Problem (PB) has a unique solution € H, ®@H;i. Moreover,
this solution satisfies

Y—h®ypo€ Hyy ®H_1,
and consequently

¢(0+)=¢0 m H_q.

We remark that the initial condition for 1) makes sense because 1 €
Co ([0,00), H=1) (by a Sobolev type imbedding theorem). Let us postpone
the development of the solution theory for the parabolic equation for a while
(see Section 3). Assuming this existence result for now we find the solution
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of the original problem by specifying A () := o~ curl ¢ (curl ¢ + By) for
¢ € 'H; and

(44) Bo = ZW,H@ﬂEHV,l@HOv
BB
(45) Yo = curl ™ (By— G (0+)),
(46) xo = cwl 'ByeH,1 ®Hy,
(47) Xoo = curl 7' By (0+) € Ho,
(48) j = —0(xo—h®x00) € Hyp®Ho,

With the solution ¢ we define

E = —0o—00(xo—h®x00)+6@%o € Hy—1 @Hy
(49)
B = curl ¢+ fy € Hyo® Hy(div,Q).

This is the desired solution of problem (MX). We see that indeed

(50) H = ((B)€ Hyo® Ly(Q),

(51) cwrl H = oFeH,1® P;O(div ,Q),

(52) (Ble®pf) = (wplp) for BeB,peH,y,
(53) curl E+0yB = 0®By in H,_1® f;o(div Q).

Moreover, we have

(54) EeH, o®H-1,

and

(55) B-h®By=0;'curl E€ H,; ®H_»,
and so

(56) B(0+)—By=0 in H_,
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3. Solution theory of problem (PB). We shall now give the post-
poned proof of the above Theorem 2 about the parabolic problem to which
the original question could be reduced.

Let us first consider the following evolution problem:

(57) (G0 + A) (u) =d@uo+ [,

here ug represents the so-called initial data for the solution u, A : H,q®
Hy — H,p® H_1, v > 0, (which we may illustrate e.g. by the bounded
operator induced by a bounded operator (denoted again by A) A : H; —
H_1 mapping a Hilbert space H; into its dual space H_1) is assumed to be
coercive, in the sense that (with g, vo > 0)

Re (¢ =¥ [A(p) — A(Y) )vo0 = e0llp — |

and we also assume

| A(p) =AW lvo,—1 <M|e—1]o1-

Here Hq, Hy, H_; refer to the Hilbert spaces of a Gelfand triple H1 C Hy C
H_1. We identify the inner product of Hy with the duality pairing between
Hy and H_;. We assume ug € Hy, f € H,o® H_; and expect by analogy
to the linear case (i.e. A linear) u € H,oo Hi N H,1®H_y. It is natural to
assume that f, A(y) vanish on R™ for any ¢ € H, o® H; and we shall do
so in the following. It will be clear from the existence part of the proof that
in this case also the solution u will vanish on R™.
The initial equation

12/,0,1 —lle—1 ||12/,0,0 )

(Qo+A)(u) =d®uo+ [,
may be considered as holding true (term by term) in the space

H, yoH CH, 1@H +H,o9oH 1+ H, 19Ho+ H,oo H_;.

Remark 3. In this framework the initial condition needs to be considered
in a suitably generalized sense.

A sufficiently weak way of looking at the initial condition is given by
observing that (57) implies that

(58) u—houy € HyyoH_;.

By the trace theorem and since u vanishes on R~ we have
(u—h®uy)(0)=0in H_q,

or

(59) U (O—I—) =upin H_1.
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Assuming, as we shall do initially, that uy € Hj, the evolution problem (57)
simplifies to

(60) (Go+A)(v) =1,

where v =u —h®ug, A(g) = A(p+ h®ug). We will write, for simplicity
of notation, again A in place of A.

3.1. Uniqueness. Let now u, v € H, o ® H; be two solutions, then we have

(61) (@00 (u=2) )00+ (¢[A(u) = Av) )00 =0,
for all ¢ € H,1®H,. Lacking regularity prevents us from substituting
(u —v) for .

