#A6 INTEGERS 10 (2010), 65-71

VOLUME AS A MEASURE OF APPROXIMATION FOR THE
JACOBI-PERRON ALGORITHM

Fritz Schweiger
Department of Mathematics, University of Salzburg, Salzburg, Austria
fritz.schweiger@sbg.ac.at

Received: 11/7/08, Accepted: 11/24/09, Published: 3/5/10

Abstract
We consider the values of the consecutive minima of the quantities Fj(x;g) =
(AFTHD g3t ATy ) (AP 1 < j < do WL Schmidt, in 1958, calcu-
lated the first and second minimum for j = 1 and d = 2. Schweiger, in 1975,
considered the case 7 = 1 for any d > 2. This note is a continuation of these
investigations.

1. Introduction

W. Schmidt opened a new route on Diophantine approximation by the Jacobi-

Perron algorithm when he introduced volume as a measure of approximation. For
(9) (9)
g>d+1, let pl9) = %, ey jg‘”) be the rational approximation to the point

x = (x1,...,24) provided by the Jacobi-Perron algorithm. Then d consecutive
points plth) . ptd) and z form a simplex with volume (y = T9x)

V(x;g) = !

d . :
d!A((]g'H)...A((]g+d)(Aég+d+1) + ,Zl A(()Q-H)yj)
]:

The Jacobi-Perron algorithm can be described by iteration of the map T on the
d-dimensional unit cube as follows (see [4]):

T(zy,...,2q) = <@ (@), - kd(:c)>

gl T
j 1
kj(z) = {‘”;_jl} A1<j<d—1,kg(z) = [x_l] ,

]{Z(JJ) = (k‘l(l‘), ey kd(l‘))

The points = and z are called equivalent if there are n > 0,m > 0 such that
T =T"z.
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We further introduce the sequence k(9)(x) = k(T97'2) and the matrices

k0 0 1
1 0 00
B = | K 1 0 0
k90 10
AGTEED Al Al
A(g-‘rd-‘rl) A(g-‘rl) A(9+d)
1 1 1 B @) 009 ()
Agg%d%ﬁ) A(dg+1) L Agngd)

In this note we consider the quantities

d
Aég+d—~-1)Jr Z A(()g+k)yk

k=1
Fj(z;9) =

A(()ngj) algjgd

Let ¢ > 1 be the largest root of X4t! — X4 — 1 = 0. In [2] the following
conjecture was stated. For all x with non-terminating expansion there are infinitely
many values of g such that the inequality

Fj(z,9) > €477 4 dg™

is satisfied.
Since for z* = (%, 5%, oy 5%) it is easy to see that lim Fj(z*,g) = €179 +d¢=7.
g—o0
This result was thought to be best possible.
For d = 1 this conjecture is true by Hurwitz’ famous result on continued fraction.
(Note that for d = 1 we have £ + ¢! = 1/5.)

W. Schmidt [1] proved the conjecture for d = 2 and j7 = 1. For infinitely many
g > 1, the inequality

1
=), 8) ~2,39671...

Fy(z*,g) > 36 —2 = lim Fy(( e

§—00

|

is true. Moreover, he showed that if z is not equivalent to z* = (%, 5%), then the
constant £2 + 267! could be replaced by the greater value v ~ 4.26459... which
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is related to z* = (% + %, %) where 3 — 202 —3n = 1, n > 3. Again, this result
is best possible in an obvious sense. If x is not equivalent to z* or z* then we

obtain

for infinitely many values of g.

Schweiger [3]proved that the conjecture is true for any d > 1 and j = 1. Schweiger
[2] additionally proved that the conjecture is true for d = 2 and j = 2. In this
paper this matter is further explored. For d = 2 and j = 2 the second minimum is
calculated. Surprisingly the second minimum of F(z, g) is given by y* = (5, 1 +32),
A3 =2)\2 + 1, and not by z* = (% + %, %) as for 7 = 1. Furthermore, it is shown
that the conjecture is not true for d = 3 and j = 3.

2. The Second Minimum

Theorem. Let A\ > 1 be the greatest root of \> —2X\? —1 = 0. Then for all x which

are not equivalent to (%, &) for infinitely many g > 1 we have

. 11 1
Fy(z,9) >3)‘_4_31£2on <<X7X+ﬁ) ,s> ~ 2.61671....

Proof. Here and in the sequel, overlines refer to a periodic expansion. We first
consider two special cases:

11 1
Case 1. —H—+ ==
aa o«

,as—a2—a—1:0. Then

s) = —o®+4a—1~297417....

3% —28%—3—1=0. Then

,s) =32 4+53—3~324781....

