#A01 INTEGERS 10 (2010), 1-11

CONGRUENCES FOR HYPER M-ARY OVERPARTITION
FUNCTIONS

Lin Ma
School of Mathematical Science, Xuzhou Normal University, Xuzhou , P.R. China
malin62920163. com

Qing-Lin Lu!
School of Mathematical Science, Xuzhou Normal University, Xuzhou, P.R. China
qllu@xznu.edu.cn

Received: 12/2/08, Revised: 10/27/09, Accepted: 10/30/09, Published: 3/5/10

Abstract
We discuss a new restricted m-ary overpartition function h,,(n), which is the num-
ber of hyper m-ary overpartitions of n, such that each power of m is allowed to be
used at most m times as a non-overlined part. In this note we use generating func-
tion dissections to prove the following family of congruences for all n > 0, m > 4,
71>20,3<k<m-—1,and t > 1:

B (T 4+ mI Tk o 4 mP k) = 0(mod 28(27T — 1)),

1. Introduction

Numerous functions which enumerate partitions into powers of a fixed number m
( Here m is assumed to be bigger than 1 ) have been studied by Churchhouse [2],
Rgdseth [10], Andrews [1], Gupta [8] in the late 1960s and early 1970s, and Dirdal
[5, 6] in the mid-1970s. For more recent work see [7, 11, 9].

Presently there are a lot of activities in the study of the objects named overpar-
titions by Corteel and Lovejoy [3]. Rodseth [12] discussed divisibility properties of
the number of m-ary overpartitions of a natural number. Courtright and Sellers
[4] gave arithmetic properties for hyper m-ary partition functions. In this note, we
define h,,(n) to be the number of hyper m-ary overpartitions of n. A hyper m-ary
overpartion of n is a non-increasing sequence of non-negative integral powers of m
whose sum is n, and where the first occurrence (equivalently, the final occurrence)
of a power of m may be overlined, such that each power of m is allowed to be used
at most m times as a non-overlined part. We denote the number of hyper m-ary
overpartitions of n by h,(n) (hm(n) = 0 for all negative integers n). The over-
lined parts form an m-ary partition into distinct parts, and the non-overlined parts
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form a hyper m-ary partition. Thus, putting h,,(0) = 1, we have the generating

function
m

Hole) = Y Tog” =[]0+ 47350
n=0 i>0 k=0
For example, for m = 2 we find

n>0

where the 10 hyper binary overpartitions of 5 are

44+1,44+1,44+1,4+1,2+2+1,2+2+1,
2424+ 1,242+ 1,24+14+14+1,24+1+1+1.

From the generating function of h,,(n), we have
Hpn(q) =1+ +qg+-+q")Hn(d™), (1)

from which we obtain the following recurrences:

R (mn) = Ry (n) + 2R, (n — 1), (2)
R (mn 4 1) = 2Ry, (n) + Ry (n — 1), (3)
R (mn + k) = 2h,,(n) for 2<k<m-—1. (4)

The main object of this note is to prove the following family of congruences for
alln >0, m>4, 7 >0, t>1, and k satisfying 3 <k <m —1,

B (Mo 4 mI Tk 4o 4 mik) = 0(mod 21(27F — 1)).

2. Congruences for Hyper Binary and Trinary Overpartitions
We now focus our attention on the function ha(n).

Lemma 1 For alln > 0, we have

ha(3n+1) =0(mod 2), h2(3n +2) = 0(mod 2).

Proof. We prove this lemma via induction on n. First, the lemma holds for the case
n = 0 since ho(1) = 2 = 0 (mod 2), ho(2) =4 = 0 (mod 2). Now, we assume the
lemma is true for all n < k. Then we consider the case n = k + 1.
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Case 1. k = 2j for some integer j < k. Then from (2), (3) and induction hypothesis
we have

ho(3(k+1)+1) = ho(2(35+2))
= ha(3j +2)+2h2(3j+1) =0 (mod 2),
ho(3(k+1)+2) = ha(2(35+2)+1)

= 2h9(3j +2) +ha(35 +1) =0 (mod 2).
Case 2. k =25+ 1 for some integer j < k. We also have

hao(3(k+1)+1)

ha(2(3j +3) + 1)

= 2h(3j +3) + ha(3j +2) =0 (mod 2),
ha(3(k+1)+2) = hao(2(3j+4))

= ho(35 +4)+2ha(35 +3) =0 (mod 2).
So the lemma is true for the case n = k + 1 and the proof is completed. a

By the lemma and similar techniques we can prove the following theorem:

Theorem 2 For all n > 0, we have

ha(n) = 0(mod 2) if and only if n = 1,2 (mod 3).

Proof. The sufficiency is handled in Lemma 2.1. We now prove the necessity. We
need only to prove ha(3n) = 1(mod 2) by induction on n. First, the case n = 0 is
clear. Now, we assume the result is true for all n < k. Then we consider the case
n==k+1.