However, recalling that 0y is a normal operator and utilizing the spectral
family (II(D, ; ) )acr of the selfadjoint realization of the operator D, =

= (0o —v) = 1Im (dy), we may regularize (u — v). Let
i

o=@, =11(Dy; (—n,n]) (u —v) = up — vy,
then
(62) (Son |60 Pn )l/,070 + (‘Pn‘A(U) _A(U) )1/,0,0 - 07

or

(#n 100 n)v00 + (n | A(un) — A(vn) )w0,0
(63) = —(on|A(u) = A(un) )00 — (n | A(vn) = A (V) )r00-

From this we see that

(<Pn ‘ o ©Pn )U,0,0 + (SDn | A (Un) —A (Un) )U,O,O
(64) = O ([ en llv01 ([l —un llvo1 + [ —vnll01))-

Taking real parts on both sides we see

(v =0 len 5,00 +collen 7,01 = o (ln llo1)

as n — oo. Consequently,
(v =) len 700 +e0llen 701 =0o(1) .

as n — oo. Since ¢, — (u —v) as n — oo, this implies, for v > vy, u = v.
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3.2. Existence. As a starting point for our existence proof we approxi-
mate A by bounded operators to construct approximate solutions. For this
purpose we use a family (P, ), of finite-dimensional mappings defined by
n
Pog:=> (Vi |9)00 %k,
k=1
where (1) denotes an Hy-orthonormal system spanning R (P,), satisfying

R(P,) C R(Pyy1) C H, neZ".

In other words, (P,), is a family of continuous extensions to H_; of Hy—
orthogonal projections. We assume P,, — I in H{ strongly and it follows
P, — I in H_; strongly by the density of Hy in Hy. Writing P, for I ® P,
and letting

A, = P, A
R(P,
fn = Pnfa
problem (57) will be replaced by
(65) (0o + An ) (un) = fn-
Considering (65) in the form
(66) 80 Up = — An (Un) + fn s

we see that a solution u, € H, 1 ® Hy exists uniquely for v > 0 sufficiently
large. For this we note that the right-hand side of (66) is Lipschitz continu-
ous from R (P,) C H,o® Hy into R(P,) and || 95" [|4.01 < % for all v > 0.
So that for sufficiently large v > 0

861 {*An(')+fn}

is a contraction from R (P,) C Hyo® H; into itself. Clearly, u, = P, u, €
H,1® H;. We note that u,(t) = 0 for ¢ < 0 and that by Sobolev’s imbed-
ding theorem wu,, may be considered as a continuous mapping from R to
Hjy. Moreover, according to the above remark we have u, (0) = 0. Unfor-
tunately, constructing approximate solutions this way v > 0 will have to be
quite large as n increases. To see that the sequence (uy,), (or initially rather
a subsequence) converges to a solution u of (57) in some H, o® Hi, with a
fixed v > 0, we need a—priori estimates in suitable spaces and compactness
properties to select suitably convergent subsequences.
Let

Ve i= 05" (X[=1/e,1-1/e] = X[1 2,141/ ) € Hu1,
for 0 <e <1, then ¥, u, € H,1 ® Hy.
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Since Ay, (un) = Pp A (uy), we obtain initially
(dja Un | a0 Un )1/,0,0 + (7/)5 Un | A (un) )V,0,0 = (7/)5 Un | f )U,0,0 .

