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ON PEBBLING GRAPHS BY THEIR BLOCKS
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Abstract
Graph pebbling is a game played on a connected graph G. A player purchases pebbles at a dollar
a piece and hands them to an adversary who distributes them among the vertices of G (called a
configuration) and chooses a target vertex r. The player may make a pebbling move by taking two
pebbles off of one vertex and moving one of them to a neighboring vertex. The player wins the
game if he can move k pebbles to r. The value of the game (G, k), called the k-pebbling number
of G and denoted πk(G), is the minimum cost to the player to guarantee a win. That is, it is the
smallest positive integer m of pebbles so that, from every configuration of size m, one can move k
pebbles to any target. In this paper, we use the block structure of graphs to investigate pebbling
numbers, and we present the exact pebbling number of the graphs whose blocks are complete. We
also provide an upper bound for the k-pebbling number of diameter-two graphs, which can be the
basis for further investigation into the pebbling numbers of graphs with blocks that have diameter
at most two.

1. Introduction
Graph pebbling is a game played on a connected graph G = (V,E).1 A player pur-
chases pebbles at a dollar a piece, and hands them to an adversary who distributes
them among the vertices of G (called a configuration) and chooses a target, or root
vertex r. The player may make a pebbling move by taking two pebbles off of one
vertex and moving one of them to a neighboring vertex. The player wins the game
if he can move k pebbles to r, in which case we say that r is k-pebbled. Another
common terminology calls the configuration k-fold r-solvable. The value of the game
(G, k), called the k-pebbling number of G and denoted πk(G), is the minimum cost
to the player to guarantee a win. That is, it is the smallest positive integer m of
pebbles so that, from every configuration of size m, one can move k pebbles to any
root. If k is not specified, it is assumed to be one.

For example, by the pigeonhole principle we have π(Kn) = n, where Kn is
the complete graph on n vertices. From there, induction shows that πk(Kn) =
n + 2(k − 1). Induction also proves that πk(Pn) = k2n−1, where Pn is the path on
n vertices. These two graphs illustrate the tightness of the two main lower bounds

1We assume the notation and terminology of [11] throughout.
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π(G) ≥ max{n(G), 2diam(G)}, where diam(G) is the diameter of G, the number of
edges in a maximum induced path. Another fundamental result uses the path fact
and induction to calculate the k-pebbling number of trees (see [2]). The survey [7]
contains a wealth of information regarding pebbling results and variations.

Complete graphs and paths are examples of greedy graphs. That is, the most
efficient pebbling moves are directed towards the root. More formally, a pebbling
move from u to v is greedy if dist(v, r) < dist(u, r), where dist(x, y) denotes the
distance between x and y. A greedy solution uses only greedy moves. A graph
G is greedy if every configuration of size π(G) can be greedily solved. If a graph
is greedy, then we can assume every pebbling move is directed towards the root.
The greedy property of trees follows from the No-Cycle Lemma of [9] (see also
[4, 8]), which states that the digraph whose arcs represent the pebbling moves
of a minimal solution contains no directed cycles. A cut vertex of a graph is a
vertex that, if removed, disconnects the graph. The connectivity κ of a graph is
the minimum number of vertices whose deletion disconnects the graph or reduces
it to only one vertex. Two important results relate diameter and connectivity to
pebbling numbers. Pachter, Snevily, and Voxman proved the first.

Result 1 ([10]). If G is a connected graph on n vertices with diam(G) ≤ 2 then
π(G) ≤ n + 1.

Clarke, Hochberg, and Hurlbert [3] characterized which diameter-two graphs have
pebbling number n and which have pebbling number n + 1. We will use the graphs
that describe that characterization in Section 3. Motivated by the characterization,
Czygrinow, Hurlbert, Kierstead, and Trotter proved the second.

Result 2 ([5]). If G is a connected graph on n vertices with diam(G) ≤ d and
κ(G) ≥ 22d+3 then π(G) = n.

