DOMAINS OF ATTRACTION WITH INNER NORMING ON STURM-LIOUVILLE HYPERGROUPS

HM. ZEUNER

Abstract. In this article we study the convergence of convolution powers of normalized measures $(\theta_{c_n}\nu)^{*n}$ on a Sturm-Liouville hypergroup $(\mathbb{R}_+,*)$. It is shown that this sequence converges for a suitable choice of the normalizing constants $c_n > 0$ if and only if the usual regular variation conditions of the tail of ν are valid. The possible limit distributions are described in terms of their Fourier transform; they form a two dimensional family of probability measures on \mathbb{R}_+ .

1. Introduction and main results. Let $(X_n : n \geq 1)$ be a sequence of independent identically distributed symmetrical real random variables. Then it is well known that for the random walk $S_n := \sum_{j=1}^n X_j$ we have $c_n S_n = \sum_{j=1}^n c_n X_j \longrightarrow \mu$ in distribution for some $\mu \neq \varepsilon_0$ and suitable norming constants $c_n > 0$ if and only if the tail of the distribution of X_1 satisfies a regular variation condition (see [3], VIII.8 Theorem 1). A similar result $c_n S_n \stackrel{D}{\longrightarrow} \mu$ for random walks $(S_n : n \geq 1)$ on Urbanik's generalized convolutions on \mathbb{R}_+ has been proved in [8] and [1]. For arbitrary hypergroups

¹⁹⁹¹ Mathematics Subject Classification. Primary 60E07, 60F05, 43A62. Secondary 60B10, 60B15, 60J15.

Key words and phrases. Domain of attraction, stable measure, randomized sum, random walk, Sturm-Liouville hypergroup.

214 HM. ZEUNER

on \mathbb{R}_+ with polynomial growth the possible limit laws and the corresponding domains of attraction have been characterized in [6].

For the Bessel-Kingman hypergroups [5] (which are generalized convolutions in the sense of [8]) the dilatations $\theta_c: x \mapsto c \cdot x$ (for c > 0) are endomorphisms of the convolution and so the randomized sums $\Lambda \sum_{j=1}^{n} c_n X_j$ (see [10], Definition 6.4) have the same distribution as $c_n S_n$ and therefore converge to the same limit distribution. However the Bessel-Kingman hypergroups are the only cases where all θ_c are endomorphisms; in all other cases we have to expect different limit laws in general. This phenomenon is already known in the case of a finite second moment (compare [7] and [11]) where the randomized sums converge to a Gaussian distribution on the hypergroup which is different from the limit law of $c_n S_n$, a Rayleigh distribution.

In this article we will study the convergence in distribution of the internally normed sums, i.e. we will explore under which conditions on the common law ν of the X_j the distribution $\theta_{c_n}(\nu)^{*n}$ of the randomized sum $\Lambda\sum_{j=1}^n c_n X_j$ converges.

Definition 1.1. Let * be a convolution on \mathbb{R}_+ and $\mu \neq \varepsilon_0$ be a probability measure. Then $\nu \in \mathcal{M}^1(\mathbb{R}_+)$ is in the domain of attraction of μ with respect to inner norming $\mathrm{DOA}^*(\mu)$ if there exists a sequence of numbers $c_n > 0$ such that $(\theta_{c_n}(\nu))^{*n}$ converges weakly to μ . If the c_n can be chosen in the form $c_n = c \cdot n^{-\kappa}$ for some $\kappa > 0$ then ν belongs to the domain of normal attraction $\mathrm{DONA}^*(\mu)$.

