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DOMAINS OF ATTRACTION WITH INNER
NORMING ON STURM-LIOUVILLE
HYPERGROUPS

HM. ZEUNER

Abstract. In this article we study the convergence of convolution powers of
normalized measures (6., v)*" on a Sturm-Liouville hypergroup (R, *). It
is shown that this sequence converges for a suitable choice of the normalizing
constants ¢, > 0 if and only if the usual regular variation conditions of the
tail of v are valid. The possible limit distributions are described in terms of
their Fourier transform; they form a two dimensional family of probability
measures on R .

1. Introduction and main results. Let (X, : n > 1) be a sequence
of independent identically distributed symmetrical real random variables.
Then it is well known that for the random walk S, := 377 ; X; we have
cnSn = Z?:l cpX; — p in distribution for some p # £o and suitable
norming constants ¢, > 0 if and only if the tail of the distribution of X3
satisfies a regular variation condition (see [3], VII1.8 Theorem 1). A similar

D
result ¢,S, — p for random walks (S, : n > 1) on Urbanik’s generalized
convolutions on R has been proved in [8] and [1]. For arbitrary hypergroups
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on R with polynomial growth the possible limit laws and the corresponding
domains of attraction have been characterized in [6].

For the Bessel Kingman hypergroups [5] (which are generalized convolu-
tions in the sense of [8]) the dilatations 6, :  +— c-x (for ¢ > 0) are en-
domorphisms of the convolution and so the randomized sums Azyzl cnXj
(see [10], Definition 6.4) have the same distribution as ¢,S,, and therefore
converge to the same limit distribution. However the Bessel-Kingman hy-
pergroups are the only cases where all 0. are endomorphisms; in all other
cases we have to expect different limit laws in general. This phenomenon
is already known in the case of a finite second moment (compare [7] and
[11]) where the randomized sums converge to a Gaussian distribution on
the hypergroup which is different from the limit law of ¢,S,, a Rayleigh
distribution.

In this article we will study the convergence in distribution of the inter-
nally normed sums, i.e. we will explore under which conditions on the
common law v of the X; the distribution 0., (v)*" of the randomized sum
AY77_4 en X converges.

Definition 1.1. Let x be a convolution on Ry and p # €g be a probability
measure. Then v € MY(R,) is in the domain of attraction of i with respect
to inner norming DOA*(u) if there exists a sequence of numbers c, > 0
such that (QCn(Z/))*n converges weakly to p. If the ¢, can be chosen in the
form ¢, = c-n™" for some k > 0 then v belongs to the domain of normal
attraction DONA*(p).

The possible limit distributions p can be described in terms of their
Fourier transform. In this article we will consider Sturm—-Liouville hyper-
groups on R, in the sense of [2] and [10]; here the convolution * is defined
by the property that [p\de, x ey, = pa(z) - ox(y) for all A € C where
s : Ry — C is the solution of

Laps =N+, @:(0)=1, ¢ (0)=0

with a given function A : Ry — Ry, the differential operator Laf :=
—f" - ’%f’ and p := %limw_,OO % > 0; for the precise assumptions on A
see [2], (3.5.1) or [10], (2.1). Then the Fourier transform of a probability
measure pu on Ry is the function Fu : K := i[0,p] UR, — R given by
Fu(A) := [@x(z)du(z). The Haar measure wg of this hypergroup (R4, )
has the Lebesgue density A and so the Fourier transform of a function
f € LY (wg) is defined as Ff(N\) = [o.(z)f(x)A(z) d.
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Definition 1.2. Let k €]0,2[ and t > 0. The measures p,; with Fourier
transform

Flins(V) = exp(t- / SDQ(I)-I”dx) Ne R
0

are called the stable measures of index k of the hypergroup (R, x). The
stable measures of index k = 2 are the Gauff measures p; with Fourier
transform Fpa(X) = exp(—5(A + p?)).

The integral on the right hand side of the definition has singularities at 0
and oco. The singularity at 0 does not pose a problem since | (z)| < Kz for
some K > 0 and since £ < 2. At 0o we observe lim,_, [ ¢\ (z) - 27" dx =
limy o[ ()27 +5 [{ or(2) 27" Lde = —p (1) +k [ or(x) -2 Lda
which exists because of |p,(z)] <1 and —xk — 1 < —1.

