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Abstract

A nonempty finite set of positive integers A is relatively prime if ged(A) = 1 and
it is relatively prime to n if ged(A U {n}) = 1. The number of nonempty subsets
of A which are relatively prime to n is ®(A,n) and the number of such subsets
of cardinality k is ®x(A,n). Given positive integers l1, la, ma, and n such that
I1 <la < mg we give ®([1,m1] U [la, ma],n) along with @ ([1,m1] U [l2, ma],n).
Given positive integers [, m, and n such that [ < m we count for any subset A of
{l,1+1,...,m} the number of its supersets in [, m] which are relatively prime and
we count the number of such supersets which are relatively prime to n. Formulas
are also obtained for corresponding supersets having fixed cardinalities. Intermedi-
ate consequences include a formula for the number of relatively prime sets with a
nonempty intersection with some fixed set of positive integers.

1. Introduction

Throughout let k,I,m,n be positive integers such that I < m, let [I,m] = {l,] +
1,...,m}, let p be the Mébius function, and let |z] be the floor of x. If A is a
set of integers and d # 0, then % = {a/d: a € A}. A nonempty set of positive
integers A is called relatively prime if gcd(A) = 1 and it is called relatively prime
to n if ged(A U {n}) = ged(A,n) = 1. Unless otherwise specified A and B will
denote nonempty sets of positive integers. We will need the following basic identity

on binomial coeflicients stating that for nonnegative integers L < M < N

> (1)-(5) - (M)

=M
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Definition 1. Let

D(An)=#{X CA: X #0and ged(X,n) =1},
Op(A,n) =#{X CA: #X =k and ged(X,n) = 1},
fA)=#{X CA: X #0and ged(X) =1},
fe(A) =#{X CA: #X =k and ged(X) = 1}.

Nathanson in [5] introduced f(n), frx(n), ®(n), and Px(n) (in our terminology
f([1,n]), fe([1,7n]), ®([1,n],n), and ®k([1,n],n) respectively) and gave their formu-
las along with asymptotic estimates. Formulas for f([m,n]), fi([m,n]), ®([m,n],n),
and @ ([m,n],n) are found in [3, 6] and formulas for ®([1,m],n) and P ([1,m],n)
for m < n are obtained in [4]. Recently Ayad and Kihel in [2] considered phi func-
tions for sets which are in arithmetic progression and obtained the following more
general formulas for ®([I, m],n) and ®x([l, m],n).

Theorem 2. We have

(a)  ®([l,m],n) = z:/JL(al)le/dJ—L(l—l)/alJ7

d|n
(b)  @x(lomlin) = u(d) <Lm/dJ - ,E;(l - 1)/dJ>_
d|n

2. Relatively Prime Subsets for [1,m1] U [l2, m2]
If [1,m1]N[la, ma] # @, then phi functions for [1,m1]U[l2, ma] = [1, ms] are obtained
by Theorem 2. So we may assume that 1 < mp < ls < meo.

Lemma 3. Let
(ma,la,ma,n) = #{X C [L,mi]U[l2,mo] : 2 € X and ged(X,n) =1}
and

U (ma,la,ma,n) = #{X C[1,m1]U[la,ms] : s € X, | X| =k, and ged(X,n) = 1}.

Then
(a) W(ml,lg,m27n) = Z u(d)ngl/dJ+Lm2/dJ_12/d’
dl(l27n)

(b) !pk(mlal.?an@an): Z 12

d|(lz,n)
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Proof. (a) Assume first that ma < n. Let P(mq,la, ma) denote the set of subsets
of [1,m1] U [la, mg] containing Iy and let P(mq,ls, ma,d) be the set of subsets X
of [1,m1] U [l2, mg] such that I € X and ged(X,n) = d. It is clear that the
set P(my,lz, ms) of cardinality 2™1+™2~!2 can be partitioned using the equivalence
relation of having the same ged (dividing l; and n). Moreover, the mapping A — X
is a one-to-one correspondence between P(myq,la, ma,d) and the set of subsets Y of
[1,|m1/d]|] Ulla/d, | ms2/d]] such that lo/d € Y and ged(Y,n/d) = 1. Then

#P(ml,lz,mg,d) = \I/(I_ml/dj,lg/d, ng/dj,n/d)

Thus,

grtmal = NPy, by, ma,d) = Y U(|ma/d],ly/d, [ma/d],n/d),

d|(l2,n) d|(l2,n)

which by the M&bius inversion formula extended to multivariable functions [3, The-
orem 2] is equivalent to