The possible limit distributions μ can be described in terms of their Fourier transform. In this article we will consider Sturm-Liouville hypergroups on \mathbb{R}_+ in the sense of [2] and [10]; here the convolution * is defined by the property that $\int \varphi_{\lambda} d\varepsilon_x * \varepsilon_y = \varphi_{\lambda}(x) \cdot \varphi_{\lambda}(y)$ for all $\lambda \in \mathbb{C}$ where $\varphi_{\lambda} : \mathbb{R}_+ \to \mathbb{C}$ is the solution of

$$L_A \varphi_{\lambda} = (\lambda^2 + \rho^2) \varphi_{\lambda}, \qquad \varphi_{\lambda}(0) = 1, \quad \varphi'_{\lambda}(0) = 0$$

with a given function $A: \mathbb{R}_+ \to \mathbb{R}_+$, the differential operator $L_A f:=-f''-\frac{A'}{A}f'$ and $\rho:=\frac{1}{2}\lim_{x\to\infty}\frac{A'(x)}{A(x)}\geq 0$; for the precise assumptions on A see [2], (3.5.1) or [10], (2.1). Then the Fourier transform of a probability measure μ on \mathbb{R}_+ is the function $\mathcal{F}\mu: \hat{K}:=i[0,\rho]\cup\mathbb{R}_+\to\mathbb{R}$ given by $\mathcal{F}\mu(\lambda):=\int \varphi_\lambda(x)\,d\mu(x)$. The Haar measure ω_K of this hypergroup $(\mathbb{R}_+,*)$ has the Lebesgue density A and so the Fourier transform of a function $f\in\mathcal{L}^1(\omega_K)$ is defined as $\mathcal{F}f(\lambda):=\int \varphi_\lambda(x)f(x)A(x)\,dx$.

Definition 1.2. Let $\kappa \in]0,2[$ and t>0. The measures $\mu_{\kappa,t}$ with Fourier transform

$$\mathcal{F}\mu_{\kappa,t}(\lambda) = \exp\left(t \cdot \int_0^\infty \varphi_\lambda'(x) \cdot x^{-\kappa} \, dx\right) \qquad \lambda \in \hat{K}$$

are called the stable measures of index κ of the hypergroup $(\mathbb{R}_+,*)$. The stable measures of index $\kappa=2$ are the Gauß measures $\mu_{2,t}$ with Fourier transform $\mathcal{F}\mu_{2,t}(\lambda)=\exp(-\frac{t}{2}(\lambda^2+\rho^2))$.

The integral on the right hand side of the definition has singularities at 0 and ∞ . The singularity at 0 does not pose a problem since $|\varphi_{\lambda}'(x)| \leq Kx$ for some K > 0 and since $\kappa < 2$. At ∞ we observe $\lim_{y \to \infty} \int_1^y \varphi_{\lambda}'(x) \cdot x^{-\kappa} dx = \lim_{y \to \infty} [\varphi_{\lambda}(x)x^{-\kappa}]_1^y + \kappa \int_1^y \varphi_{\lambda}(x) \cdot x^{-\kappa-1} dx = -\varphi_{\lambda}(1) + \kappa \int_1^\infty \varphi_{\lambda}(x) \cdot x^{-\kappa-1} dx$ which exists because of $|\varphi_{\lambda}(x)| \leq 1$ and $-\kappa - 1 < -1$.

We will later see in Theorem 2.1 and Remark 2.2 that such a probability measure $\mu_{\kappa,t}$ exists for every $\kappa \in]0,2]$ and $t \geq 0$. Since the characters of the hypergroup $(\mathbb{R}_+,*)$ appear in the definition of $\mu_{\kappa,t}$, it is clear that the stable measures of different hypergroups are different in general.

Remark 1.3. It follows from the shape of the Fourier transform that we have $\mu_{\kappa,s} * \mu_{\kappa,t} = \mu_{\kappa,s+t}$ for all $s,t \geq 0$ and therefore for each $\kappa \in]0,2]$ the family of probability measures $(\mu_{\kappa,t}:t\geq 0)$ forms a continuous convolution semigroup. Also for every ν with $(\theta_{c_n}\nu)^{*n} \to \mu_{\kappa,t}$ it follows that $(\theta_{c_n}\nu)^{*[sn]}$ converges to $\mu_{\kappa,st}$ for every s>0 and hence DOA* $(\mu_{\kappa,t})$ is the same for all t>0. We will therefore consider DOA* $(\mu_{\kappa,1})$ only.

2. Sufficient conditions.

Theorem 2.1. Let $\kappa \in]0,2[$ and $\nu \in \mathcal{M}^1(\mathbb{R}_+)$ be such that $t \mapsto \nu[t,\infty[$ is varying regularly with index $-\kappa$. Then $\nu \in \mathrm{DOA}^*(\mu_{\kappa,1})$.

