SQUARES IN $\left(\mathbf{1}^{\mathbf{2}}+\mathbf{m}^{\mathbf{2}}\right) \cdots\left(\mathbf{n}^{\mathbf{2}}+\mathbf{m}^{\mathbf{2}}\right)$

Pak Tung Ho
Department of Mathematics, Purdue University, West Lafayette, IN
pho@math.purdue.edu

Received: 7/10/08, Revised: 2/11/09, Accepted: 9/11/09, Published: 12/23/09

Abstract

Recently, Cilleruelo proved that the product $\prod_{k=1}^{n}\left(k^{2}+1\right)$ is a square only for $n=3$. In this note, using similar techniques, we prove that for the positive integer m whose divisors are of the form of $4 q+1$, the product $\prod_{k=1}^{n}\left(k^{2}+m^{2}\right)$ is not a square for n sufficiently large. As a corollary, we prove that for $m=5,13,17, \prod_{k=1}^{n}\left(k^{2}+m^{2}\right)$ is not a square for all n.

1. Introduction

In [2], Cilleruelo proved that $\prod_{k=1}^{n}\left(k^{2}+1\right)$ is a square only for $n=3$. In particular, he proved that $\prod_{k=1}^{n}\left(k^{2}+1\right)$ is not a square for n large enough. Using similar techniques, we prove the following result.

Theorem 1. Let m be a positive integer such that its divisors are of the form of $4 q+1$ and $N=\max \left(m, 10^{8}\right)$. Then $P_{m}(n)=\prod_{k=1}^{n}\left(k^{2}+m^{2}\right)$ is not a square for $n \geq N$.

As corollaries, we prove the following results.
Corollary 2. $P_{5}(n)=\prod_{k=1}^{n}\left(k^{2}+5^{2}\right)$ is not a square for all n.
Corollary 3. $P_{13}(n)=\prod_{k=1}^{n}\left(k^{2}+13^{2}\right)$ is not a square for all n.
Corollary 4. $P_{17}(n)=\prod_{k=1}^{n}\left(k^{2}+17^{2}\right)$ is not a square for all n.
As an easy consequence, we deduce that for $m=5,13,17$ the sequence

$$
\begin{equation*}
x_{m}(n):=\tan \left(\sum_{k=1}^{n} \arctan (k / m)\right) \tag{1}
\end{equation*}
$$

does not vanish for all n. To see this, note that $\sum_{k=1}^{n} \arctan (k / m)$ is the argument of the Gaussian integer $\prod_{k=1}^{n}(m+k \sqrt{-1})=r+s \sqrt{-1}$. Hence, if $x_{m}(n)=0$, then $s=0$ which implies that $P_{m}(n)=\prod_{k=1}^{n}\left(k^{2}+m^{2}\right)=r^{2}$. This contradicts Corollaries 2,3 and 4 . This result is similar to the main result of [1], which states that $x_{1}(n)$ does not vanish for $n \geq 4$.

2. Results

Proof of Theorem 1. Throughout the proof, p denotes a prime. If $P_{m}(n)$ were square, then $p \mid P_{m}(n)$ would imply that $p^{2} \mid P_{m}(n)$. If $p^{2} \mid P_{m}(n)$, then there are two possibilities both of which imply $p<2 n$:

- $p^{2} \mid k^{2}+m^{2}$ for some $k \leq n$, which implies that $p \leq \sqrt{k^{2}+m^{2}}<2 n$ since $n \geq N \geq m$.
- $p \mid k^{2}+m^{2}$ and $p \mid j^{2}+m^{2}$ for some $j<k \leq n$. This implies that $p \mid\left(k^{2}-j^{2}\right)=$ $(k-j)(k+j)$, which infers that $p \mid k-j$ or $p \mid k+j$. This also gives $p<2 n$.