We will later see in Theorem 2.1 and Remark 2.2 that such a probability
measure /i, exists for every x €]0,2] and t > 0. Since the characters of
the hypergroup (R4, x) appear in the definition of p, ¢, it is clear that the
stable measures of different hypergroups are different in general.

Remark 1.3. It follows from the shape of the Fourier transform that we
have fi; s * flet = fug s+t for all s,£ > 0 and therefore for each x €]0,2] the
family of probability measures (p, ¢ : t > 0) forms a continuous convolution
semigroup. Also for every v with (6,,v) o, ¢ it follows that (6, 1/)*LsnJ
converges to (i, st for every s > 0 and hence DOA*(p,, +) is the same for all

t > 0. We will therefore consider DOA* (1) only.

2. Sufficient conditions.

Theorem 2.1. Let x €]0,2[ and v € MY (R,) be such that t — v[t,c0] is
varying reqularly with index —k. Then v € DOA*(p,.,1).

Proof. We define H(z) := v[z,o0[, choose positive numbers ¢, such that
lim,_,oon - H(1/c,) = 1 and put H,(x) := H(z/c,). In the following we
will show that

Jn [Tl o= [T e ds W)

Let € > 0 be arbitrary. It follows from [3], Theorem VIIL.9.1 b) that
0 H,(x) Kc2  [d/en
L(z) =% dx| < - / xH (z) dx
AT = gy
Kc2(§/cn)?H(5)c,) K&* "

— lim =

n—oo (2—[{)H(1/Cn) 2—K '
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K6

We can choose d > 0 in such a way that = < £ and therefore | fo o (z) -

H”EI) dz| < e for n > ng. Furthermore we alio have UO o\(z) -z dz| < e.

Now let v > 0 be chosen such that 2y™" < e. Then as in the proof of
Theorem 5.2 in [6] we see by the second mean value theorem that || 5 ()

Hn 1) d:c] lorx(Y) — ox(7) gzg; is < ¢ for all n > ny > ng; furthermore

]f7 oh\(z)x " da| <e.

V)
and by bounded convergence the integral differs from [§ ¢/ ( ) ~%dz by less

than e if n > ny > ny and hence | [;° @) (z )H"Ex) dz— [5° (@)™ da| < Be.

dz is bounded by H@AH R ng‘sg

Finally, the integrand in [§ ¢/ (z)

Thus (1) is proved.
From (1) we conclude that

n[l — .7-"00”1/()\)} = n[l + /Ooo PrCnT dH(x)}

= —ne, - /Ooo o (cnz) - H(z) dz

= (/o) [T ) g do

— —/ oh(x) -z " dw
0

and therefore we obtain that limy, . F (0., 1) (X) = limy,_ s [Fle, v(\)]* =
exp(f° @ (z) - 27" dz) = Fpe (M) for all A € K. The assertion of the the-
orem now follows from the continuity theorem. In particular a probability
measure fi,, ; with Fourier transform given in Definition 1.1 exists. O

Remark 2.2. If v € M'(R,) has a finite second moment, then v belongs to
the domain of normal attraction DONA*(p9,1) of the Gaussian measure.

Proof. This follows from [7], Théoréme 2 or [13], Lemma 3.2. O

3. Necessary conditions. We will now show that the condition given
in Theorem 2.1 (resp. a similar condition in the Gaussian case) is also
necessary for v being in the domain of attraction of some probability u.

Lemma 3.1. We have
Ntpr o,
1—pa(z) < 5 T for all x > 0.

Proof. 1t follows from the differential equation for ¢, and A" >
Ph(z) = 0or gl(z) = (A + p*)py = —(A\* + p?) and hence ¢
—(N2+p?) -z

0 that
A(@)

g &



DOMAINS OF ATTRACTION ON HYPERGROUPS 217

In the next lemma we check the equality of two Lévy measures by using
test functions connected to the inverse Fourier transform of functions ¢
on the dual K: Fo(z) := [r(x)f(N) drg(X) where g € M4 (K) is the

22

Plancherel measure (see [4]). As a Hunt function we use h(z) 1= 2.

