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Abstract
We discuss a new restricted m-ary overpartition function hm(n), which is the num-
ber of hyper m-ary overpartitions of n, such that each power of m is allowed to be
used at most m times as a non-overlined part. In this note we use generating func-
tion dissections to prove the following family of congruences for all n ≥ 0, m ≥ 4,
j ≥ 0, 3 ≤ k ≤ m− 1, and t ≥ 1:

hm(mj+tn + mj+t−1k + · · · + mjk) ≡ 0(mod 2t(2j+1 − 1)).

1. Introduction

Numerous functions which enumerate partitions into powers of a fixed number m
( Here m is assumed to be bigger than 1 ) have been studied by Churchhouse [2],
Rødseth [10], Andrews [1], Gupta [8] in the late 1960s and early 1970s, and Dirdal
[5, 6] in the mid-1970s. For more recent work see [7, 11, 9].

Presently there are a lot of activities in the study of the objects named overpar-
titions by Corteel and Lovejoy [3]. Rødseth [12] discussed divisibility properties of
the number of m-ary overpartitions of a natural number. Courtright and Sellers
[4] gave arithmetic properties for hyper m-ary partition functions. In this note, we
define hm(n) to be the number of hyper m-ary overpartitions of n. A hyper m-ary
overpartion of n is a non-increasing sequence of non-negative integral powers of m
whose sum is n, and where the first occurrence (equivalently, the final occurrence)
of a power of m may be overlined, such that each power of m is allowed to be used
at most m times as a non-overlined part. We denote the number of hyper m-ary
overpartitions of n by hm(n) (hm(n) = 0 for all negative integers n). The over-
lined parts form an m-ary partition into distinct parts, and the non-overlined parts
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form a hyper m-ary partition. Thus, putting hm(0) = 1, we have the generating
function

Hm(q) :=
∑

n≥0

hm(n)qn =
∏

i≥0

(1 + qmi

)
m∑

k=0

qk·mi

.

For example, for m = 2 we find

∑

n≥0

h2(n)qn = 1 + 2q + 4q2 + 5q3 + 8q4 + 10q5 + 13q6 + · · · ,

where the 10 hyper binary overpartitions of 5 are

4 + 1, 4̄ + 1, 4 + 1̄, 4̄ + 1̄, 2 + 2 + 1, 2̄ + 2 + 1,

2 + 2 + 1̄, 2̄ + 2 + 1̄, 2 + 1̄ + 1 + 1, 2̄ + 1̄ + 1 + 1.

From the generating function of hm(n), we have

Hm(q) = (1 + q)(1 + q + · · · + qm)Hm(qm), (1)

from which we obtain the following recurrences:

hm(mn) = hm(n) + 2hm(n− 1), (2)

hm(mn + 1) = 2hm(n) + hm(n− 1), (3)

hm(mn + k) = 2hm(n) for 2 ≤ k ≤ m− 1 . (4)

The main object of this note is to prove the following family of congruences for
all n ≥ 0, m ≥ 4, j ≥ 0, t ≥ 1, and k satisfying 3 ≤ k ≤ m− 1,

hm(mj+tn + mj+t−1k + · · · + mjk) ≡ 0(mod 2t(2j+1 − 1)).

2. Congruences for Hyper Binary and Trinary Overpartitions

We now focus our attention on the function h2(n).

Lemma 1 For all n ≥ 0, we have

h2(3n + 1) ≡ 0(mod 2), h2(3n + 2) ≡ 0(mod 2).

Proof. We prove this lemma via induction on n. First, the lemma holds for the case
n = 0 since h2(1) = 2 ≡ 0 (mod 2), h2(2) = 4 ≡ 0 (mod 2). Now, we assume the
lemma is true for all n ≤ k. Then we consider the case n = k + 1.
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Case 1. k = 2j for some integer j < k. Then from (2), (3) and induction hypothesis
we have

h2(3(k + 1) + 1) = h2(2(3j + 2))

= h2(3j + 2) + 2h2(3j + 1) ≡ 0 (mod 2),

h2(3(k + 1) + 2) = h2(2(3j + 2) + 1)

= 2h2(3j + 2) + h2(3j + 1) ≡ 0 (mod 2).