Taking real parts on both sides, this yields

v (Ve un | tn )v00 + (X[ /2,141 /8 Un | Un )v00 + Re (e un | A (un) )00
= — Re (¢E un ‘ f)l’zo’o :

Now we see from the coercivity of A that
Re (Ve un | A(un))voo = Re (Yeun—0]A(un) —A(0))v00

+Re (e un [A(0) )y,

eo || \/Eun ||12/,0,1 - || \/Eun H?/,o,o

— | Ve un 0. | A (0)

v

Thus we obtain

(v = 0) | Ve un Hio,o X[/, 141/ Un ||3,0,0 +eo || Ve
< 1V tn o1 [ A (0) 0, 1 = Re (¢ un | o0,

v/ Ye n [l,0,1 | A(0) [ln0,— 1+ | Ve n [0, | f ll0,—1 -

Consequently,

4 (v —0) H\/77[)8un||1/00+60”quéunnvﬂl < _(2||A( )|‘12/,0,—1+Hf|‘12/,0,—1)7

IN

for all € €]0,1[, n € ZT. Letting now € — 0+ we see that

1) <= (2140 Bo 1+ 17 B 1),
for all n € Z*. Since
[ A o1 < A ()~ A(0) ©
< (0) llv.0,- 15

we obtain also the boundedness of (A (uy))n in Hyo® H_1. Therefore we
may select a weakly convergent sub—sequence which we shall denote again
by (un ), with
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in H,o® Hy and H,o® H_q, respectively, as n — oo. Note that here W
stands for weak convergence. Thus, by letting n — oo we obtain

(05 ¢ [ tUoo )00 + (¥ [ Co0 )00 = (L] f )u,0,0 5
for all v € H, 1 ® Hy. This shows that
(67) O U + (oo = f -
Noting that u € H, o® H1, we are finished with the proof of our existence
result if we can show that A (ue) = (eo-

This follows by the standard variational argument (see e.g. [2]). We first
recall the coerciveness of A i.e.

Re ((un —w) [ A(un) = A(w))n00 + 0 [t — w500 > €0 llun — w01 >0,

for any w € H, 1 ® Hi. On the other hand, from the definition of the solution
un, € Hy,1 ® Hy we have (for all w € R(P,))

(un —w | 8O Unp, )1/,0,0 + (un - w|A(un) )U,0,0 = (un —w | f)U,0,0 .

Taking real parts this becomes

v (Un | Un )v00+ Re (0y w|u, )vo0+ Re (u, —w|A(upn) )00
:Re(un*w|f)u,0,0-

Letting n — oo, we obtain, observing
(uoo ‘ Uo )V,0,0 < lim SUP( Un | Up, )V,0,0 s
n—oo
that (for v > ~)

V (Uoo | Uoo)w,0,0 + Re (0 w | Ueo)v,00 — 70 || oo — w ||12/,0,0

+ lim sup(Re (un — w| A (un) = A(w))uoo +70 | un = wlF00)

<Re (s —w| f)r00—Re (too —w|A(w) )00,
and so
V (Uso | Uoo )1,0,0 + Re (05 W | oo )00 — Y0 || Yoo — w H?/,o,o
(68) <Re (uoo —w|f)u00—Re (U —w|[A(w)),00-
On the other hand we have from (67)
(05 (oo — w) | toc )1,0,0 + (oo — W] Coo )1,0,0 = (Uoon — w | f 0,0 -

Taking real parts here yields

V (Uoom | Uoon )v,0,0 + Re (95 w | teo )00 + Re (toon — w | (oo )00
= Re (uoo,n —w | f )V,O,O .
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For n — oo this leads to

V (Uoo | Uoo )1,0,0 + Re (05 w | too )u,0,0 + Re (Uoo — W] (o0 )r0,0
= Re (uoo — w|f)y’070.
Subtracting this from (68) yields
(69) Re (uoo —w | Coo —A (w) )V,0,0 + % ” Uso — W ||12/,0,0 > 07

forallw € |J R(F,)NH,1 ®H; and also, by density, for allw € H,o® H;.

n=1
Let now w = uy, — Ap, A € R, o € H,o® Hy. After dividing by A and
letting A — 0+ we obtain from (69)

(70) Re (90|Coo _A(uoo) )V,0,0) >0.
Since ¢ is arbitrary, this implies, as desired,
Coo = A (uso) -

Remark 4. We have in particular
Re ((0+A) (u) = (0o +A) (v) |[u—v)00

>eollu—vllZor—(0—v)lu-vloo
for u, v € HU70®H1 ﬁH,,’1®H_1.