V(my,la, ma,n) = Z p(d)2lm/dtlma/dl=la/d
d|(l2,n)

Assume now that mo > n and let a be a positive integer such that ms < n®. As
ged(X, n) = 1if and only if ged(X,n%) = 1 and u(d) = 0 whenever d has a nontrivial
square factor, we have

\I](m17127m27n) = \Ij(mlv l27 m27na)

= 3 (dy2tm/atlma/dl-ta/d
i (1z0%)

Z M(d)2Lm1/dJ+Lm2/dJ*lz/d'
d|(l2,n)

(b) For the same reason as before, we may assume that ms < n. Noting that
the correspondence X +— éX defined above preserves the cardinality and using an
argument similar to the one in part (a), we obtain the following identity

(m*l;’ml—lz) = N Wu(lmi/d),lo/d, [ ma/d),n/d)
d|(l2,n)
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which by the Mébius inversion formula [3, Theorem 2] is equivalent to

Ui (ma,lp,mo,n) = Y M(d)<Lm1/dJ + [mo/d] — zz/d>’

d|(l2,n) k—1
as desired. .
Theorem 4. We have
(a) ¢([17m1] [lg,mz Z,u 2\_m1J+Lm2J ng 1
d|n
| T | 4 | m2| — |
(b) @k ([1, m] U [lz, me], Z'“ ( d +Lko 13 J)
d|n

Proof. (a) Clearly

@([1,7711} U [lg,mg],n) = @([1,m1] U [lg — 1,mg],n) — \If(ml,lg — l,mg,n)

lo—1
= ®([1,m1) U [my + 1, ms],n) — Z U(mq,i,ma,n)
i=mi+1
la—1 2)
=o([L,mg] — > W(my,i,ma,n)
1=mi+1
lo—1
= Zu(d)2Lm2/dJ - Z Z "”J+L'"2J——,
d|n i=mi1+1d|(n,i)

where the last identity follows by Theorem 2 for I/ = 1 and Lemma 3. Rearranging
the last summation in (2) gives

122:1 Z ol I+ %J*%ZZ ZZZ:I p(d)2l T I LE =G
i=m1+1d|(n,0) din =+l
lo—1
= 3 ()l LR Li:J - (3)
din =12+
=" ud) 2L";J(1_2 L2t )+ 2 )
dn

Now combining identities (2) and (3) yields the result.
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(b) Proceeding as in part (a) we find

Ok ([1,m1] U [l2, m2],m ZM ( ) ZQXII > (mT ZET;J_%>

i=mi+1d|(n,i)

(4)
Rearranging the last summation on the right of (4) gives
-1 | i 2] m ,
e BE. LG+ 5] =
Y2 S B SRS SN (L E
i=mi+1d|(n,i) dln J=l"g 1+
7211 ;
w2 ()
dn =T LR - LR
. BRI (L] + 2] -
= (Y7) - - 7
d|n
()
where the last identity follows by formula (1). Then identities (4) and (5) yield the
desired result. O

Definition 5. Let

e(A,Byn)=#{XCB: X#0, XNA=0, and ged(X,n) = 1},
exr(A,Bn)=#{XCB: #X =k, XNA=10, and ged(X,n) =1}.

If B = [1,n] we will simply write e(A,n) and €5 (A, n) rather than (A, [1,n],n) and
er(4,[1,n],n) respectively.

Theorem 6. Ifl < m < n, then

(a) < ZN d)2L=1)/d)+n/d=m/d]

(b) ex([l.m],n) = p(d) (L(l —1)/d] —I—kn/d - Lm/dJ)
d|n

Proof. Immediate from Theorem 4 since e([l,m],n) = ®([1,I—-1]U[m+1,n],n) and
er([l,m],n) = ®x([1,l — 1]U [m + 1,n],n). O
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3. Relatively Prime Supersets

In this section the sets A and B are not necessary nonempty.
Definition 7. If A C B let
(A, B,n)=#{X CB: X#0, ACX, and ged(X,n) = 1},
(A, B,n)=#{XCB: ACX, #X =k, and ged(X,n) =1},

f(AaB):#{XgB X#0, ACX, and ng(X):]-}v

FAB) =#{XCB: #X =k ACX, and ged(X) = 1}.
The purpose of this section is to give formulas for f(A4, [I,m]), fi(A, [l,m]), ®(A,[l,m],n),
and @ (A, [I,m],n) for any subset A of [I,m]. We need a lemma.