Lemma 3.2. Let 7,7 € /\/lb( ) satisfy [gdn = [gdi for all functions
g:=F¢/h with p € K(K), [¢pdrg =0. Then 7j = 1.

Proof. The assumption is valid for all ¢ € C(K) N L (ng) with [ ¢drgx =
0 and [(A? + p?)|¢(N\)| drk (A) < oo by approximation with v, € K(K)
dominated in modulus by |¢|. Here we use that L4 f(0) = —(ag + 1) f"(0)
if f/(0) = 0 and ap := limz_ xil((;)) and therefore %(0) = (];ﬁ)(l(ngO) =

(;jfgﬁs(g) @oF 1) h" ) J(A2 + p?)p(\) dr (N) to establish pointwise con-

vergence of F1),, in 0 and Lemma 3.1 for a bounded convergence argument.

Now let f € C?(K)NK(K) with f/(0) =0 and f € L} (wk)N L3 (wk) with
f* f(0) = 0. Then ¢ := F(f * f) satisfies the above conditions [ odrg =
F* f(0) = 0and [N+ p)|g(N)|drx(N) = [|F(Laf) - Ffldnx(A) < o
(see [4], 12.1A,B). Because of F¢ = f * f ([4], 12.2C) we obtain f%dﬁ =

J L diy.
Now let f € C*(K) N K(K) with f(0) = f'(0) = 0. Then we can choose
functions f, € LY(wk) N L3 (wk) with f, = 0 on [L, 0], [ fndwg = 1,

I fullzr < 2 such that [ ff, dwk = I x fn(0) = 0. It is clear that fx f, — f
uniformly as n — oo and hence % — % uniformly on [e, oo[ for every

e > 0. But since Laf € K(K) we also have La(f* fn) = (Laf)* fn — Laf
uniformly. It follows from

1@ = 1+ Fu@ = | [ 505 [ 40 Lalr = 1 F) ) dza]

< HLA(f_f*fn)”oo/o m/oyA(Z) dzdy
<|[La(f—[x fn)”oo - Cz?

(the last inequality for a suitable C' > 0 is a consequence of the assumption
on A that ap = limmﬂmx% exists) that % — % uniformly on [0, £].
Hence [ £ dij = [ £ di for all f € C?(K)NK(K) with f(0) = f'(0) = 0, and
this implies 17 = 7. O

Before proceeding we note a simple property of the characters in the case
of exponential growth:
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Lemma 3.3. Let p > 0. Then o, € CO(Ry) for all X € K \ {ip}.

Proof. Since all characters in the support of the Plancherel measure are
bounded by ¢q it is sufficient to consider A € i[0, p[ which implies ¢, > 0
and ¢} < 0. The assumption & = lim;_,o @x(z) > 0 now leads to a
contradiction: from the differential equation for ¢, we conclude (Ap)) <
—6 - A with § := g(p* + A\?) > 0 and with A(z) := [5 A(t)dt we obtain
oh(x) < =6 “ng which converges to 32 < 0 as  — 0o in contradiction to

2p
Py > 0. U

Corollary 3.4. Let (7, : n € N) be a sequence in MY (K) such that

1 )
/ X ditn — (N foralire K

where 1 is continuous inip and 1 (ip) = 0. Then 7j == lim,_,o 7, € MY (K)
exists weakly.

Proof. Since in the case A(z) = 1 of the ordinary convolution of symmetrical
measures on R nothing is to prove, we assume that A is not a constant
function. Let A > 0. Then 1—7;“’—* is bounded away from 0 in a neighborhood
of 0 (by continuity and ¢%(0) < 0) and outside this neighborhood because
of [12], (2.2). Therefore there exists C' > 0 with [|7,]| < C for all n. In
order to show that 7, converges vaguely, by the relative compactness of this
sequence it is sufficient to show that any two accumulation points 77 and 7
are equal.

