
#A07 INTEGERS 9 (2009), 77-81

INTEGER PARTITIONS INTO ARITHMETIC PROGRESSIONS
WITH AN ODD COMMON DIFFERENCE

Sadek Bouroubi1
University of Science and Technology Houari Boumediene, Faculty of
Mathematics, P.Box 32 16111 El-Alia, Bab-Ezzouar, Algiers, Algeria

sbouroubi@usthb.dz or bouroubis@yahoo.fr

Nesrine Benyahia Tani1
University of Algiers, Faculty of Economics and Management Sciences, 2 Ahmed

Waked Street, Dely Brahim, Algiers, Algeria
benyahiatani@yahoo.fr

Received: 3/16/08, Revised: 2/11/09, Accepted: 2/21/09

Abstract
Thomas E. Mason has shown that the number of ways in which a number n may be parti-

tioned into consecutive parts, including the case of a single term, equals the number of odd

divisors of n. This result is generalized by determining the number of partitions of n into

arithmetic progressions with odd common difference, including the case of a single term.

1. Introduction
Let n be an integer. A partition of n is an integral solution of the system:

{
n = n1 + · · · + nk,
1 ≤ n1 ≤ · · · ≤ nk.

The positive integers n1, . . . , nk are called parts, and k is the length of the partition.
In partition identities, we are often interested in the number of partitions that satisfy
some conditions. For example, the number of partitions into odd parts, the number
of partitions into even parts, the number of partitions into distinct parts, and so on.
For more on integer partitions, see for instance [1-5] and [7]. Thomas E. Mason [6]
was interested in the number of ways in which a number n may be partitioned into
consecutive parts, including the case of a single term, and he has shown that this
number equals the number of odd divisors of n. Let n = 2α ·pα1

1 ·pα2
2 · · · pαr

r , where
the ps are distinct odd primes and the αs are the powers to which they occur. Then
the number of ways in which a number n may be partitioned into consecutive parts,
including the case of a single term, equals (α1 + 1) · (α2 + 1) · · · (αr + 1), except in
the case n = 2α where the number of ways is 1. In this paper we treat the case
of partitions of n into arithmetic progressions with an odd common difference. For
1 ≤ d ≤ n−2, if ni−ni−1 = d, i = 2, . . . , k, we say that we have a partition into an
arithmetic progression of common difference d. Our problem can be formulated in
terms of partitions: For a given positive integer n, what is the number of partitions
of n into arithmetic progressions with odd common difference d?
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Partitioning n into an arithmetic progression of common difference d means that
there exist two positive integers l ≥ 1 and m ≥ 0, such that

n = l + (l + d) + (l + 2d) + · · · + (l + md). (1)

Let us denote such a partition briefly by π(l,m). From (1), we have

n = (m + 1)l +
m(m + 1)

2
d.

Hence,

dm2 + (2l + d)m + 2l − 2n = 0. (2)

The discriminant ∆ of the equation (2) in m equals ∆ = (2l + d)2 − 8d(l − n) =
(2l − d)2 + 8dn. Then,

m =
−(2l + d) +

√
(2l − d)2 + 8dn

2d
· (3)

Since m is an integer, (2l − d)2 + 8dn is a perfect square, i.e., (2l − d)2 + 8dn =
u2, with u odd. Then,

2dn =
(u− (2l − d))

2
× (u + (2l − d))

2
·

Denoting A and B by:

A =
u− (2l − d)

2
and B =

u + (2l − d)
2

,

we have,

A + B = u and B −A = 2l − d. (4)

Since u and d are odd, A and B must have different parity.

