FACTORIZATION RESULTS WITH COMBINATORIAL PROOFS

Keresztély Corrádi
Department of General Computer Technics, Eötvös L. University, Pázmány P. sétány 1/c, Budapest, HUNGARY

Sándor Szabó
Institute of Mathematics and Informatics, University of Pécs, Pécs, HUNGARY
sszabo7@hotmail.com

Received: 6/27/09, Accepted: 9/18/09, Published:

Abstract

Two results on factorization of finite abelian groups are proved using combinatorial character free arguments. The first one is a weaker form of Rédei's theorem and presented only to motivate the method. The second one is an extension of Rédei's theorem for elementary 2-groups, which was originally proved by means of characters.

1. Introduction

We will use multiplicative notation in connection with abelian groups. The neutral element of a group will be called identity element and it will be denoted by e. Let G be a finite abelian group and let A_{1}, \ldots, A_{n} be subsets of G. The product $A_{1} \cdots A_{n}$ is defined to be the set

$$
\left\{a_{1} \cdots a_{n}: a_{1} \in A_{1}, \ldots, a_{n} \in A_{n}\right\}
$$

The product $A_{1} \cdots A_{n}$ is called direct if

$$
a_{1,1} \cdots a_{1, n}=a_{2,1} \cdots a_{2, n}, \quad a_{1,1}, a_{2,1} \in A_{1}, \ldots, a_{1, n}, a_{2, n} \in A_{n}
$$

imply that $a_{1,1}=a_{2,1}, \ldots, a_{1, n}=a_{2, n}$. If the product $A_{1} \cdots A_{n}$ is direct and if it is equal to G, then we say that $G=A_{1} \cdots A_{n}$ is a factorization of G.

A subset A of G is called normalized if $e \in A$. A factorization $G=A_{1} \cdots A_{n}$ is called normalized if each A_{i} is a normalized subset of G. Rédei [2] has proved the following result. Let G be a finite abelian group and let $G=A_{1} \cdots A_{n}$ be a normalized factorization of G. If each $\left|A_{i}\right|$ is a prime, then at least one of the factors A_{1}, \ldots, A_{n} must be a subgroup of G.

Examples show that the condition that each factor has a prime number of elements cannot be dropped from Rédei's theorem. However for elementary 2-groups Sands and Szabó [3] proved the following generalization. Let G be a finite elementary 2-group and let $G=A_{1} \cdots A_{n}$ be a normalized factorization of G. If each $\left|A_{i}\right|=4$, then at least one of the factors A_{1}, \ldots, A_{n} is a subgroup of G.

In this paper we will present an elementary combinatorial argument to verify a weaker version of Rédei's theorem for elementary p-groups, where p is an odd prime.

Then applying the method to elementary 2-groups we obtain a combinatorial character free proof for the Sands-Szabó result.

2. Elementary p-groups

Let G be a finite abelian group of odd order. Let $G=A_{1} \cdots A_{n}$ be a normalized factorization of G, where each $\left|A_{i}\right|$ is a prime. By Rédei's theorem at least one of the factors A_{1}, \ldots, A_{n} is a subgroup of G. Say A_{i} is a subgroup of G. Now as $\left|A_{i}\right|$ is odd, it follows that the product of the elements of A_{i} is equal to e. This indicates that the following theorem is a weaker version of Rédei's theorem. The essential point is that we are able to give a combinatorial proof of this result.

Theorem 1 Let p be an odd prime. Let G be a finite elementary p-group and let $G=A_{1} \cdots A_{n}$ be a normalized factorization of G, where $\left|A_{i}\right|=p$, for each i, $1 \leq i \leq n$. Let

$$
d_{i}=\prod_{a \in A_{i}} a
$$

Then $d_{i}=e$ for some $i, 1 \leq i \leq n$.
Proof. Assume on the contrary that there is a counterexample

$$
\begin{equation*}
G=A_{1} \cdots A_{n} \tag{1}
\end{equation*}
$$

where none of the elements d_{i} is equal to e. For $n=1$, the factor A_{1} is equal to G and so $d_{1}=e$. Thus we may assume that $n \geq 2$. Among the counterexamples we choose one with minimal n.

We introduce the following notations. For each $i, 1 \leq i \leq n$ let

$$
\begin{aligned}
A_{i} & =\left\{e, a_{i, 1}, \ldots, a_{i, p-1}\right\} \\
U_{i} & =\left\langle a_{i, 1}\right\rangle \\
V_{i} & =\left\langle a_{i, 2}\right\rangle \\
X_{i} & =U_{i} \cup V_{i} \\
d_{i} & =a_{i, 1} \cdots a_{i, p-1}
\end{aligned}
$$

If A_{i} is a subgroup of G, then $d_{i}=e$. In the counterexample (1) $d_{i} \neq e$ and so A_{i} is not a subgroup of G. In particular $A_{i} \neq U_{i}$. We may choose the notation such that $a_{i, 2} \notin U_{i}$. As a consequence, $U_{i} \neq V_{i}$.