Let ¢ € K(K) be such that [ ¢drg = 0. Then by the assumption, Fubini

and dominated convergence (using Lemma 3.1) we have lim,,_» [ % dim,
= —limy—oc [ (V) [ 752 difn drre(N) = = [ 6(A) -9 (A) dri (A). Now Fo €
CO(Ry) and the same is true for F¢/h (the continuity at 0 follows again by

dominated convergence from ¢ € K(K)). Since 7j and # are vague accumu-
lation points of (7, ), we obtain
Fo . F¢
_— d = — . d - — d i
5 i / ¢ Ydng 5 i
for all ¢ € K(K) with [¢drg = 0 and therefore 7 = 7 by Lemma 3.2.
Hence we have proved that 7 := lim,,_. 7, exists vaguely.
We conclude the proof by showing that {7, : n € N} is uniformly tight.
In order to do this we have to treat the cases p = 0 and p > 0 separately;
we consider p = 0 first: let € > 0 be given. We choose a neighborhood of 0

where || < & and a non negative function ¢ € K(K) with support in that
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neighborhood such that [ ¢dngx = 1. Then

[~ [vodnx

which is of modulus < & by construction, and hence [ % dn, < € for all

n > N.. Since F¢ € C°(R,) there exists c. > 0 with # > 1 on [c., ool
This implies 7, ([cz, 00[) < 2¢ for all n > N, and so the uniform tightness is
proved in this case. In the case of exponential growth we use the fact that
@y € C°(Ry) whenever A € i[0, p[ (see Lemma 3.3) for a similar but simpler
argument. Hence in both cases {7, : n € N} is uniformly tight and 7,, — 7
weakly follows. O

Proposition 3.5. If v € DOA*(u) with p # €, then either t — v[t, o0 is
reqularly varying at oo with index —k and k €]0,2[, or t — [} x?dv(z) is
slowly varying.

Proof. We have (F0,,v(\))" — Fu()) for all A\ € K and since R > F(6,, v)
— 1 as n — oo we obtain Fu(\) > 0 with strict inequality on [0, A\g[ where
Ao := inf{A > 0: Fu(A) = 0} € ]0,00] (we have \g > 0 because of ¢g > 0).
For all X € [0, A\g[ we therefore have

/1};% di, = n(l—Fb.,v()\) — —InFu(N) (2)

where 7,, := nh- (0.,v) and h is a Hunt function. By the same argument as
in the proof of Corollary 3.4 we obtain ||7,| < C for all n € N.

We now show that the assumption Ay < oo leads to a contradiction. In
this case there is also a constant C’ > 0 with %Q < ' (Lemma 3.1) and
this implies —In Fu(Xg) < CC’ and Fu(Xg) > e Y > 0, a contradiction.
Therefore the convergence in (2) holds for all A € K and it follows from
Corollary 3.4 that (7},) has a weak limit 7 € MS (K).

Now the hypergroup structure plays no role any more and we are in the
classical situation. We either have 7j = ¢ - g9 and therefore ¢ — [ 22 dv(z)
is slowly varying; or we have 7]0,00[> 0 and hence nv]e,z, oco[— nx,oo|
for all but countably many x > 0 where n := % 7. Then by [3], VIIL.8
Lemma 3 the function t — v|t, o] is regularly —xk-varying for some k € R
and 7]z, co[= cx™". Since 7 is a Lévy measure we must have x € ]0,2[. O

4. Conclusions. We now summarize the necessary and sufficient con-
ditions from Sections 3 and 2.

Theorem 4.1. A measure u # €9 has a non empty domain of inner attrac-
tion DOA*(p) if and only if p = py.. . for some k € 10,2] and ¢ > 0.
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Proof. This follows from Proposition 3.5, Theorem 2.1 and Remark 2.2. [

Theorem 4.2. (a) For k € ]0,2[, ¢ > 0 we have

DOA*(ppe) = {v€ MYK):t— v[t, 00| is regularly — rk-varying at oo}
(b) For ¢ > 0 we obtain

t
DOA*(u2.) = {ve MYK):tr— / 2% dv(x) is slowly varying at oo}.
0

Proof. (a) It follows again from Theorem 2.1 and Proposition 3.5.

(b) The inclusion C has been proved in Proposition 3.5.

If on the other side ¢t — fot 22 dv(z) is slowly varying we obtain by the
classical result 7,, :== nh-(0., v) — 2c(ap+1)gg for a suitably chosen sequence
of numbers ¢, > 0. This implies

n(l— Fb.,v(\) = /1_('0'\ dn, — %(/é()))@c(ao—l—l):c(/@—l—p%

and hence (0.,v)" — ua.. d
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