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ON TRANSLATIONS OF SETS AND
FUNCTIONS

A.B. KHARAZISHVILI

Abstract. We consider some properties of sets and functions in connec-
tion with their translations. We give an application of those properties to
the theory of invariant measures (in particular, to the theory of invariant
extensions of the classical Lebesgue measure).

Let E be a basic set (we assume, as a rule, that £ is infinite) and let G
be a group of transformations of £. In such a case the pair (£, G) is usually
called a space equipped with a transformation group. If G acts transitively
in F, then E is called a homogeneous space (with respect to G).

Let X be an arbitrary infinite subset of a homogeneous space (F,G).
Then it is reasonable to study a behaviour of X under the action of trans-
formations from the group G. Namely, the following two general problems
arise in a natural way:

1. Find the cardinality of the family of sets

{9(X) : g€ Gl
2. Find the supremum of the family of cardinal numbers
{card(g(X)AX) : g€ G},
where the symbol A denotes the operation of symmetric difference of sets.
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Of course, the solution of each of these two problems essentially depends
on the algebraic (or, if one prefers, on the geometric) properties of the
original objects F, G and X. Notice that in the classical situation, when
FE coincides with the real line R and G coincides with the group of all
translations of R, these problems, in fact, were completely investigated by
Sierpinski (see, e.g., [5] and [4]).

The following two examples can be applied, in particular, to the classical
situation mentioned above.

Ezample 1. Let (G, +) be an arbitrary uncountable commutative group. As
usual, we identify G with the group of all translations of G. Let o be an
arbitrary infinite cardinal number less or equal to the cardinality of G. Then
it can be shown that there exists a subset X of G satisfying the equality

card{g+ X : g€ G}) =a.

Moreover, X can be a subgroup of the group G (see, for instance, [6] where
a much stronger assertion is established).

In connection with the presented result, notice that it is essentially based
on the Axiom of Choice. Indeed, let us consider a particular case when
G =R and a = w. Suppose that Y is a subset of R satisfying the relation

card({g+Y : geR}) =w.
Let us put
I'={geR : g+Y =Y}
Then it is easy to see that I' is a subgroup of R and the equality
cardR/T) = w

holds. Now, using the standard argument (see, e.g., [3]), we can deduce that
I' is a Lebesgue nonmeasurable subset of the real line (and, in addition,
I" does not have the Baire property with respect to the usual Euclidean
topology on the real line). Thus we can conclude that any proof of the
existence of the set Y mentioned above needs an uncountable form of the
Axiom of Choice. On the other hand, applying a Hamel basis of R, it is
not difficult to show the existence of the set Y. Namely, let us consider R
as a vector space over the field Q of all rational numbers and let us take
a vector hyperplane Y in this space. Then it is clear that the family of all
translates of Y is infinite and countable.

Suppose now that I' is an arbitrary proper subgroup of R measurable in
the Lebesgue sense (hence, I' is a Lebesgue measure zero subgroup of R).
Then the equality

card(R/T) =c¢
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is fulfilled. The same equality also holds if I' is any proper subgroup of R
having the Baire property (i.e. if I' is a first category subgroup of R). From
these facts it can be deduced that if X is a nonempty proper subset of R
measurable in the Lebesgue sense (respectively, having the Baire property),
then

card{g+X : geR}) =c.

Notice also that if X is an arbitrary nonempty proper subset of R, then

the inequality

card({g+X : geR}) >w
holds (this result is due to Sierpiriski, too). Actually, it can be proved
that, if G is an arbitrary nontrivial (i.e. nonzero) commutative divisible
group and X is an arbitrary nonempty proper subset of G, then the family
{g+ X : g € G} is infinite. In particular, from this fact we immediately
obtain that any nontrivial commutative divisible group is infinite.

Ezample 2. Let (G,+) be again an arbitrary uncountable commutative
group. Then, using an argument essentially due to Sierpinski (see [5] or
[4]), it can be shown that there exists a partition {X, Y} of G such that
1) card(X) = card(Y) = card(G);
2) for each translation g € G we have the inequalities
card((g + X)AX) < card(@), card((g+Y)AY) < card(G).