Proof. We define $H(x) := \nu[x, \infty[$, choose positive numbers c_n such that $\lim_{n\to\infty} n \cdot H(1/c_n) = 1$ and put $H_n(x) := H(x/c_n)$. In the following we will show that

$$\lim_{n \to \infty} \int_0^\infty \varphi_{\lambda}'(x) \frac{H_n(x)}{H_n(1)} dx = \int_0^\infty \varphi_{\lambda}'(x) \cdot x^{-\kappa} dx \tag{1}$$

Let $\varepsilon > 0$ be arbitrary. It follows from [3], Theorem VIII.9.1 b) that

$$\left| \int_0^\delta \varphi_\lambda'(x) \frac{H_n(x)}{H_n(1)} dx \right| \le \frac{K c_n^2}{H_n(1)} \int_0^{\delta/c_n} x H(x) dx$$

$$\to \lim_{n \to \infty} \frac{K c_n^2 (\delta/c_n)^2 H(\delta/c_n)}{(2 - \kappa) H(1/c_n)} = \frac{K \delta^{2 - \kappa}}{2 - \kappa}.$$

We can choose $\delta > 0$ in such a way that $\frac{K\delta^{2-\kappa}}{2-\kappa} < \varepsilon$ and therefore $\left| \int_0^\delta \varphi_\lambda'(x) \cdot \frac{H_n(x)}{H_n(1)} dx \right| < \varepsilon$ for $n \ge n_0$. Furthermore we also have $\left| \int_0^\delta \varphi_\lambda'(x) \cdot x^{-\kappa} dx \right| < \varepsilon$.

Now let $\gamma > 0$ be chosen such that $2\gamma^{-\kappa} < \varepsilon$. Then as in the proof of Theorem 5.2 in [6] we see by the second mean value theorem that $\left| \int_{\gamma}^{\infty} \varphi_{\lambda}'(x) \cdot \frac{H_n(x)}{H_n(1)} dx \right| = \left| \varphi_{\lambda}(\gamma') - \varphi_{\lambda}(\gamma) \right| \frac{H_n(\gamma)}{H_n(1)}$ is $< \varepsilon$ for all $n \ge n_1 \ge n_0$; furthermore $\left| \int_{\gamma}^{\infty} \varphi_{\lambda}'(x) x^{-\kappa} dx \right| < \varepsilon$.

Finally, the integrand in $\int_{\delta}^{\gamma} \varphi_{\lambda}'(x) \frac{H_n(x)}{H_n(1)} dx$ is bounded by $\|\varphi_{\lambda}'\|_{[\delta,\gamma]} \cdot \frac{H_n(\delta)}{H_n(1)}$ and by bounded convergence the integral differs from $\int_{\delta}^{\gamma} \varphi_{\lambda}'(x) x^{-\kappa} dx$ by less than ε if $n \geq n_2 \geq n_1$ and hence $\left|\int_0^{\infty} \varphi_{\lambda}'(x) \frac{H_n(x)}{H_n(1)} dx - \int_0^{\infty} \varphi_{\lambda}'(x) x^{-\kappa} dx\right| < 5\varepsilon$. Thus (1) is proved.

From (1) we conclude that

$$n \Big[1 - \mathcal{F}\theta_{c_n} \nu(\lambda) \Big] = n \Big[1 + \int_0^\infty \varphi_{\lambda} c_n x \, dH(x) \Big]$$

$$= -nc_n \cdot \int_0^\infty \varphi_{\lambda}'(c_n x) \cdot H(x) \, dx$$

$$= -nH(1/c_n) \cdot \int_0^\infty \varphi_{\lambda}'(x) \frac{H_n(x)}{H_n(1)} \, dx$$

$$\to -\int_0^\infty \varphi_{\lambda}'(x) \cdot x^{-\kappa} \, dx$$

and therefore we obtain that $\lim_{n\to\infty} \mathcal{F}(\theta_{c_n}\nu)^{*n}(\lambda) = \lim_{n\to\infty} [\mathcal{F}\theta_{c_n}\nu(\lambda)]^n = \exp(\int_0^\infty \varphi_\lambda'(x) \cdot x^{-\kappa} dx) = \mathcal{F}\mu_{\kappa,1}(\lambda)$ for all $\lambda \in \hat{K}$. The assertion of the theorem now follows from the continuity theorem. In particular a probability measure $\mu_{\kappa,t}$ with Fourier transform given in Definition 1.1 exists. \square