This result states that high connectivity compensates for large diameter in keep-
ing the pebbling number to a minimum. In this paper we exploit graph structures
further to investigate pebbling numbers. A block of a graph G is a maximal sub-
graph of G with no cut vertex. Let B be the set of all blocks of G and C be the
set of all cut vertices of G. Then the block-cutpoint graph of G, denoted B(G), has
vertices B ∪ C, with edges (B,C) whenever C ∈ V (B). Note that B(G) is always a
tree (see [11]). Figure 1 shows an example.

Here we instigate a line of research into using the k-pebbling numbers of B(G)
and of the blocks of G to give upper bounds on πk(G). To begin, we generalize
Chung’s tree result to weighted trees in Section 2. We then present the exact k-
pebbling number of G when every block of G is complete in Section 3. Also in
Section 3, we prove the following theorem, and show that there is a diameter-two
graph G on n ≥ 6 vertices with πk(G) = n + 4k − 3 for all k (Theorem 11). Thus
Theorem 3 is not known to be tight.
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G B(G)

Figure 1: A graph and its block-cutpoint graph

Theorem 3 If G is a graph on n vertices with diam(G) ≤ 2 then πk(G) ≤ n+7k−6.

Section 4 provides some further conjectures, questions, and possibilities for future
research.

2. Trees and General Pebbling

A tree is a connected, acyclic graph, and a forest is a union of pairwise vertex-
disjoint trees. A leaf of a tree is a vertex of degree one. An r-path partition of a
particular tree T is a partition of the edges of T into paths, constructed by carrying
out the following algorithm. Construct the sequence of pairs (Ti, Fi), where each Ti

is a tree and each Fi is a forest, with E(Ti)∪E(Fi) = E(T ), and E(Ti)∩E(Fi) = ∅.
Begin with T0 = r, F0 = T and end with Tt = T , and Ft = ∅. At each stage, for
some path Pi we have Pi = Ti − Ti−1 = Fi−1 − Fi, with the property that for each
i, the intersection V (Pi) ∩ V (Ti−1) is a leaf of Pi. The path partition is r-maximal
if each Pi is the longest such path in Fi−1. An r-maximal path partition is maximal
if r is one of the leaves of the longest path in T . An r-path partition of a tree is
depicted in Figure 2, and a maximal path partition of a tree is depicted in Figure 3.

Define xi to be the leaf of Pi in Ti−1 and yi to be the leaf of Pi not in Ti−1, and
let ai = |E(Pi)|.

Lemma 4 The configuration C on T defined by each C(yi) = 2ai −1 and C(v) = 0
for all other v is r-unsolvable.
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Figure 2: A non-maximal r-path partition of a tree, with its corresponding unsolv-
able configuration

Figure 3: An r-maximal path partition of a tree, with its corresponding unsolvable
configuration

Proof. We use induction. Let Ci be the restriction of C to Ti. The case in which
i = 0 is trivial since the root has no pebbles. Now, assume that Ck is r-unsolvable on
Tk. We know that the configuration on Pk+1 is xk+1-unsolvable because the peb-
bling number of a path of length l is 2l. Thus, no pebbles can be moved to from Pk+1

to Tk since V (Tk)∩V (Tk+1) = xk+1. Since we already know Tk is unsolvable, Tk+1

is unsolvable also. Thus, by induction, the configuration C on T is r-unsolvable. !

Chung’s result generalizes this idea for k-pebbling.

Result 5 [2]. If T is a tree and a1, a2, . . . , at is the sequence of the path size
(i.e. the number of vertices in the path) in a maximum path partition of T , then
πk(T ) = k2a1 +

∑t
i=2 2ai − t + 1.
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Chung’s proof of this result uses induction performed on the vertices of T by
fixing and then removing the root, thus dividing T into subtrees in order to use
induction. We give a different proof of the more general Theorem 6, relying on the
fact that trees are greedy.

First we consider a more general form of pebbling. For each edge e of a graph G
we can assign a weight we. The weight is intended to signify that it takes we pebbles
at one end of e to place 1 pebble at its other end. Hence the pebbling considered to
this point has we = 2 for all e. We define the weighted pebbling number πw

k (G, r)
to be the minimum number m so that every configuration of size m can k-pebble r
by using w-weighted pebbling moves on G.