In either case, we have $p<2 n$. Therefore we can write

$$
P_{m}(n)=\prod_{p<2 n} p^{\alpha_{p}}
$$

Writing

$$
n!=\prod_{p \leq n} p^{\beta_{p}}
$$

the inequality $P_{m}(n)>(n!)^{2}$ yields

$$
\begin{equation*}
\sum_{p \leq n} \beta_{p} \log p<\sum_{p<2 n} \frac{\alpha_{p}}{2} \log p \tag{2}
\end{equation*}
$$

Now we estimate α_{p} and β_{p}. Since all divisors of m are of the form of $4 q+1, m$ is odd. This implies that

$$
k^{2}+m^{2} \equiv \begin{cases}0(\bmod 2), & \text { if } k \equiv 1(\bmod 2) \\ 1(\bmod 2), & \text { if } k \equiv 0(\bmod 2)\end{cases}
$$

Hence,

$$
\alpha_{2} \leq\left\lceil\frac{n}{2}\right\rceil,
$$

It is well known that if an odd prime p divides $k^{2}+m^{2}$, then $p \equiv 1(\bmod 4)$ when $(k, m)=1$. Also, if $(k, m) \neq 1$, by our assumption that all divisors of m are of the form of $4 q+1$, we also have $p \equiv 1(\bmod 4)$. In this case, if $p \nmid m^{2}$, then each interval of length p^{j} contains two solutions of $x^{2}+m^{2} \equiv 0\left(\bmod p^{j}\right)$; and if $p^{j} \mid m^{2}$, then each interval of length p^{j} contains at most one solution of $x^{2}+m^{2} \equiv 0\left(\bmod p^{j}\right)$. It follows that

$$
\begin{equation*}
\alpha_{p}=\sum_{j \leq \frac{\log \left(n^{2}+m^{2}\right)}{\log p}} \#\left\{k \leq n: p^{j} \mid k^{2}+m^{2}\right\} \leq \sum_{j \leq \frac{\log \left(n^{2}+m^{2}\right)}{\log p}} 2\left\lceil\frac{n}{p^{j}}\right\rceil . \tag{3}
\end{equation*}
$$

On the other hand,

$$
\begin{equation*}
\beta_{p}=\sum_{j \leq \frac{\log n}{\log p}} \#\left\{k \leq n: p^{j} \mid k\right\}=\sum_{j \leq \frac{\log n}{\log p}}\left\lfloor\frac{n}{p^{j}}\right\rfloor \tag{4}
\end{equation*}
$$

Combining (3) and (4), we conclude that if $p \equiv 1(\bmod 4)$, then

$$
\begin{aligned}
\frac{\alpha_{p}}{2}-\beta_{p} & \leq \sum_{j \leq \frac{\log \left(n^{2}+m^{2}\right)}{\log p}}\left\lceil\frac{n}{p^{j}}\right\rceil-\sum_{j \leq \frac{\log n}{\log p}}\left\lfloor\frac{n}{p^{j}}\right\rfloor \\
& =\sum_{j \leq \frac{\log n}{\log p}}\left(\left\lceil\frac{n}{p^{j}}\right\rceil-\left\lfloor\frac{n}{p^{j}}\right\rfloor\right)+\sum_{\frac{\log n}{\log p}<j \leq \frac{\log \left(n^{2}+m^{2}\right)}{\log p}}\left\lceil\frac{n}{p^{j}}\right\rceil \\
& \leq \sum_{j \leq \frac{\log n}{\log p}} 1+\sum_{\frac{\log n}{\log p}<j \leq \frac{\log \left(n^{2}+m^{2}\right)}{\log p}} 1 \\
& =\frac{\log \left(n^{2}+m^{2}\right)}{\log p} .
\end{aligned}
$$