Case 1. k = 2j for some integer j < k. Then from (2), (3), and the induction
hypothesis we have

ho(3(k +1)) = ha(2(35 + 1) + 1) = 2ha(3j + 1) + h2(35) =1 (mod 2).
Case 2. k =27+ 1 for some integer j < k. We also have

So the case n = k + 1 is true. This completes the proof. o
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From the proof of Theorem 2.2 and h2(3) = 1(mod 4), we have
Corollary 3 For all n > 0, we have ha(3n) = 1(mod 4).

Lemma 4 For all k > 0, we have

Proof. We prove this lemma by induction on k. First the case k = 0 is clear. Now,
we assume the result is true for £k = n and we consider the case k = n + 1. By the
recurrences (2) and (3), we have

= ha(2-2") — hy(2(2" — 1) +1)

= ha(2") + 2h2(2" — 1) — (2h2(2" — 1) + ha(2" — 2))
= ha(2") = h2(2" — 1) + (h2(2" = 1) — ha(2" - 2))
m+1)+1=n+2.

ha(2nFL — 1) — hy(27H! — 2)
= ho(2(2" — 1) + 1) — ha(2(2" — 1))

= 2hy(2" — 1) + ho(2" — 2) — (ha(2™ — 1) + 2ha (2" — 2))
= hy(2" — 1) — hy(2" —2) = 1.

ho (27 — 2) — hy(2nF! — 3)

= ho(2(2" — 1)) — ha(2(2" —2) + 1)
ho(2% — 1) + 2ha (2" — 2) — (2h2(2™ — 2) + ha(2" — 3))
= (ha(2" — 1) — ha(2" — 2)) + (ha(2" — 2) — ha(2" — 3))

So the lemma is true for the case k = n + 1 and the proof is completed. o
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By Lemma 4 and induction on n, we can prove

Theorem 5 For all n > 0, we have

_ 1 — 1
ha(2") = 5(3n +1)+n+1, ho(2"—1)= 5(3n +1).

Proof. We prove this theorem by induction on n. By Lemma 2.4, we need only to
prove the first formula. First, the formula is true for n = 0. Now, we assume the
formula is true for n = k. Then we have

ha(28H1) = hy(2F) + 2Ry (2% — 1)
= 3hy(2F) — 2(ha(2F) — ha(2F — 1))
= g(3k+1)+3(1€+1) —2(k+1)
(by induction hypothesis and Lemma 4)
= %(3’“+1 +1)+k+2.

So the theorem is true for the case n = k + 1 and the proof is completed. O

From Theorem 5 and Lemma 4 we can easily obtain

Corollary 6 For alln > 1, we have

Now, we consider the function hz(n).
Theorem 7 For all n > 0, we have

n =1,2,3 (mod 4) implies h3(n) =0 (mod 2).

Proof. We prove this theorem by induction on n. First the theorem is true for the
case n = 0 since

Now we assume the lemma is true for all n < k and we consider the case n = k+ 1.
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Case 1. k = 3j for some integer j < k. Then from (2), (3), (4) and the induction
hypothesis we have

ha(4(k+1)+1) = h3(3(45 + 1) +2)

= 2h3(4j + 1) =0 (mod 2)
ha(4(k +1) +2) = h3(3(4j + 2))

= h3(4j +2) + 2h3(4j + 1) = 0 (mod 2),
h3(4(k+1)+3) = h3(3(45 +2) + 1)

= 2h3(4j +2) + h3(45 + 1) = 0 (mod 2).
Case 2. k=37 + 1 for some integer j < k. We also have

h3(4(k+1) +1) = h3(3(45 + 3))

= h3(4j + 3) + 2h3(4j +2) =0 (mod 2),
ha(4(k +1)+2) = h3(3(45 +3) + 1)

= 2h3(4j + 3) + h3(45 +2) = 0 (mod 2),
h3(4(k+1)+3) = h3(3(4j +3) +2)

= 2h3(4j +3) =0 (mod 2).
Case 3. k = 3j + 2 for some integer j < k. We also have

ha(4(k+1)+1) = h3(3(45 +4) + 1)

= 2h3(4j +4) + h3(45 +3) = 0 (mod 2),
ha(4(k +1) +2) = h3(3(4j +4) + 2)

= 2h3(4j +4) =0 (mod 2),
ha(4(k+ 1)+ 3) = h3(3(4j + 5))

= h3(4j +5) + 2h3(45 +4) =0 (mod 2).

So the theorem is true for the case n = k + 1 and the proof is completed. a
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From Theorem 7 and Recurrence (4) we can prove
Theorem 8 For alln >0, k> 0, we have
ha(4n -3k +2-3F —1) =0 (mod 2k +1),
ha(4n - 3F +3-3F —1) =0 (mod 2~ +1),
hs(4n - 3F 4 4-3F —1) =0 (mod 2~ +1).