Remark 5. (NON-LINEAR RIGHT-HAND SIDE) From the above we see that
(71) (80 +A)™" : HygeH 1 — HygoH,

is a well-defined operator. Moreover, we have for v > g

(72) (80 +A)" (9) = (80 +A) " (¥) luoo < p— =2 lv00-
and
(73) (1 (90 +A) " () = (8o + A) (&) 101
1
= min(€07 V_')/O) ||SD 71/] ”V,O,—l .

In particular, (9 + A)™* : H,o® Hy — H,o® Hy is a contraction for
v > 1+ 7. This can be seen by similar estimates as above. Consider

two solutions e, Vs found in the above fashion for f, g € H,o® Hy C
Hyo®H_,

(w00 Uoo )00 + (W] A(tus) )r00 = (w]f)uoos

(w |00 Voo )u,0,0 + (W] A (Vo) )00 = (w]g)u00-
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Subtracting yields

(w0 (Uso — Voo ) )1,0,0 T (W] A (uoo) — A(Vs0) 0,0 = (W] f =900
for arbitrary w € H,o® Hy. Letting w = us — v, taking real parts and
estimating (by using coerciveness again) we obtain
(v =) |t — Voo ||z2/,0,0 + €0 || too — Vo ”12/,0,1 < oo — Voo w00 [ f — g llv0,0

and so

(v =70) [ oo = Voo [l10,0 < 1 f = g llv0,0-
The latter implies the above contraction property.
This contraction estimate implies that if the right-hand side of the evolu-

tion problem is replaced by a Lipschitz continuous mapping f : H,o® Hy —
H,o® Hp with Lipschitz constant A, then

(0o+A)tof: H,owHy— Hyo®Hy,

is a contraction for v > A+ . From this the unique existence of a solution
in H,o® H; is immediate also in this case, since (9y + A)~! maps into
Hyo® H;.

3.3. Continuous dependence. The continuous dependence of the solu-
tion in H, o ® H; from the right-hand side is also apparent from the estimate
(73). The solution of the original problem (57) is (written in the original
notation) given by

(do+A) " (f)+heu € Hyge H,

which depends continuously upon the right-hand side f € H, o ® Hy in the
sense of H,o® Hy provided the initial data satisfy ug € H;y. This result
can be refined in the following way. Let u, v € H, ¢® H; be the uniquely
existing solution of

(74) (Oo+A)(uw) = douy+f,

(75) (do+A)(v) = d®w+g,

respectively. Here f, g € H,o® H_; and ug, vg € H;. Subtracting (74),
(75) and multiplying by an arbitrary ¢ € H, 1 ® Hy we obtain

(0 plu—v)yo0+ (plAu) —A®) )00
= (¢(0)|uo —vo )o+ (@] f—9)v00-
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Taking ¢ = ¢, =II(D,; | —n,n]) (u —v) € Hy; ® Hi, we obtain

(30 ¢n | @n )00+ (@n|A(uw) —A(v))vo0
= (©n(0)[uo —vo)o+ (@nlf—9)v00-

With u, = (D, ;| —n,n])u and v, =1 (D, ; | — n,n])v this yields
(96 enlen oo+ (un —vp[A(un) — A(vn) )v00

= (©n(0) |ug —vo )o + (n | f _g)u,0,0 = (pn|Au) — A (un) )V,0,0
+ (pn | A(v) = A(vn) Ju00-

Focusing on real parts this yields
v (SDn | ©n )V,0,0 + Re (un — Un | A (un) - A (Un) )V,O,O

=Re (¢n(0)[ug —vo)o —Re (on|f —9)v00
—Re (‘pn | A(u) - A(un) )V7070 + Re ((Pn | A(U) - A(vn) )1/,0,0 .