Lemma 8.If A C [1,m], then

(a) B(A[L,mln)= Y p(d)2tm/d#A
d|(A,n)

(b) @1(A,[1,m],n) = Z w(d) <Lmk{CiJ ?;fA> whenever #A4 < k < m.

d[(A;n)

Proof. If A = (), then clearly
®(A,[1,m],n) = ®([1,m],n) and (A, [1,m],n) = ®([1,m],n)

and the identities in (a) and (b) follow by Theorem 2 for [ = 1. Assume now that
A#D. If m <n, then

oA = 3 B, L/l nd)
d|(A;n)

and

m—#A\ — A . .
(k#A>—d§n)u<d>%<d»[LL /d]],n/d),

which by Mobius inversion [3, Theorem 2] are equivalent to the identities in (a)
and in (b) respectively. If m > n, let a be a positive integer such that m < n®.
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As ged(X,n) = 1 if and only if ged(X,n*) = 1 and u(d) = 0 whenever d has a
nontrivial square factor we have

D(A,[1,m],n) = (A, [1,m],n%)

= Z pu(d)2lm/dl=#A
d)(A,ne)

= Z p(d)2tm/d=#4,
d|(A,n)

The same argument gives the formula for ®; (A4, [1,m],n). O

Theorem 9. If A C [I,m], then

(@) B(A[l,m]n)= Y p(d)elm/d-l0=D/d=#4

d|(A,n)
(b) (A [lmln) = 3 u(d)cm/dJLk(l_#Zi/dJ#A)
d|(A,n)

whenever #A <k <m—1+ 1.

Proof. If A =0, then clearly
D(A, [I,m],n) = ([, m],n)

and
61@(A7 [lvm]a TL) = CDk([l’m]vn)

and the identities in (a) and (b) follow by Theorem 2.
Assume now that A # (). Let

(A, l,m,n)=#{X C[l,m]: AU{l} C X,and ged(X,n) =1}.

Then

gm—l—#A _ Z \I/(%J/d,Lm/dj,n/d),
d|(A,l,n)

which by Mébius inversion [3, Theorem 2] means that

V(A Lmn) =Y p(d)2tm/A=a#A, (6)
d|(A,l,n)
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Then combining identity (6) with Lemma 8 gives

-1
B(A, [I,m],n) = B([A,[1,m],n) = Y U(i,m, A,n)
=1

-1
= Z M(d)ng/dJ—#A_Z Z pu(d)2lm/dl=i/d—#A

d|(A,n) i=1d|(A,i,n)
L¢=1)/d]
= Y A ST iyl #A S g
d|(A,n) d|(A,n) j=1
= Yl ST (dyalmi - #A( g Lu-D/d)
d|(A,n) d|(A,n)
= 3 p(dyatm/al-Lum/al A,
dl(A;n)
(7)
This completes the proof of (a). Part (b) follows similarly. O

As to f(A,[l,m]) and f, (A, [l,m]) we similarly have:

Theorem 10. If A C [l,m], then
() F(A[Lm)= Y pdeld LT I-#4
d| ged(A)
m| _ | l=1 _
o) falin = 5 oML T,

d| ged(A)

whenever #A <k <m—1+1.

We close this section by formulas for relatively prime sets which have a nonempty
intersection with A.

Definition 11. Let
g(A,B,n) =#{X CB: XNA#0)and ged(X,n) =1},

(A, B,n) =#{X CB: #X =k, XNA#0, and ged(X,n) =1},
S(A,B)=#{XCB: XNA#Dand ged(X) =1},

gh(A,B)=#{X CB: #X =k XNA#0, and ged(X) = 1}.
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Theorem 12. We have

(a) &(A,[l,m],n) = Z Z M(d)QL%J—L%J—#X,

0£XCA d|(X,n)

_ | =15 —#X
(b) Ex(A,ll ¢ :
@;ﬁﬁ%:CA d|(§(:n ( k—#X >

(c) (A, B) Z Z 2L%J—LFTIJ—#X’

0#XCAd|ged(X)

(d) 5(A,B) = Y Z (JkL_?;JX #X>~

@#XCAﬂgm(
<k

Proof. These formulas follow by Theorems 4 and 5 along with the facts:

A [Lmln) = > ®(X,[l,m],n),

0£XCA

Zk(A,[l,m],n) = Z (X, [I,m],n),

PAXCA
#X<k

A Lm) = Y FX,

P£XCA

s(ALml) = Y FelX,[Lm]).

PAXCA
#X <k

573
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