Figure 4: An edge-weighted tree

Given a weight function w : E(G)→N, we extrapolate to a weight function on the
set of all paths of G, where w(P ) is the product of edge weights over all edges of the
path P . Now when constructing maximal path partitions, we replace the condition
“longest path” by “heaviest path” (greatest weight). This is equivalent for constant
weight 2 pebbling. Nothing in the proof of Chung’s theorem changes for weighted
trees, but we introduce a new proof of the pebbling number of a weighted tree.

Let P1, . . . , Pt be an r-maximal path partition of T , with w(P1) ≥ · · · ≥ w(Pt).
Let fw

k (T, r) = kw(P1) +
∑t

i=2 w(Pi) − t + 1. For vertices x and y on a path P ,
denote by P [x, y] the subpath of P from x to y.

Theorem 6 Every weighted tree T satisfies πw
k (T, r) ≤ fw

k (T, r).

Proof. The theorem is trivially true when t = 1 since T is a path.
For t ≥ 1, define T ′ = T − Pt. Then fk(T, r) = fk(T ′, r) + w(Pt) − 1. Let Pj

be a path containing the non-leaf endpoint xt of Pt, and let vertex yj be the leaf
of T on Pj . Define W = w(Pj [xt, yj ]). Thus we know from the maximal r-path
construction that W ≥ w(Pt).
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Let C be an unsolvable configuration on T with |C| = fk(T, r). Without loss of
generality, we can assume that all the pebbles are on the leaves of a tree because the
maximum sized unsolvable configuration sits on the leaves only. Let s ≥ 0 be the
number of pebbles Pt contributes to the vertex xt, so we have sw(Pt) ≤ |C(Pt)| <
(s + 1)w(Pt).

Now define the configuration C′ on T ′ by C′(yj) = C(yj)+sW and C′(v) = C(v)
otherwise. Then,

|C′| = |C|− [(s + 1)w(Pt)− 1] + sW

≥ fk(T, r)− w(Pt) + 1
= fk(T ′, r) .

Hence C′ is k-fold solvable on T ′. Now define C∗ on T ′ by C∗(xt) = C(xt) + s
and C∗(v) = C(v) otherwise. In particular, because of greediness, C∗ is k-fold r-
solvable on T ′ because moving at most sw(Pt) pebbles from yj to xt converts C′ to
a solvable subconfiguration of C∗. Now, since C(Pt) ≥ sw(Pt), the base case says
we can move s pebbles from Pt to xt, and in doing so we arrive again at C∗ on T ′.
Hence C is k-fold r-solvable. !

We will use Theorem 6 to upper bound the pebbling number of graphs composed
of blocks. The technique utilizes the block-cutpoint graph.

For a graph G and its block-cutpoint graph B(G), let bi denote the vertex of B(G)
that corresponds to the block Bi in G. For each block Bi, let xi denote the cut vertex
of G in Bi that is closest to the root (it is possible that some xi = xj). Let ei denote
the edge of B(G) between bi and xi, and define its weight by w(ei) = π(Bi, xi). Let
all other edges have weight 1. For a root r of G, let B denote the block containing
it, represented by the vertex b in B(G). Let B′(G) be the graph obtained from
B(G) by adjoining to b by an edge of weight 1 a new vertex r′. Then we arrive at
the following theorem.

Theorem 7 Every graph G satisfies πk(G, r) ≤ πw
k (B′(G), r′).

Proof. For a set U of vertices, denote by C(U) the sum
∑

v∈U C(v). Let x(Bi)
denote all the cut vertices of G in the block Bi. Given a configuration C on G,
define C′ on B′(G) by

• C′(xi) = C(xi) for all cut vertices xi, and

• C′(bi) = C(Bi)− C(x(Bi)) for all blocks Bi.

Given an r′-solution S′ of C′ on B′(G), which exists because of the identities |C′| =
|C| = πw

k (B′(G), r′), define the r-solution S of C on G by the following: replace
every pebbling step along ei in S′ by some xi-solution of some π(Bi) of the pebbles
in Bi. Then S is an r-solution. !