Indeed, let a be the first ordinal number of the cardinality of G. Obvi-
ously, there exists a family

{Gﬂ B < a}
consisting of subsets of G' and satisfying the following conditions:
a) this family is increasing with respect to inclusion;
b) the union of this family coincides with G;
¢) card(Gg) < card(f) + w, for all B < o
d) G is a subgroup of G, for all § < a.
Applying the method of transfinite recursion, we can construct two in-
jective families
{xﬂ : ,6<Oé}, {yﬂ : ﬂ<a}
of elements of GG such that
(Gp+ ) N (Go +yp) =0,
for all ordinals § < a and 0 < a.
Now, if we put
X =U{Gg+z5 : B<a},
Y=G\X,
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then it is easy to check that the partition {X,Y} of G satisfies relations 1)
and 2).

The sets X and Y are usually called almost G—-invariant subsets of the
given group G.

For some applications of almost invariant subsets of the real line R to
the theory of invariant measures (in particular, to the theory of invariant
extensions of the classical Lebesgue measure), see monograph [3].

Let ¢ denote, as usual, the cardinality of the continuum. From the above
result it follows, in particular, that if the Continuum Hypothesis holds and
G = R, then there exists a partition {A, B} of R such that

card(A) = card(B) =c¢
and, for any translation g € R, we have the inequalities
card((g+ A)ANA) < w, card((g+ B)AB) < w.

Conversely, it is not difficult to show that if there exists a partition {A, B}
of R satisfying these inequalities, for all translations g € R, and satisfying
the relation card(A) = card(B) = c, then the Continuum Hypothesis is
true.

Also it is not difficult to prove that, for an arbitrary partition {Z;, Z2} of
the group G into two infinite subsets, there exists a translation g € G such
that

card((g+ Z1) N Z3) > w.

For G = R this fact was established many years ago by Trzeciakiewicz (see
[8]), with the aid of the well known Vitali partition of the real line R. The
proof of this result applying the method of Trzeciakiewicz is presented in
monograph [4]. The same result can be established in another way. Indeed,
let {Z1, 7>} be a partition of R into two infinite subsets. Evidently,

card(Z1) > w or card(Zs) > w.
Without loss of generality we may assume that
card(Zs) > w.

Suppose now that

card((g+ Z1) N Z2) < w,
for each translation g € R. Then we have

card((g+ Z1)AZ1) < w,
for each g € R. Let us fix an infinite countable set

Z C 7.
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It is easy to check the inclusion
Zo CUH{(Z1—2)\Z1 + z€ Z}.
From this inclusion we obtain the inequality
card(Zs2) < w,

which gives us a contradiction.

A similar argument can be applied to an arbitrary uncountable commu-
tative group G. More precisely, it can be proved that if G is an uncountable
commutative group, {71, Z»} is a partition of G into two subsets such that

card(Zy) = card(Z3) = card(Q)

and 3 is a cardinal number strictly less than card(G), then there exists an
element g € G satisfying the inequality

card((g + Z1) N Zay) > .

FEzample 3. Let Q be the additive group of all rational numbers and let
{X,Y} be a partition of Q into two infinite subsets. It is mentioned in [7]
that there always exists an element g € Q such that

card((g+X)NY) = w.

This fact is proved in detail in paper [1]. Moreover, it is shown in [1] that an
analogous fact is true for any countable, torsion free, not finitely generated
commutative group. On the other hand, if (G,+) is an arbitrary infinite
countable periodic commutative group, then it is not difficult to prove that
there exists a partition {A, B} of GG into two infinite subsets satisfying the
relations

card((g + A)AA) < w, card((¢g + B)AB) < w,

for each element g € G.

Ezample 4. Let {X,Y} be a partition of the real line R into two uncount-
able Borel subsets. It is known that in this case there exists a translation
g € R satisfying the equality

card((g + X)NY) =c.

Notice that a nice proof of this fact is given in [2], using Shoenfield’s abso-
luteness theorem from mathematical logic. Obviously, an analogous result
is valid for an arbitrary uncountable commutative Polish topological group.
More generally, let (G,+) be a commutative Polish topological group and
let {X,, : n < w} be a countable partition of G into uncountable Borel
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subsets. Then there exist two distinct natural numbers n, m and an element
g € G such that

card((g+ X,) N X,,) = c.

In connection with this result, the following question arises in a natural
way: is an analogous fact true for any wi—partition {X¢ : £ < wi} of G
into uncountable Borel subsets? It turns out that we cannot answer this
question within theory ZFC. Indeed, it is not difficult to show that if the
negation of the Continuum Hypothesis holds, then the answer is positive,
i.e. there exist two distinct ordinals £ < wi, ( < wi and an element g € G
such that

card((g + X¢) N X¢) = c.