Remark 2.2. If $\nu \in \mathcal{M}^1(\mathbb{R}_+)$ has a finite second moment, then ν belongs to the domain of normal attraction DONA* $(\mu_{2,1})$ of the Gaussian measure.

Proof. This follows from [7], Théorème 2 or [13], Lemma 3.2. \square

3. Necessary conditions. We will now show that the condition given in Theorem 2.1 (resp. a similar condition in the Gaussian case) is also necessary for ν being in the domain of attraction of some probability μ .

Lemma 3.1. We have

$$1 - \varphi_{\lambda}(x) \leq \frac{\lambda^2 + \rho^2}{2} \cdot x^2$$
 for all $x \geq 0$.

Proof. It follows from the differential equation for φ_{λ} and $A' \geq 0$ that $\varphi'_{\lambda}(x) \geq 0$ or $\varphi''_{\lambda}(x) \geq -(\lambda^2 + \rho^2)\varphi_{\lambda} \geq -(\lambda^2 + \rho^2)$ and hence $\varphi'_{\lambda}(x) \geq -(\lambda^2 + \rho^2) \cdot x$.

In the next lemma we check the equality of two Lévy measures by using test functions connected to the *inverse Fourier transform* of functions ϕ on the dual \hat{K} : $\bar{\mathcal{F}}\phi(x) := \int \varphi_{\lambda}(x) f(\lambda) d\pi_{K}(\lambda)$ where $\pi_{K} \in \mathcal{M}_{+}(\hat{K})$ is the Plancherel measure (see [4]). As a *Hunt function* we use $h(x) := \frac{x^{2}}{x^{2}+1}$.

Lemma 3.2. Let $\tilde{\eta}, \hat{\eta} \in \mathcal{M}^b(K)$ satisfy $\int g \, d\tilde{\eta} = \int g \, d\hat{\eta}$ for all functions $g := \bar{\mathcal{F}}\phi/h$ with $\phi \in \mathcal{K}(\hat{K}), \int \phi \, d\pi_K = 0$. Then $\tilde{\eta} = \hat{\eta}$.

Proof. The assumption is valid for all $\phi \in \mathcal{C}(\hat{K}) \cap \mathcal{L}^1(\pi_K)$ with $\int \phi \, d\pi_K = 0$ and $\int (\lambda^2 + \rho^2) |\phi(\lambda)| \, d\pi_K(\lambda) < \infty$ by approximation with $\psi_n \in \mathcal{K}(K)$ dominated in modulus by $|\phi|$. Here we use that $L_A f(0) = -(\alpha_0 + 1) f''(0)$ if f'(0) = 0 and $\alpha_0 := \lim_{x \to 0} x \frac{A'(x)}{A(x)}$ and therefore $\frac{\bar{\mathcal{F}}\phi}{h}(0) = \frac{(\bar{\mathcal{F}}\phi)''(0)}{h''(0)} = \frac{-L_A \bar{\mathcal{F}}\phi(0)}{(\alpha_0 + 1)h''(0)} \int (\lambda^2 + \rho^2)\phi(\lambda) \, d\pi_K(\lambda)$ to establish pointwise convergence of $\bar{\mathcal{F}}\psi_n$ in 0 and Lemma 3.1 for a bounded convergence argument. Now let $f \in \mathcal{C}^2(K) \cap \mathcal{K}(K)$ with f'(0) = 0 and $\tilde{f} \in \mathcal{L}^1(\omega_K) \cap \mathcal{L}^2(\omega_K)$ with