INTEGERS: 9 (2009) 417

3. Larger Blocks

In this section we consider the cases in which all blocks are cliques or all have
bounded diameters. The following proposition is well known.

Proposition 8 If H is a connected spanning subgraph of G then πk(G, r) ≤ πk(H, r)
for every root r.

Proposition 8 holds because r-solutions in H are r-solutions in G. In particular,
this holds when H is a breadth-first search spanning tree of G that is rooted at r
and thus preserves distances to r in G. This allows us to prove the following.

Result 9 Let G be a connected graph in which every block is a clique. Let T be a
breadth-first search spanning tree of G. Then πk(G) = πk(T ).

Proof. The fact that πk(G) ≤ πk(T ) follows from Proposition 8. The fact that
πk(G) ≥ πk(T ) follows from showing that every r-solvable configuration C on G is
r-solvable on T . Indeed, let S be an r-solution in G, and for a block B of G, denote
by x = x(B) the cut vertex of B that is closest to r. If the sequence is greedy, then
all its edges are in T . If the sequence is not greedy, then S contains an edge from
some vertex a to some vertex b )= x. Replace this edge by the edge from a to x.
The resulting sequence is an r-solution on T . Thus πk(G) = πk(T ). !

Figure 5: A clique block graph with its breadth-first search spanning tree

Corollary 10 Let G be a connected graph in which every block is a clique. Let T
be a breadth-first search spanning tree of G. Let a1, . . . , at denote the path lengths
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in a maximal path partition of T rooted at r. Then πk(G, r) = n + 2a1(k − 1) +∑t
i=1(2

ai − ai − 1).

Note that the formula in Corollary 10 is of the form n + c1k + c2, which is also
the form of the formula in Theorem 3. Also, the fractional pebbling number, defined
as π̂(G) = limk→∞ πk(G)/k is seen to be π̂(G) = 2diam(G) for such G. This is an
instance of the Fractional Pebbling Conjecture of [7], recently proven in [6].

Now we provide the upper and lower bounds on diameter-two graphs. To show
a lower bound, we will display an unsolvable configuration on an extremal graph G.
This is the graph that Clarke, et al. [3] used to characterize the diameter-two graphs
with pebbling number n+1. The vertices of G are {a, b, c, p, q, r}∪z∈{p,q,r,c} V (Hz),
where Hp,Hq,Hr, and Hc are any graphs with the following properties:

• Every component of Hp,Hq, and Hr has some vertex adjacent to p, q, and r,
respectively.

• Every vertex of Hp,Hq, and Hr is adjacent to a and c, b and c, a and b,
respectively.

• Every vertex of Hc is adjacent to a, b, and c.

Furthermore, (a, r, b, q, c, p) forms a 6-cycle, (a, b, c) forms a triangle, as shown in
Figure 6, and no other edges than previously mentioned are included. Note that
the diameter of G is 2.

Figure 6: The extremal graph G

Theorem 11 For all n ≥ 6, there is a graph G on n vertices with πk(G) ≥ n+4k−3
for all k.
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Proof. As suggested above, we show that G is such a graph. Distribute the following
configuration of size n + 4k − 4 on the G:

• Place 4k − 1 pebbles on p.

• Place 3 pebbles on q.

• Place 1 pebble on every vertex in ∪z∈{p,q,r,c}Hz and 0 elsewhere.

The configuration is r-unsolvable since every solution costs at least 4 pebbles (be-
cause every pebble is at distance 2 from r), and so after k − 1 solutions at most n
pebbles remain. In fact, the remaining configuration is a subconfiguration of the
one defined above for k = 1, which was shown to be r-unsolvable in [10]. Hence
πk(G) > n + 4k − 4. !

To prove Theorem 3 we consider the eight cheap configurations shown in Figure
7. We call them cheap because they lose a small number (at most 7) of pebbles in
the process of moving one pebble to the root. In particular, their names indicate
their cost (number of pebbles used). For example, in C7, C6, and C5, one moves
an extra pebble onto where 3 sits to create C4A. Then one can reach C2 from C4B,
C4A, and C3. Of course, C2 results in C1. There are more cheap solutions than
these, but we do not need them in our argument.

