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Abstract
Why are n-player games much more complex than two-player games? Is it much
more difficult to cooperate or to compete? N -player Hackenbush is an n-player
version of Blue-Red Hackenbush, a classic two-player combinatorial game played
on graphs. Because of queer games, i.e., games where no player has a winning
strategy, cooperation is a key-factor in n-player games and, as a consequence, n-
player Hackenbush played on strings is PSPACE-complete.

1. Introduction

Combinatorial game theory is a branch of mathematics devoted to studying the
optimal strategy in perfect-information games where typically two players are in-
volved. To extend this theory so as to allow more than two players is a challenging
and fascinating problem for different reasons.

Typically, more than two parties are involved in real-world economical, social or
political conflicts and a winning strategy is often the result of alliances. In two-
player games there exist no coalitions because the two players are in conflict with
each other, but in n-player games cooperation is a key-factor, because to determine
the winning strategy of a coalition of players means to consider the worst scenario,
i.e., assuming that all the other players are allied against that coalition.

The first theories of Li [9] and Straffin [13] concerning impartial three-player com-
binatorial games have made various restrictive assumptions about the rationality of
one’s opponents and the formation and behavior of coalitions. Loeb [10] introduces
the notion of a stable winning coalition in a multi-player game as a new system
of classification of games. Differently, Propp, in his work concerning three-player
impartial games [12], seeks only to understand in what circumstances one player
has a winning strategy against the combined forces of the other two.

Cincotti [3, 4] presents an extension of Conway’s theory of partizan games [7, 8]
to classify three-player partizan games [5]. Such a theory has been applied to three-
player Hackenbush, that is to say a three-player version of Blue-Red Hackenbush.
When Blue-Red Hackenbush is played on strings, cooperation is much more difficult
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than competition and, as a consequence, three-player Hackenbush played on strings
is NP-complete [6].

2. N-player Hackenbush

Blue-Red Hackenbush is a classic combinatorial game. Every instance of this game
is represented by an undirected graph such that the following hold.

• Every edge is connected via a chain of edges to a certain line called the ground.

• Every edge is colored either blue or red.

Two players, called Left and Right, move alternately. Left moves by deleting any
blue edge together with all the edges that are no longer connected to the ground
and Right moves by deleting any red edge together with all the edges that are no
longer connected to the ground. The first player unable to move because there are
no edges of his/her color is the loser.

When Blue-Red Hackenbush is played on strings, it is easily solvable using
Berlekamp’s rule [1], but to determine the value of a Blue-Red Hackenbush po-
sition on a general graph is NP-hard [2].

N -player Hackenbush is the multi-player version of Blue-Red Hackenbush. Every
instance of n-player Hackenbush is represented by an undirected graph such that
the following fold.

• Every edge is connected via a chain of edges to a certain line called the ground.

• Every edge is labeled by an integer j ∈ {1, 2, . . . , n}.

The first player moves by deleting any edge labeled 1 together with all the edges
that are no longer connected to the ground, the second player moves by deleting
any edge labeled 2 together with all the edges that are no longer connected to the
ground, and so on.

Players take turns making legal moves in cyclic fashion (1-st, 2-nd, . . ., n-th, 1-st,
2-nd, . . .). When one of the n players is unable to move, then that player leaves the
game and the remaining n − 1 players continue playing in the same mutual order
as before. The remaining player is the winner.

We briefly recall the definition of queer game introduced by Propp [12]:
Definition 1. A position in a three-player combinatorial game is called queer if no
player can force a win.

Such a definition is easily generalizable to n players:
Definition 2. A position in an n-player combinatorial game is called queer if no
player can force a win.
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In the game of n-player Hackenbush, it is not always possible to determine the
winner because of queer games, as shown in Figure 1. In this case, no player has a
winning strategy because if the first player removes the first string, then the third
player has a winning strategy, but if the first player removes the second string, then
the second player has a winning strategy.

Figure 1: An example of a queer game.

When the game is queer, only cooperation between players can guarantee a winning
strategy, i.e., one player of the coalition is always able to make the last move. As a
consequence, to establish whether or not a coalition has a winning strategy is a
crucial point.

3. N-player Hackenbush played on strings is PSPACE-complete

In this section we show that the PSPACE-complete problem of Quantified Boolean
Formulas [11], QBF for short, can be reduced by a polynomial time reduction to
n-player Hackenbush.

Let ϕ ≡ ∃x1∀x2∃x3 . . . Qxnψ be an instance of QBF, where Q is ∃ for n odd and
∀ otherwise, and ψ is a quantifier-free Boolean formula in conjunctive normal form.
We recall that QBF asks if there exists an assignment to the variables x1, x3, . . .,
x2!n/2"−1 such that the formula evaluates to true.

If n is the number of variables and k is the number of clauses in ψ, then the
instance of n-player Hackenbush will have n + k + 2 players and 2n + 2 strings,
organized as follows:

• For each variable xi, we add two new strings. Both strings have on the bottom
one edge labeled i, with 1 ≤ i ≤ n. On the top of the first string we add one
edge for each clause that contains xi and on the top of the second string we
add one edge for each clause that contains xi. These edges are labeled j, with
n + 1 ≤ j ≤ n + k, and arranged in increasing order from top to bottom.