Now let $f \in \mathcal{C}^2(K) \cap \mathcal{K}(K)$ with f'(0) = 0 and $f \in \mathcal{L}^1(\omega_K) \cap \mathcal{L}^2(\omega_K)$ with $f * \tilde{f}(0) = 0$. Then $\phi := \mathcal{F}(f * \tilde{f})$ satisfies the above conditions $\int \phi d\pi_K = f * \tilde{f}(0) = 0$ and $\int (\lambda^2 + \rho^2) |\phi(\lambda)| d\pi_K(\lambda) = \int |\mathcal{F}(L_A f) \cdot \mathcal{F} \tilde{f}| d\pi_K(\lambda) < \infty$ (see [4], 12.1A,B). Because of $\bar{\mathcal{F}}\phi = f * \tilde{f}$ ([4], 12.2C) we obtain $\int \frac{f * \tilde{f}}{h} d\tilde{\eta} = \int \frac{f * \tilde{f}}{h} d\hat{\eta}$.

Now let $f \in \mathcal{C}^2(K) \cap \mathcal{K}(K)$ with f(0) = f'(0) = 0. Then we can choose functions $\tilde{f}_n \in \mathcal{L}^1(\omega_K) \cap \mathcal{L}^2(\omega_K)$ with $\tilde{f}_n = 0$ on $[\frac{1}{n}, \infty[, \int \tilde{f}_n d\omega_K = 1, \|\tilde{f}_n\|_{\mathcal{L}^1} \le 2$ such that $\int f\tilde{f}_n d\omega_K = f * \tilde{f}_n(0) = 0$. It is clear that $f * \tilde{f}_n \to f$ uniformly as $n \to \infty$ and hence $\frac{f * \tilde{f}_n}{h} \to \frac{f}{h}$ uniformly on $[\varepsilon, \infty[$ for every $\varepsilon > 0$. But since $L_A f \in \mathcal{K}(K)$ we also have $L_A (f * \tilde{f}_n) = (L_A f) * \tilde{f}_n \to L_A f$ uniformly. It follows from

$$|f(x) - f * \tilde{f}_n(x)| = \left| \int_0^x \frac{1}{A(y)} \int_0^y A(z) \cdot L_A(f - f * \tilde{f}_n)(z) \, dz \, dy \right|$$

$$\leq \|L_A(f - f * \tilde{f}_n)\|_{\infty} \int_0^x \frac{1}{A(y)} \int_0^y A(z) \, dz \, dy$$

$$\leq \|L_A(f - f * \tilde{f}_n)\|_{\infty} \cdot Cx^2$$

(the last inequality for a suitable C>0 is a consequence of the assumption on A that $\alpha_0:=\lim_{x\to\infty}x\frac{A'(x)}{A(x)}$ exists) that $\frac{f*\tilde{f}_n}{h}\to\frac{f}{h}$ uniformly on $[0,\varepsilon]$. Hence $\int \frac{f}{h}\,d\tilde{\eta}=\int \frac{f}{h}\,d\hat{\eta}$ for all $f\in\mathcal{C}^2(K)\cap\mathcal{K}(K)$ with f(0)=f'(0)=0, and this implies $\tilde{\eta}=\hat{\eta}$.

Before proceeding we note a simple property of the characters in the case of exponential growth:

HM. ZEUNER

Lemma 3.3. Let $\rho > 0$. Then $\varphi_{\lambda} \in C^0(\mathbb{R}_+)$ for all $\lambda \in \hat{K} \setminus \{i\rho\}$.

Proof. Since all characters in the support of the Plancherel measure are bounded by ϕ_0 it is sufficient to consider $\lambda \in i[0, \rho[$ which implies $\varphi_{\lambda} > 0$ and $\varphi'_{\lambda} < 0$. The assumption $\varepsilon := \lim_{x \to \infty} \varphi_{\lambda}(x) > 0$ now leads to a contradiction: from the differential equation for φ_{λ} we conclude $(A\varphi'_{\lambda})' \leq -\delta \cdot A$ with $\delta := \varepsilon(\rho^2 + \lambda^2) > 0$ and with $A(x) := \int_0^x A(t) dt$ we obtain $\varphi'_{\lambda}(x) \leq -\delta \frac{A(x)}{A(x)}$ which converges to $\frac{-\delta}{2\rho} < 0$ as $x \to \infty$ in contradiction to $\varphi_{\lambda} > 0$.