Using coerciveness and Lipschitz continuity of A we estimate

(v =0) len 200 + €0 @n 701 < Re (¢n(0) |uo — o o
+lenlvor I f =gllvo- 1+ Ml enllvor (u—unllvor+ v =onllnoi) -

Letting n — oo this leads to

(76) (v —=20) lu—v]

€0
12,,0,0 + 5 Ju—w Hg,o,l
) 1
< lim Re (¢n(0)|up —vo)o+=—IIf—g ”12/,0,—1'
n—00 2¢e0

We shall now show that
1
lim ¢, (0) = = (up —vp)in H_; .

n— oo 2

By the argument leading up to (59) we see first that
T on(0) =l (D, ]~ myn]) ((u—v) — h (uo — o)) (0

n—oo

+ lim (I1(Dy ;] —n,n])h) (0) (uo — o),

n—oo

= lim (II(D,;]—n,n])h)(0) (up — vo).

n—oo

We calculate explicitly that

lim (II(D,; ] —n,n])h)(0) =

1
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Thus, we get from (76)

(77) (V—vo)llu—vllyooJr

1
§§||U0 wlf+ 5 1 F =g lZ0 1.

This shows not only the Lipschitz continuous dependence of the solution
from the data, but also that we may extend by continuous extension to
initial data which are merely in Hy. This leads to the following final result:

Theorem 3. The mapping (0p+A) is invertible as an operator in H, _1 @ H_;
with domain H,o® Hy. In particular,
(0o +A)™ :6@Hy+H, g9 H | — H,g® Hj,

is the well-defined solution operator of problem (57). Moreover, (9y+ A)~!
18 Lipschitz continuous in the sense that

(78) 1| (@o+A)~" (deuo+f)— (@0 +A)~" (Seuo+9) 70
1 9, 1 2
< = — — | f = .
=5 | o —vo |5 + = I f—glllo-1
Moreover, we have in the norm of H,1 @ H_1:

(79)
lhe (vo—up) + (0o + A)~" (5®u0 +f) = (00 +A) " (E®vo+ g) lln1,-1

M
w0 =voflo+ (14 )1 =g llwo-1-

\/7

Proof. The first part of the theorem summarizes the previous findings. The
latter claim follows from (74), (75) using the initial idea employed to remove
the initial condition. These equations transform into

(80) o (u—hou)+Aw) = f,
(81) Oy (v—hev)+Aw) = g.
Subtraction results in

do(u—hou —v+hovw)=f—g—A(u)+ A().
Taking norms on both sides we obtain

lu—houy—v+houv

v0,—1 = [[Oo(u—h@uy—v+hevy) |11

< Jf=gllvo -1+ A1) —A@) o1
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To estimate the last term further we use the Lipschitz continuity of A, thus
for v > vy we get from (77)

HU*h@’U/O —v+h®v0||,,70,,1 = H ao(U*h(X)UO *U+h®vo) ||1/,1,71

<|f —g\lu,o,fl + M u—vlo:1,

M
|\u0—vo|\o+(1+—)||f 9 llvo,-

\/_

This is the desired estimate (79). O

4. Continuous dependence for the electromagnetic field. The
solution theory developed in Section 2 not only proves the needed existence
and uniqueness result utilized in the proof of Theorem 1, but also provides
the means to show a continuous dependence result for the original prob-
lem. We conclude with the derivation and formulation of the continuous
dependence of solutions to the original semi-static problem on its initial
data.

Theorem 4. Let E1, By and Es, By be two solutions of the original prob-

lem, corresponding to initial values By and Boe and data wg, and wg,.
Let

BQZBOl—BQQ, WﬁZW51—Wﬁ2, B:Bl—BQ, EZEl—EQ.

Then the following estimate holds:

o+ H Hg,o,o

<o X llws = (Bal Dol 1+||BO—Z<BOW>05||%1),
BEB BEB

for some positive constant Cy depending only on o, v, L, &g.