On the other hand, suppose that the Continuum Hypothesis holds. Then
it can be proved (cf. [4]) that there exists a partition {A¢ : § <wi} of the
real line R, satisfying the following conditions:
1) for each ordinal £ < wy, the set A¢ is an uncountable Gs—subset of R;
2) for any translation g of R and for any two distinct ordinals £ < wy
and ¢ < wy, we have

card((g + A¢g) N A¢) < 1.

Hence, we see that in this situation the answer to the question formulated
above is negative. Notice that a much simpler partition can be defined
for the three-dimensional Euclidean space R3. Namely, applying some el-
ementary geometrical properties of hyperboloids in the space R3, we can
effectively construct a partition of R? consisting of straight lines such that
any two distinct lines of this partition do not lie in one plane (consequently,
they are not parallel). Obviously, if the Continuum Hypothesis holds, then
the corresponding analogs of conditions 1) and 2) are fulfilled for this par-
tition.

Example 5. Let S? be the unit sphere in the space R?. Equip S? with the
group G of all its rotations. Clearly, G is not a commutative group (but it
is a locally commutative group). Let {X,Y} be an arbitrary partition of 52
into two infinite subsets. It can be shown that there exists a rotation g € G
satisfying the inequality

card(g(X)NY) > w.

This result is precise in a certain sense. Indeed, assuming the Continuum
Hypothesis and applying the method of Sierpiniski, we can construct a par-
tition {A, B} of S? such that

1) card(A) = card(B) = c;
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2) for any rotation g € GG, we have the inequalities
card(g(A)AA) < w, card(g(B)AB) < w.
We see, in particular, that
card(g(A) N B) < w,

for each rotation g € G.

In our further considerations connected with translations of functions it
is convenient to identify any function with its graph.

Let E be a nonempty basic set and let S be a o—algebra of subsets of E.
In other words, the pair (¥, S) is a measurable space. We need the following
simple lemma.

Lemma 1. Let f be an arbitrary S—-measurable function acting from E into
R and let

d : ExXR—FExR
be a mapping defined by the formula

O(z,y) = (z, f(z) +y).

Then the mapping ® is a bijection and transforms the family of graphs of
all S—measurable functions onto itself. The inverse mapping ®~' has the
same property.

Let E be a nonempty basic set, let S be a o—algebra of subsets of E/ and let
1 be a o—finite complete measure defined on S. Equip the real line R with
the standard Lebesgue measure. We need the following simple auxiliary
proposition concerning translations of y—measurable real functions.

Lemma 2. Let f be an arbitrary p—measurable function acting from E into
R and let {f, : n < w} be an arbitrary sequence of p—measurable functions
also acting from E into R. Then, for almost all h € R (in the sense of the
Lebesgue measure), the set

{z ek : (z,f(x)+h) e UW{fn:n <w}}
is a p—measure zero subset of E.
The proof of Lemma 2 can directly be deduced from Lemma 1, using the

classical Fubini theorem. Notice that a proposition analogous to Lemma
2 also is true in the case of real functions having the Baire property. In
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this case we apply, instead of the Fubini theorem, the classical Kuratowski—
Ulam theorem (for the formulation and the proof of the Kuratowski-Ulam
theorem and for its various applications, see, e.g., [5]).

Obviously, an analogue of Lemma 2 is true for the unit two—dimensional
Euclidean sphere §? equipped with the group of all its rotations, and, more
generally, for other manifolds M equipped with some transitive groups of
diffeomorphisms of M.

The assumption of measurability of functions in Lemma, 2 is very essential.
This can be shown by the following statement.

Theorem 1. Suppose that the Continuum Hypothesis holds. Then there
exists a subset Z of the plane R?, satisfying the next three relations:

1) pri(Z) =R x {0};

2) for every straight line P lying in R? and parallel to the line {0} x R,
we have the inequality

card(PN7Z) < w;

3) for every translation g of R? parallel to the line {0} x R, we have the

inequality

card(g(Z2) A7) < w.

Proof. Let {x¢ : £ <wi} be an injective family of all points of the straight
line R x {0}. Let {G¢ : & < wi} be a family of subgroups of the line
{0} x R such that

(a) this family is increasing with respect to inclusion;

(b) the union of this family coincides with {0} x R;

(c) card(G¢) < w, for all ordinals £ < wy.

Now, let us define

ZZU{Gg-i-J)g D E<wil.

Then it is not difficult to check that the set Z satisfies relations 1), 2) and
3). O

Furthermore, it can be shown, slightly changing the above argument, that
the set Z may also have some additional properties. For instance, Z may be
a massive (thick) subset of R? in the sense of the Lebesgue measure or in
the sense of category. But we do not need here these additional properties
of Z.