• One string contains two edges labeled n + k + 1.

• One string contains k + 2 edges. The edges on the bottom and on the top are
labeled n + k + 2, and the remaining k edges are labeled from bottom to top
n + k, n + k − 1, . . . , n + 1.
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Let us suppose that the following hold.

• The first coalition is formed by 'n/2(+ 1 players corresponding to the edges
labeled 2, 4, . . ., 2'n/2( and n + k + 1.

• The second coalition is formed by the remaining players.

An example is shown in Figure 2 where

ϕ ≡ ∃x1∀x2∃x3∀x4(C5 ∧ C6 ∧ C7)

and

C5 ≡ (x1 ∨ x2 ∨ x3),

C6 ≡ (x1 ∨ x2 ∨ x4),

C7 ≡ (x1 ∨ x3 ∨ x4).

Figure 2: An example of Quantified Boolean Formula reduced to n-player Hacken-
bush.

The problem to determine the winning coalition is strictly connected to the
problem of QBF, as shown in the following theorem.

Theorem 3. Let G be a general instance of n-player Hackenbush played on strings.
Then, to establish whether or not a given coalition has a winning strategy is a
PSPACE-complete problem.

Proof. We show that it is possible to reduce every instance of QBF to a graph G

representing an instance of n-player Hackenbush. Previously we have described how
to construct the instance of n-player Hackenbush, therefore we just have to prove
that QBF is satisfiable if and only if the second coalition has a winning strategy.
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If QBF is satisfiable, then there exists an assignment of xi such that ψ is true
with i ∈ {1, 3, . . . , 2+n/2, − 1}. Each player plays twice. In the first round, if xi is
true, then the i-th player will remove the string with the edges corresponding to the
clauses containing xi else, if xi is false, then the i-th player will remove the string
with the edges corresponding to the clauses containing xi. Every clause contains at
least a true literal, therefore the i-th player with i ∈ {n + 1, n + 2, . . . , n + k} can
always remove one edge from the string corresponding to that literal. In this way,
the (n + k + 2)th player can remove the edge on the top of the string containing
k + 2 edges. In the second round, players remove the remaining edges. Each player
can remove only one possible edge when he/she has to play therefore, at the end of
the game, the (n + k + 2)th player will make the last move. As a result, the second
coalition has a winning strategy.

Conversely, let us suppose that the second coalition has a winning strategy. We
observe that the (n + k + 1)th player is always able to make two moves, therefore
even the (n + k + 2)th player must be able to make two moves in order to assure
a winning strategy for the second coalition. As a consequence, the ith player with
i ∈ {n+1, n+2, . . . , n+k} does not remove any edges in the string containing k+2
edges before the (n+ k +2)th player makes his/her first move, i.e., every clause has
at least one true literal and QBF is satisfiable.

Therefore, to establish whether or not a coalition has a winning strategy in n-
player Hackenbush played on strings is PSPACE-hard.

To show that the problem is in PSPACE we present a polynomial-space recursive
algorithm to determine which coalition has a winning strategy. Let us introduce
some useful notation:

• G = (V,E) is the graph representing an instance of n-player Hackenbush
played on strings;

• pi is the ith player;

• C0 is the set of current players belonging to the first coalition;

• C1 is the set of current players belonging to the second coalition;

• coalition(pi) returns 0 if pi ∈ C0 and 1 if pi ∈ C1;

• label(e) returns the label of the edge e;

• after(pi) returns the player which has to play after pi;

• remove(G,e) returns the graph obtained after that the edge e and all the edges
no longer connected to the ground have been removed from G.

Algorithm 1 performs an exhaustive search until a winning strategy is found and
its correctness can be easily proved by induction on the depth of the game tree.

Algorithm 1 is clearly in PSPACE because the number of nested recursive calls
is at most |E| and therefore the total space complexity is O(|E|2). !
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input: A graph G = (V,E), the two initial coalitions C0 and C1 and the
player pi that has to move;
output: 0 if the first coalition has a winning strategy and 1 if the second
coalition has a winning strategy;

Algorithm Check(G,C0, C1, pi)
j ← coalition(pi);
if !e ∈ E : label(e) = i then // remove player pi from game

Cj ← Cj\{pi};
if Cj = ∅ then // Cj has no more players

return 1− j;
else

return Check(G,C0,C1,after(pi));
end

else
forall e ∈ E : label(e) = i do // check all the possible moves of
pi

G′ ← remove(G,e);
if Check(G′,C0,C1,after(pi)) = j then // Cj has a winning
strategy

return j;
end

end
return 1− j;

end
Algorithm 1: A polynomial-space algorithm for n-player Hackenbush.

Table 1 summarizes the results so far obtained about the relation between number
of players and complexity in the domain of Hackenbush played on strings.

Table 1: Complexity of Hackenbush played on strings.

No. of players Complexity
2 O(n)
3 NP-complete
n PSPACE-complete
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