Case 2. k = 2j + 1 for some integer j < k. We also have

h2(3(k + 1) + 1) = h2(2(3j + 3) + 1)

= 2h2(3j + 3) + h2(3j + 2) ≡ 0 (mod 2),

h2(3(k + 1) + 2) = h2(2(3j + 4))

= h2(3j + 4) + 2h2(3j + 3) ≡ 0 (mod 2).

So the lemma is true for the case n = k + 1 and the proof is completed. !

By the lemma and similar techniques we can prove the following theorem:

Theorem 2 For all n ≥ 0, we have

h2(n) ≡ 0 (mod 2) if and only if n ≡ 1, 2 (mod 3).

Proof. The sufficiency is handled in Lemma 2.1. We now prove the necessity. We
need only to prove h2(3n) ≡ 1(mod 2) by induction on n. First, the case n = 0 is
clear. Now, we assume the result is true for all n ≤ k. Then we consider the case
n = k + 1.

Case 1. k = 2j for some integer j < k. Then from (2), (3), and the induction
hypothesis we have

h2(3(k + 1)) = h2(2(3j + 1) + 1) = 2h2(3j + 1) + h2(3j) ≡ 1 (mod 2).

Case 2. k = 2j + 1 for some integer j < k. We also have

h2(3(k + 1)) = h2(2(3j + 3)) = h2(3j + 3) + 2h2(3j + 2) ≡ 1 (mod 2).

So the case n = k + 1 is true. This completes the proof. !
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From the proof of Theorem 2.2 and h2(3) ≡ 1(mod 4), we have

Corollary 3 For all n ≥ 0, we have h2(3n) ≡ 1(mod 4).

Lemma 4 For all k ≥ 0, we have

h2(2k)− h2(2k − 1) = k + 1,

h2(2k − 1)− h2(2k − 2) = 1,

h2(2k − 2)− h2(2k − 3) = k.

Proof. We prove this lemma by induction on k. First the case k = 0 is clear. Now,
we assume the result is true for k = n and we consider the case k = n + 1. By the
recurrences (2) and (3), we have

h2(2n+1)− h2(2n+1 − 1)

= h2(2 · 2n)− h2(2(2n − 1) + 1)

= h2(2n) + 2h2(2n − 1)− (2h2(2n − 1) + h2(2n − 2))

= h2(2n)− h2(2n − 1) + (h2(2n − 1)− h2(2n − 2))

= (n + 1) + 1 = n + 2.

h2(2n+1 − 1)− h2(2n+1 − 2)

= h2(2(2n − 1) + 1)− h2(2(2n − 1))

= 2h2(2n − 1) + h2(2n − 2)− (h2(2n − 1) + 2h2(2n − 2))

= h2(2n − 1)− h2(2n − 2) = 1.

h2(2n+1 − 2)− h2(2n+1 − 3)

= h2(2(2n − 1))− h2(2(2n − 2) + 1)

= h2(2n − 1) + 2h2(2n − 2)− (2h2(2n − 2) + h2(2n − 3))

= (h2(2n − 1)− h2(2n − 2)) + (h2(2n − 2)− h2(2n − 3))

= 1 + n = n + 1.

So the lemma is true for the case k = n + 1 and the proof is completed. !
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By Lemma 4 and induction on n, we can prove

Theorem 5 For all n ≥ 0, we have

h2(2n) =
1
2
(3n + 1) + n + 1, h2(2n − 1) =

1
2
(3n + 1).

Proof. We prove this theorem by induction on n. By Lemma 2.4, we need only to
prove the first formula. First, the formula is true for n = 0. Now, we assume the
formula is true for n = k. Then we have

h2(2k+1) = h2(2k) + 2h2(2k − 1)
= 3h2(2k)− 2(h2(2k)− h2(2k − 1))

=
3
2
(3k + 1) + 3(k + 1)− 2(k + 1)

(by induction hypothesis and Lemma 4)

=
1
2
(3k+1 + 1) + k + 2.

So the theorem is true for the case n = k + 1 and the proof is completed. !

From Theorem 5 and Lemma 4 we can easily obtain

Corollary 6 For all n ≥ 1, we have

h2(2n − 2) =
1
2
(3n − 1), h2(2n − 3) =

1
2
(3n − 1)− n.

Now, we consider the function h3(n).

Theorem 7 For all n ≥ 0, we have

n ≡ 1, 2, 3 (mod 4) implies h3(n) ≡ 0 (mod 2).