Now, let {f, : n < w} be a countable family of functions from R into
R such that
Z=U{fn : n<w}.
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Evidently, the existence of such a family of functions follows from relations
1) and 2) of Theorem 1. Let us put

E=R;

u = the Lebesgue measure on R;

I = Jo.

Then it is easy to see that the assertion of Lemma 2 is false for the
function f and for the family of functions {f, : n < w}. Moreover, if

g is any translation of R? parallel to the line {0} x R, then we have the
inequality
card(g(f)\ Z) < w.

Remark 1. It can be proved that the existence of the set Z satisfying rela-
tions 1), 2) and 3) of Theorem 1 implies the Continuum Hypothesis.

Theorem 2. Let {A, B} be a partition of the unit two—dimensional Eu-
clidean sphere S? into two Borel subsets A and B such that

card(A) = card(B) = c.
Then there exists a rotation g of R? satisfying the equalities
9(5%) = 52, card(g(A)N B) = c.

Proof. For any point = belonging to the straight line R x {(0,0)}, we denote
by P, the plane in R? containing = and orthogonal to the line R x {(0,0)}.
Only two cases are possible.

1. There exists a point z € R x {(0,0)} such that

card(P, N A) = card(P, N B) = c.

In this case we can consider the commutative group H of all rotations h of
R? satisfying the equalities

h(S?) = S? h(P,NS?) =P, NS>

Taking into account the remark made in Example 4, we obtain that there
exists a rotation h € H such that

card(h(A) N B) = c.
2. For each point z € R x {(0,0)}, we have
card(P, N A) <w or card(P, N B) < w.

In this case there exists a nonempty perfect subset X of [—1,1] x {(0,0)}
such that at least one of the following two relations holds:
1) 0 < card(P; N A) < w, for all points = € X;



154 A.B. KHARAZISHVILI

2) 0 < card(P, N B) < w, for all points = € X.

Without loss of generality we may assume that relation 1) is fulfilled. Let
us consider the Borel set AN (X x R2?). According to relation 1), all sections
of this set are at most countable. Consequently, there exists a countable
family of Borel functions

fo + X — 52 (n <w)

such that
AN(X xR?) =U{f, : n<w}
Applying an analog of Lemma 2 to the sphere S2, to the function fy and to

the countable family of functions {f, : n < w}, we get the required result.
Thus the proof of Theorem 2 is complete. O

Of course, Theorem 2 can be generalized to the situation where we have
the unit m—dimensional Euclidean sphere S™ (m > 2) equipped with the
group of all its rotations. In that situation the proof can be obtained by
induction on m starting with the corresponding result for the sphere S2.

Theorem 3. Assume that the Continuum Hypothesis holds. Then there
exists a subset Z of the Euclidean plane R? such that

1) card(Z) = c;

2) for every Lebesque measure zero subset L of R?, we have

card(LNZ) < w.
3) for each translation g of R?, we have

card(g(Z)AZ) < w.

Proof. Let {G¢ : & < wq} be an uncountable family of subgroups of R?
satisfying the following conditions:

(a) this family is increasing with respect to inclusion;

(b) the union of this family coincides with R?;

(c) card(G¢) < w, for all ordinals § < w.

Further, let us denote by {Be : & < wi} the family of all Lebesgue
measure zero subsets of R? belonging to the Borel o—algebra of R%. We can
define, by the method of transfinite recursion, an injective family

{ze + £ <wi}
of points of R? such that the relation
(Gg +Z§) N (U{BC (<=0
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holds, for all ordinals £ < w;. Then we put
Z:U{G£+Z§ : §<w1}.
Now, it is easy to check that Z is the required subset of the plane R?. O

Remark 2. Let us recall that a subset A of the plane R? is a Sierpinski set
(in R?) if A is uncountable and, for every Lebesgue measure zero subset L
of R?, we have

card(LNA) < w.

It is well known that the Continuum Hypothesis implies the existence of
a Sierpifiski set in R? (see, for example, [5] or [4]). On the other hand,
it is not difficult to prove that if Martin’s Axiom and the negation of the
Continuum Hypothesis hold, then there are no Sierpiniski subsets of R2.
Theorem 3 shows us, in particular, that if the Continuum Hypothesis is
true, then there exists a Sierpinski subset of the Euclidean plane, almost
invariant with respect to the group of all translations of this plane.