Substituting these into (2), we get

$$
\begin{aligned}
\sum_{p \leq n} \beta_{p} \log p< & \sum_{p<2 n} \frac{\alpha_{p}}{2} \log p \\
= & \frac{\alpha_{2}}{2} \log 2+\sum_{p \leq n, p \equiv 1(4)} \frac{\alpha_{p}}{2} \log p+\sum_{n<p<2 n} \frac{\alpha_{p}}{2} \log p \\
\leq & \frac{1}{2}\left\lceil\frac{n}{2}\right\rceil \log 2+\sum_{p \leq n, p \equiv 1(4)}\left(\beta_{p}+\frac{\log \left(n^{2}+m^{2}\right)}{\log p}\right) \log p \\
& +\sum_{n<p<2 n} \frac{\alpha_{p}}{2} \log p
\end{aligned}
$$

which implies that

$$
\begin{equation*}
\sum_{p \leq n, p \equiv 3(4)} \beta_{p} \log p<\frac{n+1}{4} \log 2+\log \left(n^{2}+m^{2}\right) \pi(n ; 1,4)+\sum_{n<p<2 n} \frac{\alpha_{p}}{2} \log p \tag{5}
\end{equation*}
$$

If $p>n$, then $\frac{n}{p^{j}}<1$ for $j \geq 1$ and $\frac{\log \left(n^{2}+m^{2}\right)}{\log p} \leq \frac{\log \left(2(p-1)^{2}\right)}{\log p}<3$ since $m \leq n$. Hence, from (3), $\alpha_{p} \leq 4$. Moreover, if $p \leq n$, by (4),

$$
\beta_{p} \geq \frac{n}{p-1}-\frac{p}{p-1}-\frac{\log n}{\log p} \geq \frac{n-1}{p-1}-\frac{\log \left(n^{2}+m^{2}\right)}{\log p}
$$

We substitute it into (5) to get

$$
\begin{aligned}
\sum_{p \leq n, p \equiv 3(4)} \frac{\log p}{p-1} & <\frac{(n+1) \log 2}{4(n-1)}+\frac{\log \left(n^{2}+m^{2}\right)}{n-1} \pi(n)+\frac{2}{n-1} \sum_{n<p<2 n} \log p \\
& \leq \frac{(n+1) \log 2}{4(n-1)}+\frac{\log \left(2 n^{2}\right)}{n-1} \pi(n)+\frac{2}{n-1} \sum_{n<p<2 n} \log p
\end{aligned}
$$

since $m \leq N \leq n$. Now we apply the Chebyshev inequalities $\sum_{n<p<2 n} \log p \leq$ $n \log 4$ and $\pi(n) \leq 2 \log 4 \frac{n}{\log n}+\sqrt{n}$ (see [3] for example) to obtain

$$
\sum_{p \leq n, p \equiv 3(4)} \frac{\log p}{p-1}<\frac{(n+1) \log 2}{4(n-1)}+\frac{\log \left(2 n^{2}\right)}{n-1}\left(2 \log 4 \frac{n}{\log n}+\sqrt{n}\right)+\frac{2 n \log 4}{n-1}
$$

This is a contradiction: The right hand side is less than 8.92 for $n \geq 10^{8}$. On the other hand, it can be checked that

$$
\begin{equation*}
\sum_{p \leq n, p \equiv 3(4)} \frac{\log p}{p-1}>8.92 \tag{6}
\end{equation*}
$$

for $n \geq 10^{8}$.
From the proof of Theorem 1, we can prove Corollaries 2, 3 and 4.
Proof of Corollary 2. It suffices to prove Corollary 2 for $1 \leq n<10^{8}$. It is clear that $P_{5}(1)=26$ is not a square. For $n \geq 2$, since $5^{2}+2^{2}=29$, the next time that the prime 29 divides $k^{2}+5^{2}$ is for $29-2=27$. Hence $P_{5}(n)$ is not a square for $2 \leq n \leq 26$.

Since $26^{2}+5^{2}=701$, the next time that the prime 701 divides $k^{2}+5^{2}$ is for $701-26=675$. Hence $P_{5}(n)$ is not a square for $26 \leq n \leq 674$.