Proof. We prove this theorem by induction on n. First the theorem is true for the
case n = 0 since

h3(1) = 2, h3(2) = 2, h3(3) = 4.

Now we assume the lemma is true for all n ≤ k and we consider the case n = k +1.
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Case 1. k = 3j for some integer j < k. Then from (2), (3), (4) and the induction
hypothesis we have

h3(4(k + 1) + 1) = h3(3(4j + 1) + 2)

= 2h3(4j + 1) ≡ 0 (mod 2)

h3(4(k + 1) + 2) = h3(3(4j + 2))

= h3(4j + 2) + 2h3(4j + 1) ≡ 0 (mod 2),

h3(4(k + 1) + 3) = h3(3(4j + 2) + 1)

= 2h3(4j + 2) + h3(4j + 1) ≡ 0 (mod 2).

Case 2. k = 3j + 1 for some integer j < k. We also have

h3(4(k + 1) + 1) = h3(3(4j + 3))

= h3(4j + 3) + 2h3(4j + 2) ≡ 0 (mod 2),

h3(4(k + 1) + 2) = h3(3(4j + 3) + 1)

= 2h3(4j + 3) + h3(4j + 2) ≡ 0 (mod 2),

h3(4(k + 1) + 3) = h3(3(4j + 3) + 2)

= 2h3(4j + 3) ≡ 0 (mod 2).

Case 3. k = 3j + 2 for some integer j < k. We also have

h3(4(k + 1) + 1) = h3(3(4j + 4) + 1)

= 2h3(4j + 4) + h3(4j + 3) ≡ 0 (mod 2),

h3(4(k + 1) + 2) = h3(3(4j + 4) + 2)

= 2h3(4j + 4) ≡ 0 (mod 2),

h3(4(k + 1) + 3) = h3(3(4j + 5))

= h3(4j + 5) + 2h3(4j + 4) ≡ 0 (mod 2).

So the theorem is true for the case n = k + 1 and the proof is completed. !
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From Theorem 7 and Recurrence (4) we can prove

Theorem 8 For all n ≥ 0, k ≥ 0, we have

h3(4n · 3k + 2 · 3k − 1) ≡ 0 (mod 2k+1),

h3(4n · 3k + 3 · 3k − 1) ≡ 0 (mod 2k+1),

h3(4n · 3k + 4 · 3k − 1) ≡ 0 (mod 2k+1).

Proof. We prove this result by induction on k. We first consider the case k = 0.
Note that the case k = 0 is Theorem 2.7. Now, we assume

h3(4n · 3k + 2 · 3k − 1) ≡ 0 (mod 2k+1),

h3(4n · 3k + 3 · 3k − 1) ≡ 0 (mod 2k+1),

h3(4n · 3k + 4 · 3k − 1) ≡ 0 (mod 2k+1).

Then by Recurrence (4) we have

h3(4n · 3k+1 + 2 · 3k+1 − 1) = h3(3(4n · 3k + 2 · 3k − 1) + 2)

= 2h3(4n · 3k + 2 · 3k − 1) ≡ 0 (mod 2k+2),

h3(4n · 3k+1 + 3 · 3k+1 − 1) = h3(3(4n · 3k + 3 · 3k − 1) + 2)

= 2h3(4n · 3k + 3 · 3k − 1) ≡ 0 (mod 2k+2),

h3(4n · 3k+1 + 4 · 3k+1 − 1) = h3(3(4n · 3k + 4 · 3k − 1) + 2)

= 2h3(4n · 3k + 4 · 3k − 1) ≡ 0 (mod 2k+2),

thereby completing the proof. !

Furthermore, we obtain

Theorem 9 For all n ≥ 0, we have h3(3n) = 2n+1, and h3(3n − 1) = 2n.

Proof. We prove this result via induction on n using Recurrences (2) and (4).
First, the theorem holds for the case n = 0 since h3(1) = 2, h3(0) = 1. Now we
assume the theorem is true for the case n = k. Then we have

h3(3k+1) = h3(3k) + 2h3(3k − 1) = 2k+1 + 2 · 2k = 2k+2,

h3(3k+1 − 1) = 2h3(3k − 1) = 2k+1.