Now, we shall give an application of the Sierpinski set Z mentioned in
Theorem 3.

First we shall formulate one simple fact of abstract measure theory. How-
ever, this fact is interesting from different points of view. Namely, we have
the following

Theorem 4. Let Ey and Es be two basic sets equipped with two o—finite
diffused measures py and po respectively. Let p be the completion of the
product measure p1 X po. Finally, let Z be an arbitrary p measurable subset
of the product space E x Eo. Then there exists a set Z' such that

1)7'C Z;

2) pri(Z') = pri(2);

3) 7' is a p—measure zero set;

4) Z" is the graph of a partial function acting from Ey into Es.

Similarly, there exists a set 7" such that

(1) Z" C Z;

(2) pra(Z") = pra(2);

(3) Z" is a p-measure zero set;

(4) Z" is the graph of a partial function acting from Eq into F.

In other words, Theorem 4 states that every p—measurable set in the
product space F; X E5 admits a uniformization by a y—measure zero set in
this space.
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One can prove Theorem 4 using the classical Fubini theorem and applying
the countable chain condition to the given o—finite measures p; and po (no-
tice that an analogous result in terms of the Baire property and category is
true, too).

Also it can be shown that Theorem 4 does not hold, in general, for those
o finite complete diffused measures p which are defined on the product
space /1 x Ey and are not the completions of product measures. In this
connection, we shall establish a much stronger result.

Let us denote by A the standard two—dimensional Lebesgue measure de-
fined on the plane R?. Since X is the completion of the product of two
one—dimensional Lebesgue measures, Theorem 4 is true for A\. Now, we are
going to construct an extension g of A which is invariant under the group
of all translations of the plane and for which an analogue of this theorem
does not hold.

Let Z be the subset of R? described in Theorem 3. From the properties
of Z it immediately follows that

M (R2\ Z) =0,

i.e. Z is a thick set with respect to A. Furthermore, Z is an almost invariant
set under the group of all translations of R?. Consequently, we can define,
using the standard constructions of extensions of invariant measures (see,
e.g., [3]), a measure x4 on R? satisfying the next three conditions:

a) i is an extension of A;

b) Z € dom(p) and p(R?\ Z) = 0;

c) p is complete and invariant under the group of all translations of R2.

Moreover, we may assume that p is the smallest (with respect to inclu-
sion) complete R?-invariant extension of A satisfying condition b). Now,
taking into account the fact that Z is a Sierpinski subset of the plane R2,
it is easy to check that every g measure zero subset of Z is at most count-
able. On the other hand, the projection of Z on any straight line lying in
R? is uncountable. Hence, the set Z does not admit a uniformization by a
L measure zero set.

Finally, let us notice that the difference between p and A, from the
measure-theoretical point of view, is very slight. Namely, it is not diffi-
cult to see that, for every pu—measurable set X, there exists a A-measurable
set Y satisfying the equality u(XAY') = 0.

Remark 3. Let us apply to the invariant measure p constructed above the
well known theorem of von Neumann and Maharam (see, for example, [5]).
According to this theorem, there exists a topology 7'(u) on the plane R?
such that
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1) (R%,7(u)) is a Baire topological space;

2) T'(u) satisfies the countable chain condition, i.e. every disjoint family
of nonempty sets from T'(u) is at most countable;

3) the o—algebra of all sets having the Baire property (with respect to
T(w)) coincides with the o—algebra of all y—measurable sets;

4) the o ideal of all first category sets (with respect to T'(u)) coincides
with the o—ideal of all p—measure zero sets.

Furthermore, since the measure g is invariant under the group of all
translations of the plane R?, the o-algebra of all sets having the Baire
property (in the space (R2,T(p))) and the o ideal of all first category sets
(in the same space) are invariant under the mentioned group. The Sierpinski
set Z described in Theorem 3 is the complement of a first category subset
of R? (with respect to T'(u), of course). Thus we see that the set Z has the
Baire property (with respect to T'(u)) and does not admit a uniformization
by a first category subset of the space (R2,T(u)).

Let us recall that the construction of the Sierpiriski set Z is essentially
based on the Continuum Hypothesis. If we assume Martin’s Axiom (much
weaker than the Continuum Hypothesis), then we are able to construct an
almost invariant generalized Sierpiniski subset of the plane R2. Starting
with that subset we can obtain the results analogous to ones presented
above. Notice that the corresponding result in terms of the Baire property
and category can also be obtained (under Martin’s Axiom) starting with an
almost invariant generalized Luzin subset of the plane.
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