D) | 04D AT () (k) | AP

Now consider Fy(x,g + 2) = ké + x5 o (ky NGoR
0 0

If Fy(z,g) < 2.62 for all g > go, then clearly kzét) < 2. Clearly, we may assume

—1s (9+2) _ k7 4aft g (9+2) _ 1
that go — 1, so that we have To = W Z 9 and Ty = W Z
2 2 2 2

1

3-
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Now let két) = 2 infinitely often. Assume that kégH) =2.
If
R =2, M

then clearly A(()g+4) < 2A(()g+3) + 3At()g+2). Hence,

1 A((Jg+3) 1 A(g+2)

F. 2) > 24-+-2 2+ )+~
2y +2) 2 +9+Aff’+4)( +3)+Aég+4)

19 7APTY 4 347"

9 3AY Y
+3 +2
o 19 TAPTY 4 3APtY
= +3 +2
9 6APTY 4 9A{t?
L 1o 2 %5 2%
- 9 3 9710

k§9+2)

Next, assume that = 1. Looking at Case 2 and Equation 1 we may assume

kég—H) =2, k§g+1) =0, kég+1) - k§g+1) =1,

or kgﬁl) =1, k%gﬂ) = 0. In any case we obtain

AP <24 4 AT,

Then again

19 APt 1 APt
Fg(gc,g-l-?) > K‘FW( +§)+W
0 0

19 447 4 345"
9 349

(9+3) (9+2)
> B L 4Ay + 34, S %

9 6Aég+4) +3Aég+1) Z 9

Now assume that k%gﬁ) = 0 and note that only the digits < (2) ), ( 1 ), ( ? >

must be considered. Hence, the remaining case is
RO =1,k =0

(the case k%’“) =1 is not allowed by Perron’s condition for the digits).

We have Aég+4) = A(()g+3) + Aég+1), and we estimate
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+3 +2 +3 +2
Fz(xg+2)>g+Aég LAY )=9+Agg '+ 34y ).
-9 A(()g+4) 3 A(()9+4) 9 3A(()9+3) + 3A[()9+1)

Since kgg) = kgg) is not allowed, the cases kgg) =1, k%g) =0 and kég) =2, kig) =0
remain.
If kég) =1, k}") =0, then Aég+3) = Aég+2) + Aég), so that

A(()9+3) +3A(()9+2) B 4A((Jg+2) +A(()9) . §
SAff”?’) + 3Agg+1) 3Aég+2) + 3Aég“) + 3Aég) -9

I £ = 2,k = 0, then we may assume that kY = 2, k19" = 0. Calculation
gives A(()g+2) = 2Aég+1) + A(()g_l) and Aég+3) = 4A(()g+1) + A((Jg) + 2A(()g_1), so that

AT L 349 104 4 A 454870
3AYTY 4340 1540 3457 64

5
> —.
-9

Howeverg—9+g:2—§1:§>2.61671....

— =

Finally, the case k‘g) =1 for all ¢ > tg leads to the periodic cases < > and

(7) 0

Remark. The point

1 Alt3) 4lo+D)
>\ g—oo A()g A()g

. . . . AGTD A0 .
lies in every triangle spanned by three successive points m, ﬁ , ] =
g+ 1,9+ 2,9+ 3. Furthermore, this point lies on the straight line with the
equation
1 1
$1+$2x+§ =3\—4.
Therefore there are infinitely many values g such that

A69+3) Aég-i-l) 1 1

Tt >3-4
A((f”) Aég”) AN
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Remark. For Fj(z,g) the second minimum is given by the point

1 11 00
Gren=(2 1)

where n® — 2% — 3np =1, > 3.
For Fy(z,g) this expansion gives two points of accumulation:

1 11 1
lim Fy((= + —, =), 25+ 1) = L2 (=352 + 97+ 5) ~ 1.83445.. .
smeo” Ty 2Ty 7
and
1 11 o+ 1
lim Fy((= + —, =), 25) = Lo (=35 + 9+ 5) ~ 3.21924 ...
smoo” Ty 2Ty 7

Therefore this expansion is not related to the second minimum.

3. A Counterexample

The general conjecture about the first minimum of the quantities Fj(xz,g) [2,4] is
not true.
Letting j = d = 3, we have

Aég+4) + :chg)AégH) + xgg)A(()QH) + xég)A(()ngS)

F3(z,9) = Aég+3)
Let £* = ¢2 + 1 and consider again
0
11 1
= (Gmm) = | 0
(f &2 53) 1
Then
. 3
Jim Fy(z,5) =€+ g =463~ 252112,

But if we consider A > 1, the greatest root of A* = 2)3 + 1, then the expansion of
0

1 1 1
wz(—,—Qvﬁ)— (2)
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gives the smaller value

3
lim F3(w,s) = A+~ = 4) — 6 ~ 2.42768 ... .

S§— 00 A
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