So the theorem is true for the case n = k + 1 and the proof is complete. !
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By Theorem 9 and Recurrence (4) we can easily prove

Corollary 10 For all n ≥ 0, we have h3(3n+1 + 2) = 2n+2.

3. General Conclusion

Lemma 11For all n ≥ 0,m ≥ 3 and j ≥ 0, we have

hm(mjn) = hm(n) + (2j+1 − 2)hm(n− 1).

Proof. We prove this result by induction on j. Note that the case j = 0 is clear and
the case j = 1 is the recurrence (2). Now, we assume the result is true for some
positive integer j. This means we assume that

hm(mjn) = hm(n) + (2j+1 − 2)hm(n− 1),

or that ∑

n≥0

hm(mjn)qn = (1 + (2j+1 − 2)q)Hm(q).

Then, we have

hm(mj+1n) = [qmn](1 + (2j+1 − 2)q)Hm(q)

= [qmn](1 + (2j+1 − 2)q)(1 + q)(1 + q + · · · + qm)Hm(qm)

= [qmn](1 + 2qm + (2j+1 − 2)q · 2qm−1)Hm(qm)

= [qn](1 + (2j+2 − 2)q)Hm(q)

= hm(n) + (2j+2 − 2)hm(n− 1).

!

From Lemma 11 we can easily prove the following result, which generalizes The-
orem 9.

Corollary 12 For all n ≥ 0 and m ≥ 3, we have

hm(mn) = 2n+1, hm(mn − 1) = 2n.

We now prove a family of congruences using similar elementary techniques.

Lemma 13 Let m ≥ 4, j ≥ 0, and 3 ≤ k ≤ m− 1. Then for all n ≥ 0, we have

hm(mj+1n + mjk) = (2j+2 − 2)hm(n).



INTEGERS: 10 (2010) 9

Proof. Using Lemma 11, we have

hm(mj+1n + mjk) = [qmn+k](1 + (2j+1 − 2)q)Hm(q)

= [qmn+k](1 + (2j+1 − 2)q)
×(1 + 2q + 2q2 + · · · + 2qm + qm+1)Hm(qm)

= [qmn+k](2qk + (2j+1 − 2)q · 2qk−1)Hm(qm)
(since 3 ≤ k, so that m + 2 < m + k)

= [qmn](2j+2 − 2)Hm(qm)

= (2j+2 − 2)hm(n).

!

Remark 14 Lemma 13 implies that, for m ≥ 4, j ≥ 0 and 3 ≤ k ≤ m− 1, we have

hm(mj+1n + mjk) ≡ 0 (mod (2j+2 − 2)).

Theorem 15 For all n ≥ 0, m ≥ 4, j ≥ 0, t ≥ 1 and k satisfying 3 ≤ k ≤ m− 1,
we have

hm(mj+tn + mj+t−1k + · · · + mjk) = 2t(2j+1 − 1)hm(n).

Proof. We prove this result by induction on t. The case t = 1 is proved in Lemma
13. Now we assume

hm(mj+t−1n + mj+t−2k + · · · + mjk) = 2t−1(2j+1 − 1)hm(n),

or that

hm(mj+t−1n + mj+t−2k + · · · + mjk) = [qn]2t−1(2j+1 − 1)Hm(q).

Then we have

hm(mj+tn + mj+t−1k + · · · + mjk)

= [qmn+k]2t−1(2j+1 − 1)Hm(q)

= [qmn+k]2t−1(2j+1 − 1)(1 + q)(1 + q + · · · + qm)Hm(qm)

= [qmn+k]2t−1(2j+1 − 1) · 2qkHm(qm)

= [qn]2t(2j+1 − 1)Hm(q)

= 2t(2j+1 − 1)hm(n).

!



INTEGERS: 10 (2010) 10

Remark 16 Theorem 15 implies that, for all n ≥ 0, m ≥ 4, j ≥ 1 , 3 ≤ k ≤ m− 1,
and t ≥ 1,

hm(mj+tn + mj+t−1k + · · · + mjk) ≡ 0(mod 2t(2j+1 − 1)).

Corollary 17 For all t ≥ 0, m ≥ 4, we have

hm(mt+1 + mt − 1) = 2t+2. (5)

Proof. A proof can be obtained by letting n = m, j = 0, k = m− 1 in Theorem 15.

Remark 18 We can easily prove (5) is true for the case m = 3.
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