Corollary 3.4. Let $(\tilde{\eta}_n : n \in \mathbb{N})$ be a sequence in $\mathcal{M}^b_+(K)$ such that

$$\int \frac{1 - \varphi_{\lambda}}{h} d\tilde{\eta}_n \to \psi(\lambda) \quad \text{for all } \lambda \in \hat{K}$$

where ψ is continuous in $i\rho$ and $\psi(i\rho) = 0$. Then $\tilde{\eta} := \lim_{n \to \infty} \tilde{\eta}_n \in \mathcal{M}_+^b(K)$ exists weakly.

Proof. Since in the case A(x)=1 of the ordinary convolution of symmetrical measures on \mathbb{R} nothing is to prove, we assume that A is not a constant function. Let $\lambda>0$. Then $\frac{1-\varphi_{\lambda}}{h}$ is bounded away from 0 in a neighborhood of 0 (by continuity and $\varphi_{\lambda}''(0)<0$) and outside this neighborhood because of [12], (2.2). Therefore there exists C>0 with $\|\tilde{\eta}_n\|\leq C$ for all n. In order to show that $\tilde{\eta}_n$ converges vaguely, by the relative compactness of this sequence it is sufficient to show that any two accumulation points $\tilde{\eta}$ and $\hat{\eta}$ are equal.

Let $\phi \in \mathcal{K}(\hat{K})$ be such that $\int \phi \, d\pi_K = 0$. Then by the assumption, Fubini and dominated convergence (using Lemma 3.1) we have $\lim_{n\to\infty} \int \frac{\bar{\mathcal{F}}\phi}{h} \, d\tilde{\eta}_n = -\lim_{n\to\infty} \int \phi(\lambda) \int \frac{1-\varphi_\lambda}{h} \, d\tilde{\eta}_n \, d\pi_K(\lambda) = -\int \phi(\lambda) \cdot \psi(\lambda) \, d\pi_K(\lambda)$. Now $\bar{\mathcal{F}}\phi \in \mathcal{C}^0(\mathbb{R}_+)$ and the same is true for $\bar{\mathcal{F}}\phi/h$ (the continuity at 0 follows again by dominated convergence from $\phi \in \mathcal{K}(\hat{K})$). Since $\tilde{\eta}$ and $\hat{\eta}$ are vague accumulation points of $(\tilde{\eta}_n)_n$ we obtain

$$\int \frac{\bar{\mathcal{F}}\phi}{h} \, d\tilde{\eta} = -\int \phi \cdot \psi \, d\pi_K = \int \frac{\bar{\mathcal{F}}\phi}{h} \, d\hat{\eta}$$

for all $\phi \in \mathcal{K}(\hat{K})$ with $\int \phi \, d\pi_K = 0$ and therefore $\tilde{\eta} = \hat{\eta}$ by Lemma 3.2. Hence we have proved that $\tilde{\eta} := \lim_{n \to \infty} \tilde{\eta}_n$ exists vaguely.

We conclude the proof by showing that $\{\tilde{\eta}_n : n \in \mathbb{N}\}$ is uniformly tight. In order to do this we have to treat the cases $\rho = 0$ and $\rho > 0$ separately; we consider $\rho = 0$ first: let $\varepsilon > 0$ be given. We choose a neighborhood of 0 where $|\psi| < \varepsilon$ and a non negative function $\phi \in \mathcal{K}(\hat{K})$ with support in that

neighborhood such that $\int \phi \, d\pi_K = 1$. Then

$$\int \frac{1 - \bar{\mathcal{F}}\phi}{h} \, d\tilde{\eta}_n \ \to \ \int \psi \phi \, d\pi_K$$