From (3) and (4) we get

l =
d + B −A

2
and m =

A

d
− 1· (5)

Consequently, d divides A. Hence

2n =
A

d
×B. (6)

Case 1. If A is even then B is odd and n = A
2d ×B. In this case from (5)

l =
d + a− 2dn

a

2
and m =

2n
a
− 1, (7)
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where a = B, is an odd divisor of n. Since l ≥ 1, it follows that a must satisfy
(2n− a)d ≤ a(a− 2).
Case 2. If A is odd then A

d is odd as well and n = A
d ×

B
2 . In this case from (5)

we get

l =
d + 2n

a − ad

2
and m = a− 1, (8)

where a = A
d , is an odd divisor of n. Because l ≥ 1, a must satisfy a(a − 1)d ≤

2(n − a). For every such odd divisor of n there exists a partition π(l,m) into
an arithmetic progression with an odd common difference, and vice versa. It is
easy to see that an odd divisor a of n can not simultaneously satisfy the inequalities
(2n−a)d ≤ a(a−2), a(a−1)d ≤ 2(n−a), otherwise we would get (a−1)d ≤ (a−2),
which is a contradiction. Now we are able to formulate our result as follows:

Theorem 1. Let n ≥ 3 be a positive integer and let 1 ≤ d ≤ n − 2 be an odd
integer. Then the number of partitions of n into an arithmetic progression with a
common difference d, including the case of a single term, is equal to the number of
odd divisors a of n, satisfying

(
2n− a

)
d ≤ a(a− 2) or a(a− 1)d ≤ 2(n− a) and for

every such odd divisor, the partition π(l,m) is given by:





l = d+ 2n
a −ad
2 and m = a− 1 if a(a− 1)d ≤ 2(n− a),

l = d+a− 2dn
a

2 and m = 2n
a − 1 if (2n− a)d ≤ a(a− 2).

The following example illustrates the above theorem.

Example. Let n = 15 and d = 3. The odd divisors of 15 satisfying
(
2n − a

)
d ≤

a(a−2) or a(a−1)d ≤ 2(n−a) are 1, 3 and 15, so 15 admits three partitions into an
arithmetic progression with a common difference equal to 3; each one is associated
with one of these divisors and this can be shown as follows:

! a=1 satisfies a(a−1)d ≤ 2(n−a). We have l = d+ 2n
a −ad
2 = 15 and m = a−1 = 0.

The partition π(15, 0) is 15.

! a=3 satisfies a(a−1)d ≤ 2(n−a). We have l = d+ 2n
a −ad
2 = 2 and m = a−1 = 2.

The partition π(2, 2) is 2 + 5 + 8.

! a=15 satisfies
(
2n−a

)
d ≤ a(a−2). We have l = d+a− 2dn

a
2 = 6 and m = 2n

a − 1 = 1.
The partition π(6, 1) is 6 + 9.
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2. Concluding Remarks

Theorem 1 is an extension of Mason’s theorem [6]. Indeed, for d = 1 and for every
odd divisor a of n, one and only one of the two inequalities a(a − 1) ≤ 2(n − a),
(2n− a) ≤ a(a− 2) necessarily holds. In fact, if a = 2p + 1 and n = ak, then






a(a− 1) ≤ 2(n− a)⇔ p ≤ k − 1,

(2n− a) ≤ a(a− 2)⇔ p ≥ k.

Hence, if p ≤ k − 1, we get l = 1−a+2k
2 and m = a − 1; otherwise l = 1+a−2k

2 and
m = 2k − 1. For example, n = 15 has four odd divisors: 1, 3, 5 and 15:

! a=1 ⇒ p = 0 < k = 15. We have l = 1−a+2k
2 = 15 and m = a− 1 = 0.

The partition π(15, 0) is 15.

! a=3 ⇒ p = 1 < k = 5. We have l = 1−a+2k
2 = 4 and m = a− 1 = 2.

The partition π(4, 2) is 4 + 5 + 6.

! a=5 ⇒ p = 2 < k = 3. We have l = 1−a+2k
2 = 1 and m = a− 1 = 4.

The partition π(1, 4) is 1 + 2 + 3 + 4 + 5.

! a=15 ⇒ p = 7 > k = 1. We have l = 1+a−2k
2 = 7 and m = 2k − 1 = 1.

The partition π(7, 1) is 7 + 8.
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