Proof. We prove this result by induction on k. We first consider the case £ = 0.
Note that the case k = 0 is Theorem 2.7. Now, we assume

h3(4n - 3% +2-3% — 1) =0 (mod 2F+1),
ha(4n -3k +3-3F —1) =0 (mod 2~ +1),
ha(4n - 3F +4-3F —1) =0 (mod 2~ +1).

Then by Recurrence (4) we have

hg(4n - 381 2.3k 1) =h3(3(4n-3F+2-3F - 1)+2)

=2h3(4n -3 +2-3F — 1) =0 (mod 2++2),

ha(dn - 3FF1 4+ 3.3F1 1) =h3(3(4n-3F +3.3F —1)+2)
=2h3(4n - 3% +3-3F — 1) =0 (mod 2F+2),
ha(dn -3+t 4+ 4.3k 1) = hy(3(4n-3¥ +4-3F — 1)+ 2)

= 2h3(4n-3% +4-3F —1) =0 (mod 2¢+2),

thereby completing the proof. O

Furthermore, we obtain

Theorem 9 For all n > 0, we have h3(3") = 2"*!, and h3(3" — 1) = 2".

Proof. We prove this result via induction on n using Recurrences (2) and (4).
First, the theorem holds for the case n = 0 since h3(1) = 2, hz(0) = 1. Now we
assume the theorem is true for the case n = k. Then we have

hg(3FT1) = hg(3%) 4 2h3(3F — 1) = 2k+1 4 2. 2k — 2k+2
hg (3Kt — 1) = 2hg(3F — 1) = 2~F1.

So the theorem is true for the case n = k + 1 and the proof is complete. a
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By Theorem 9 and Recurrence (4) we can easily prove

Corollary 10 For all n > 0, we have hz(3"+! + 2) = 2n+2,

3. General Conclusion
Lemma 11For alln > 0,m > 3 and j > 0, we have
R (m?n) = b (n) + (2771 = 2)hy(n — 1).
Proof. We prove this result by induction on j. Note that the case j = 0 is clear and

the case j = 1 is the recurrence (2). Now, we assume the result is true for some
positive integer j. This means we assume that

hm(mIn) = By (n) + (277 — 2)h,, (0 — 1),

or that
> hm(min)g" = (1+ (271 = 2)g) Hon(q)-
n>0
Then, we have
P (m?* ) = [g™)(1+ (27! = 2)g)Hon(q)

= [0+ =2))(L+ )L+ g+ +¢") Hum(q™)
= [¢"(1+2¢" + (27 = 2)q- 24" ) H (™)
= [¢"](1+(27"% = 2)9) H,n(q)
= hp(n)+ (2772 = 2)hy,(n —1).
O

From Lemma 11 we can easily prove the following result, which generalizes The-
orem 9.

Corollary 12 For all n > 0 and m > 3, we have

B (m™) =271 B (m™ — 1) = 2™,

We now prove a family of congruences using similar elementary techniques.

Lemma 13 Let m > 4,5 >0, and 3 < k <m — 1. Then for all n > 0, we have

o (M 4+ mIk) = (2772 — 2)h,, (n).
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Proof. Using Lemma 11, we have
B (m? i+ mIk) = (g™ (1 + (27— 2)q)Hon(g)

= [¢"TF)(1+ (271! - 2)q)
X(1+2¢+2¢* + -+ 2¢"™ + ¢" ") H,n(q™)

= "¢ + (27 —2)q - 2¢" ) Ho(g™)
(since 3 < k, so that m +2 < m + k)

= (g™ —2)H,(¢™)
= (2772 =)y (n).

O
Remark 14 Lemma 13 implies that, for m >4, 7 > 0and 3 < k < m — 1, we have

B (m? ™+ mik) = 0 (mod (2742 — 2)).

Theorem 15 For alln >0, m >4, j >0,t>1 and k satisfying3 <k <m—1,
we have
A (M 4+ m? T e 4o k) = 2827 — 1Ay, (n).

Proof. We prove this result by induction on ¢. The case t = 1 is proved in Lemma
13. Now we assume
o (M T 4 mI T2 o I k) = 201 (29T — )Ry, (n),
or that
(I T I T2 oI k) = [¢"]28 (20T — 1D H L (g).
Then we have
R (mIttn + mI Ttk 4+ 4 mik)

= [gm RN (20 — 1)H , (q)
= [¢mR I - D)1+ (L g+ + ") Hm(q™)
) -

— [qmn+k]2t 1(2J+1 1 2qum( m)
= [¢"12'(@" = 1)Hn(q)

= 2427 — DA (n).
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Remark 16 Theorem 15 implies that, foralln >0, m>4,7>1,3<k<m-1,
and t > 1,

R (3T 4+ mI Tk o 4 mP k) = 0(mod 28(27T — 1)),

Corollary 17 For allt > 0, m > 4, we have

o (M 4 mt — 1) = 2112, (5)

Proof. A proof can be obtained by letting n =m, 7 =0, k = m — 1 in Theorem 15.

Remark 18 We can easily prove (5) is true for the case m = 3.
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