which is of modulus $\langle \varepsilon \rangle$ by construction, and hence $\int \frac{1-\bar{\mathcal{F}}\phi}{h} d\tilde{\eta}_n \langle \varepsilon \rangle$ for all $n \geq N_{\varepsilon}$. Since $\bar{\mathcal{F}}\phi \in \mathcal{C}^0(\mathbb{R}_+)$ there exists $c_{\varepsilon} > 0$ with $\frac{1-\bar{\mathcal{F}}\phi}{h} > \frac{1}{2}$ on $[c_{\varepsilon}, \infty[$. This implies $\tilde{\eta}_n([c_{\varepsilon}, \infty[) < 2\varepsilon \text{ for all } n \geq N_{\varepsilon} \text{ and so the uniform tightness is proved in this case. In the case of exponential growth we use the fact that <math>\varphi_{\lambda} \in \mathcal{C}^0(\mathbb{R}_+)$ whenever $\lambda \in i[0, \rho[$ (see Lemma 3.3) for a similar but simpler argument. Hence in both cases $\{\tilde{\eta}_n : n \in \mathbb{N}\}$ is uniformly tight and $\tilde{\eta}_n \to \tilde{\eta}$ weakly follows.

Proposition 3.5. If $\nu \in DOA^*(\mu)$ with $\mu \neq \varepsilon_0$, then either $t \mapsto \nu[t, \infty[$ is regularly varying at ∞ with index $-\kappa$ and $\kappa \in]0, 2[$, or $t \mapsto \int_0^t x^2 d\nu(x)$ is slowly varying.

Proof. We have $(\mathcal{F}\theta_{c_n}\nu(\lambda))^n \to \mathcal{F}\mu(\lambda)$ for all $\lambda \in \hat{K}$ and since $\mathbb{R} \ni \mathcal{F}(\theta_{c_n}\nu) \to 1$ as $n \to \infty$ we obtain $\mathcal{F}\mu(\lambda) \ge 0$ with strict inequality on $[0, \lambda_0[$ where $\lambda_0 := \inf\{\lambda > 0 : \mathcal{F}\mu(\lambda) = 0\} \in]0, \infty]$ (we have $\lambda_0 > 0$ because of $\phi_0 > 0$). For all $\lambda \in [0, \lambda_0[$ we therefore have

$$\int \frac{1 - \varphi_{\lambda}}{h} d\tilde{\eta}_{n} = n(1 - \mathcal{F}\theta_{c_{n}}\nu(\lambda)) \rightarrow -\ln \mathcal{F}\mu(\lambda)$$
 (2)

where $\tilde{\eta}_n := nh \cdot (\theta_{c_n} \nu)$ and h is a Hunt function. By the same argument as in the proof of Corollary 3.4 we obtain $\|\tilde{\eta}_n\| \leq C$ for all $n \in \mathbb{N}$.

We now show that the assumption $\lambda_0 < \infty$ leads to a contradiction. In this case there is also a constant C' > 0 with $\frac{1-\phi_{\lambda_0}}{h} \leq C'$ (Lemma 3.1) and this implies $-\ln \mathcal{F}\mu(\lambda_0) \leq CC'$ and $\mathcal{F}\mu(\lambda_0) \geq e^{-CC'} > 0$, a contradiction. Therefore the convergence in (2) holds for all $\lambda \in \hat{K}$ and it follows from Corollary 3.4 that $(\tilde{\eta}_n)$ has a weak limit $\tilde{\eta} \in \mathcal{M}_+^b(K)$.

Now the hypergroup structure plays no role any more and we are in the classical situation. We either have $\tilde{\eta} = c \cdot \varepsilon_0$ and therefore $t \mapsto \int_0^\infty x^2 d\nu(x)$ is slowly varying; or we have $\tilde{\eta}]0, \infty[>0$ and hence $n\nu]c_n x, \infty[\to \eta]x, \infty[$ for all but countably many x>0 where $\eta:=\frac{1}{h}\cdot\tilde{\eta}$. Then by [3], VIII.8 Lemma 3 the function $t\mapsto \nu]t, \infty[$ is regularly $-\kappa$ -varying for some $\kappa\in\mathbb{R}$ and $\eta]x, \infty[=cx^{-\kappa}$. Since η is a Lévy measure we must have $\kappa\in]0, 2[$. \square

4. Conclusions. We now summarize the necessary and sufficient conditions from Sections 3 and 2.

Theorem 4.1. A measure $\mu \neq \varepsilon_0$ has a non empty domain of inner attraction DOA* (μ) if and only if $\mu = \mu_{\kappa,c}$ for some $\kappa \in [0,2]$ and c > 0.