Figure 7: Cheap solutions of cost 7 or less

We show by contradiction that a cheap solution must exist, and thus a pebble
can be moved to the root with the loss of at most 7 pebbles. The remaining k − 1
solutions will be found by induction.

Proof of Theorem 3. Assume that the configuration C of pebbles on G is of size
n+7k−6 and has no cheap solutions of cost 7 or less. We will derive a contradiction
to show that a cheap solution exists. Then after using a cheap solution we apply
induction to get the remaining k − 1 solutions. The theorem is already true for
k = 1 by Result 1. Define the following notation.
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• Ni is the set of vertices with i pebbles.

• Ni,r is the set of common neighbors of Ni and root r.

• Ni,j is the set of common neighbors of pairs of vertices from Ni and Nj .

• ni = |Ni|, ni,j = |Ni,j |, ni,r = |Ni,r|, and n′0 = |N ′
0|.

• N ′
0 = N0 −N3,r −N3,3 −N2,r.

Claim 12 If C is a configuration on a diameter-two graph G with no cheap solu-
tions, then

S1. Ni,r ⊆ N0 for i ∈ {2, 3},

S2. N3,3 ⊆ N0,

S3. ni,r ≥ ni for i ∈ {2, 3},

S4. |C| = 3n3 + 2n2 + n1,

S5. n = n3 + n2 + n1 + (n3,r + n3,3 + n2,r + n′0), and

S6. n3,3 ≥
(n3

2

)
.

Proof of Claim 12. We refer to Figure 7. Statement S1 follows from the nonexistence
of C3 because a pebble adjacent to the root and a vertex with at least two pebbles
is a C3 configuration. Likewise, S2, S3, and S4 follow from the nonexistence of C6,
C4B, and C4A respectively. Next, S5 simply partitions the vertices according to
their number of pebbles, then uses the definition of N ′

0. Finally, since C has no C5,
no two vertices of N3 are adjacent. However, because G has diameter two, every
such x and y have a common neighbor. Now the nonexistence of C7 implies that
such common neighbors are distinct, which implies S6. ♦

Next we use S4 and S5 to count |C| in two ways:

3n3 + 2n2 + n1 = n3 + n2 + n1 + (n3,r + n3,3 + n2,r + n′0) + 7k − 6.

Then S3 and S6 imply

0 = −2n3 − n2 + n3,r + n3,3 + n2,r + n′0 + 7k − 6

≥ −n3 +
(

n3

2

)
+ n′0 + 7k − 6.
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Finally, by completing the square and using n′0 ≥ 1 (since r ∈ N ′
0) and k ≥ 1, we

have

0 < (n3 − 3/2)2 + (4− 9/4)

= 2
[(

n3

2

)
− n3 + 2

]

≤ 2
[(

n3

2

)
− n3 + n′0 + 7k − 6

]

≤ 0 ,

which is a contradiction. Hence, C must contain a solution of cost at most 7,
afterwhich at least n + 7(k − 1) − 6 pebbles remain, from which we obtain k − 1
more solutions. !

4. Remarks

We believe that the upper bound of Theorem 3 can be tightened by reducing the
coefficient of k. Doing this requires restricting cheap solutions to lesser cost, which
necessitates considering more of them. For example, there are one cost-4, one cost-
5, and four cost-6 solutions that were not used in our argument. Our lower bound
has inspired the next conjecture.

Conjecture 13 If G is a graph on n vertices with diam(G) ≤ 2 then πk(G) ≤
n + 4k − 3.

Of course, the Fractional Pebbling Theorem implies that the coefficient of k is
4 in the limit; in fact, its proof is based on the pigeonhole principle — for large
enough k, C4A exists. Also, Theorem 3 suggests the following problem.

Problem 14 Find upper bounds for the k-pebbling numbers of graphs of diameter
d.

Along these lines, only the following result is known, proved by Bukh [1].

Theorem 15 If diam(G) = 3, then π(G) ≤ (3/2)n + O(1).

In addition, the following question is still open.

Question 16 Is it possible to lower the connectivity requirement in Result 2?

The construction in [7] shows that κ ≥ 2d/d is necessary.
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