Proof. Let
Je = —(90<CU1"1_1<Z(wﬁk_wﬁk(0+))ﬁ>>’
peB
Y = Cul"l_l(Blc_Zw/Bkﬁ) = =9y By +hetro+ 9y Gk, k=12,

BeB
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then
Y= — o = curlfl(B—ngﬁo

BeB
= -9 'E+he¢o+08,' jeHgoH .
In particular

curl p = B =Y wseB € HyoeHo.,
BeEB
and
¢k,0 = cur171<Bk’o — Z wpy, (0+) ﬁ) .
peB

Since 5, i = 1,2, solves the problem (PB) with the above specializations
and corresponding data we have for v a stability estimate of the form

(82) 14 1500 < C (1o I3+ 117170,-1)
where
Ji=J1—J2,
and
Yo = Y10 — P20-

This implies the following estimates for (F, B).

1B wpe B0 < C(H currl(Bo > ws(04) 5) Hi
BeB peB

2
v,0,—1

< c( | Bo~ S wson8] + ] Stws—ws0n)m)e s
BeB peB

+H 80(Cur1_1< %&(w[g —wg (0+)h)®ﬁ>)

2
vl,-2) "

This implies (with a generic constant C' > 0), using Sobolev’s inequality,
and re-utilizing the notation || - ||, 00 as norm of H, o ® L2(2),

IB200 < C( D llws —wa (0+) h|Z, + H By— > wp (0+)BH21> .

BeB BeB
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Recalling the compatibility condition we get

(83) |BH,%,O,Osc(ZHwﬁ—h(Bom)onil

BeB

AT N]

BeB

Similarly we can argue for the electric field E (re-using here the notation
Il - [ls,—1,1 as norm of H, 1 ® H(curl,Q)):

IEy-11 = 105" curl B0
< ||hecurl ¥+ 80_1 curl j|[,00

+|| = 5t curl B+ hecurl 4o+ 5t curl 5,00

1 - 2
= ||hecurl ¢y + 0y curlg|\,,’070—|—HB—Zwﬁ®6 ,
3eB v,0,0
< ||hecurl ¢+ 80_10ur1 Jlv,00
2
+0( X len (B0l +] B0 X salons]).
BeB BeB B
2
< C — (B 2 HB ~SN(B H .
< o Tles-nmlonl+ |2 CILE

BeB

From H = { (B1)—( (B2) we obtain the corresponding estimate for H. Since
E=oc"'curl H=0""'curl (N H), we have NH = ¢ curl ! E, and so

(84) H E 12/,0,0 = H NH ||z2/,0,0 < || H

3,0,71 = [lcurl ' E| 3,0,0-

Finally, B — h® By = 0, Leurl E leads to the remaining estimates, since

IB=heBol}y =10 curl B[}, _o=E|0_:-

V717_ Vyla_

O

This concludes our presentation of the solution theory for our initial value
problem modeling the magnetohydrodynamic limit case of Maxwell’s equa-
tions. It should be obvious that Lipschitz continuous external forcing terms
could easily be included. We have dealt with a pure initial boundary value
problem just for sake of simplicity of presentation.
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Appendix: A Sobolev type estimate. For completeness of reasoning
let us consider finally the Sobolev estimate used in the above. We observe

that for any ¢ € C ([0,1), Ho)

1
10(0)] < /\30<P(8)\d8,
0
1 1
< /8050 |26721/st /62V5d87
0 0

1
el/
< Opw(s)|2e2vsds
< 0/| b (s)|

Let now a € C (R*) with support of a contained in [0,1) and « (0) = 1.
Apply this estimate to a ¢ with ¢ € C (]0,00), Hp) then

le(0)] < / | (0o (a))(s)]|ds,
0

C (a.v) /|30<P(8) |26‘2”5ds+/|¢(8)|2€_2”8d8,

<

< () /|3090(S)|262”5d8,
0

< () /|30(90<P(0)h)(5)\262”d8-
0

Thus we obtain (by a density argument)

[¢(0+) | < C"(a,v)

for all ¢ € H, o with suppy C R+ satisfying ¢ — poh € H, . for some
o € C, which is the desired estimate.
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