Proof. This follows from Proposition 3.5, Theorem 2.1 and Remark 2.2. \square

Theorem 4.2. (a) For $\kappa \in [0, 2[$, c > 0 we have

$$DOA^*(\mu_{\kappa,c}) = \{ \nu \in \mathcal{M}^1(K) : t \mapsto \nu[t, \infty[\text{ is regularly } -\kappa\text{-varying at } \infty] \}.$$

(b) For c > 0 we obtain

$$DOA^*(\mu_{2,c}) = \{ \nu \in \mathcal{M}^1(K) : t \mapsto \int_0^t x^2 \, d\nu(x) \text{ is slowly varying at } \infty \}.$$

Proof. (a) It follows again from Theorem 2.1 and Proposition 3.5.

(b) The inclusion \subseteq has been proved in Proposition 3.5.

If on the other side $t \mapsto \int_0^t x^2 d\nu(x)$ is slowly varying we obtain by the classical result $\tilde{\eta}_n := nh \cdot (\theta_{c_n}\nu) \to 2c(\alpha_0+1)\varepsilon_0$ for a suitably chosen sequence of numbers $c_n > 0$. This implies

$$n(1 - \mathcal{F}\theta_{c_n}\nu(\lambda)) = \int \frac{1 - \varphi_{\lambda}}{h} d\tilde{\eta}_n \to \frac{-\varphi_{\lambda}''(0)}{h''(0)} \cdot 2c(\alpha_0 + 1) = c(\lambda^2 + \rho^2)$$

and hence $(\theta_{c_n}\nu)^{*n} \to \mu_{2,c}$.

References

- [1] BINGHAM, N.H., Factorization theory and domains of attraction for generalized convolution algebras, Proc. London Math. Soc. 23 (1971), 16–30.
- [2] Bloom, W., Heyer, H., Harmonic analysis of probability measures on hypergroups, de Gruyter, Berlin, New York (1995).
- [3] Feller, W., An introduction to probability theory and its applications, Vol. II Wiley and Sons, New York, Chichester (1971).
- [4] JEWETT, R.I., Spaces with an abstract convolution of measures, Adv. Math. 18 (1975), 1–101.
- [5] KINGMAN, J.F.C., Random walks with spherical symmetry, Acta Math. 109 (1963), 11-53.
- [6] Scheffler, H.-P., Zeuner, Hm., Domains of attraction on Sturm-Liouville hyper-groups of polynomial growth (to appear).
- [7] TRIMÈCHE, K., Probabilités indéfiniment divisibles et théorème de la limite centrale pour une convolution généralisé sur la demi-droite, C. R. Acad. Sc. Paris, Sér. A 286 (1978), 63–66.
- [8] Urbanik, K., Generalized convolutions, Studia Math. 23 (1964), 217–245.
- [9] ZEUNER, HM., The central limit theorem for Chébli-Trimèche hypergroups, J. Th. Probab. 2 (1989), 51–63.
- [10] ZEUNER, HM., Moment functions and laws of large numbers on hypergroups, Math. Z. 211 (1992), 369–407.
- [11] ZEUNER, HM., Lindeberg type central limit theorems on one-dimensional hypergroups (to appear).
- [12] ZEUNER, HM., Kolmogorov's three series theorem on one-dimensional hypergroups, Cont. Math. 183 (1995), 435–441.

[13] Zeuner, Hm., Invariance principles for random walks on hypergroups on \mathbb{R}_+ and \mathbb{N} , J. Th. Probab. 7 (1994), 225–245.

FACHBEREICH MATHEMATIK
DER UNIVERSITÄT DORTMUND
VOGELPOTHSWEG 87
D–44221 DORTMUND
FEDERAL REPUBLIC OF GERMANY
EMAIL: HMZ@MATHEMATIK.UNI–DORTMUND.DE