Since $672^{2}+5^{2}=451609$, the next time that the prime 451609 divides $k^{2}+5^{2}$ is for $451609-672=450937$. Hence $P_{5}(n)$ is not a square for $672 \leq n \leq 450936$.

Since $20016^{2}+5^{2}=400640281$, the next time that the prime 400640281 divides $k^{2}+5^{2}$ is for $400640281-20016=400620265$. Hence, $P_{5}(n)$ is not a square for $20016 \leq n \leq 400620264$.

Proof of Corollary 3. It suffices to prove Corollary 3 for $1 \leq n<10^{8}$. It is clear that $P_{13}(1)=170$ is not a square. For $n \geq 2$, since $13^{2}+2^{2}=173$, the next time that the prime 173 divides $k^{2}+13^{2}$ is for $173-2=171$. Hence $P_{13}(n)$ is not a square for $2 \leq n \leq 170$.

Since $168^{2}+13^{2}=28393$, the next time that the prime 28393 divides $k^{2}+13^{2}$ is for $28393-168=28225$. Hence $P_{13}(n)$ is not a square for $168 \leq n \leq 28224$.

Since $28218^{2}+13^{2}=796255693$, the next time that the prime 796255693 divides $k^{2}+13^{2}$ is for $796255693-28218=796227475$. Hence, $P_{13}(n)$ is not a square for $28218 \leq n \leq 796227474$.

Proof of Corollary 4. It suffices to prove Corollary 4 for $1 \leq n<10^{8}$. It is clear that $P_{17}(1)=290$ is not a square. For $n \geq 2$, since $17^{2}+2^{2}=293$, the next time that the prime 293 divides $k^{2}+13^{2}$ is for $293-2=291$. Hence $P_{17}(n)$ is not a square for $2 \leq n \leq 290$.

Since $290^{2}+17^{2}=84389$, the next time that the prime 84389 divides $k^{2}+17^{2}$ is for $84389-290=84099$. Hence $P_{17}(n)$ is not a square for $290 \leq n \leq 84098$.

Since $20002^{2}+17^{2}=400080293$, the next time that the prime 400080293 divides $k^{2}+17^{2}$ is for $400080293-20002=400060291$. Hence, $P_{17}(n)$ is not a square for $20002 \leq n \leq 400060290$.

We remark that by the same proof, one can check that $P_{m}(n)$ is not a square for all n for some small m. More generally, it would be interesting to find all the pairs $(n, m), n \geq 2, m \geq 1$ such that $\prod_{k=1}^{n}\left(k^{2}+m\right)$ is a square. In view of Theorem 1 , it seems that there are only finite number of such pairs. Based on extensive numerical evidence, we conjecture that the only ones are the pairs $(3,1),(3,11)$, $(4,5)$. However, proving it seems to be a difficult problem. On the other hand, the sequence $x_{m}(n)$ defined in (1) satisfies the recurrence

$$
x_{m}(n)=\frac{n+m x_{m}(n-1)}{m-n x_{m}(n-1)}
$$

with the initial condition $x_{m}(0)=0$. This sequence seems to have similar properties as $x_{1}(n)$. In particular it is an open question whether $x_{1}(n)$ is an integer for $n \geq 5$ (see Conjecture 1.2 in [1]). It is an interesting problem to decide whether $x_{m}(n)$ is an integer for $m>1$.

Acknowledgement I would like to thank Professor Cilleruelo for answering my questions in his paper, and Stephen Kihwan Han for writing a program to check (6). I would also like to thank the referee whose constructive remarks have contributed to improving the presentation of the paper.

References

[1] T. Amdeberhan, L. Medina, V. Moll, Arithmetical properties of a sequence arising from an arctangent sum, J. Number Theory, 128 (2008), 1807-1846.
[2] J. Cilleruelo, Squares in $\left(1^{2}+1\right) \cdots\left(n^{2}+1\right)$, J. Number Theory, 128 (2008), 2488-2491.
[3] G. Hardy, E. Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, 1980.