By Lemma 5 of [1], in the factorization (1) the factor A_{1} can be replaced by U_{1}, V_{1} to get the factorizations

$$
\begin{align*}
G & =U_{1} A_{2} \cdots A_{n} \tag{2}\\
G & =V_{1} A_{2} \cdots A_{n} \tag{3}
\end{align*}
$$

respectively. From (2), by considering the factor group G / U_{1} we get the factorization

$$
G / U_{1}=\left(A_{2} U_{1}\right) / U_{1} \cdots\left(A_{n} U_{1}\right) / U_{1}
$$

of G / U_{1}. Here

$$
\left(A_{i} U_{1}\right) / U_{1}=\left\{a U_{1}: a \in A_{i}\right\}
$$

The minimality of the counterexample (1) forces that

$$
d_{i} U_{1}=\prod_{a \in A_{i}} a U_{1}
$$

must be equal to $e U_{1}$ for some $i, 2 \leq i \leq n$. Or equivalently $d_{i} \in U_{1}$ must hold for some $i, 2 \leq i \leq n$.

Starting with factorization (3) we get that there is an index $j, 2 \leq j \leq n$, such that $d_{j} \in V_{1}$.

If $d_{i}=d_{j}$, then by $d_{i} \in U_{1} \cap V_{1}=\{e\}$ we end up with the $d_{i}=e$ contradiction. Thus $d_{i} \neq d_{j}$.

The argument above provides that for the index 1 there are indices $\alpha(1), \beta(1)$ such that $d_{\alpha(1)}, d_{\beta(1)} \in X_{1}$ and $\alpha(1) \neq \beta(1)$. In general, for the index $i, 1 \leq i \leq n$ there are indices $\alpha(i), \beta(i)$ such that $d_{\alpha(i)}, d_{\beta(i)} \in X_{i}$ and $\alpha(i) \neq \beta(i)$.

By Lemma 5 of [1], in the factorization (1) the factor A_{1} can be replaced by U_{1} to get the factorization $G=U_{1} A_{2} \cdots A_{n}$. In this factorization the factor A_{2} can be replaced by U_{2} to get the factorization $G=U_{1} U_{2} A_{3} \cdots A_{n}$. It follows that $U_{1} \cap U_{2}=\{e\}$. Similar arguments give that

$$
\begin{aligned}
& U_{1} \cap U_{2}=U_{1} \cap V_{2}=\{e\}, \\
& V_{1} \cap U_{2}=V_{1} \cap V_{2}=\{e\} .
\end{aligned}
$$

Therefore

$$
X_{1} \cap X_{2}=\left(U_{1} \cup V_{1}\right) \cap\left(U_{2} \cup V_{2}\right)=\{e\} .
$$

In general, $X_{i} \cap X_{j}=\{e\}$ for each $i, j, 1 \leq i, j \leq n, i \neq j$.
Choose i, j such that $1 \leq i, j \leq n, i \neq j$. If $\alpha(i)=\alpha(j)$, then $d_{\alpha(i)}=d_{\alpha(j)}$ and so $d_{\alpha(i)} \in X_{i} \cap X_{j}=\{e\}$ gives the $d_{\alpha(i)}=e$ contradiction. Thus $i \neq j$ implies $\alpha(i) \neq \alpha(j)$. Similar arguments give that $i \neq j$ implies

$$
\begin{array}{ll}
\alpha(i) \neq \alpha(j), & \alpha(i) \neq \beta(j), \\
\beta(i) \neq \alpha(j), & \beta(i) \neq \beta(j) .
\end{array}
$$

In particular the indices $\alpha(1), \ldots, \alpha(n)$ form a permutation of the elements $1, \ldots, n$. We know that $\alpha(1) \neq \beta(1)$. Since $\alpha(1), \ldots, \alpha(n)$ is a permutation of $1, \ldots, n$, there is an $i, 2 \leq i \leq n$, such that $\alpha(i)=\beta(1)$. This violates $\alpha(i) \neq \beta(j)$.

The proof is complete.

3. Elementary 2-groups

Theorem 1 is a weaker version of Rédei's theorem for elementary p-groups where p is an odd prime. The method of the proof of this theorem can be used to prove an extension of Rédei's theorem. First we present two lemmas.

Let G be a finite abelian group and let $A=\{e, u, v, w\}$ be a subset of G such that $u^{2}=v^{2}=w^{2}=e$. Set

$$
\begin{aligned}
U & =\langle v, w\rangle \\
V & =\langle u, w\rangle \\
W & =\langle u, v\rangle \\
X & =U \cup V \cup W \\
d & =u v w
\end{aligned}
$$

Lemma 2 Let G be a finite abelian group and let $G=A B$ be a factorization of G. If A is a subset defined above, then

$$
G=U B, \quad G=V B, \quad G=W B
$$

are factorizations of G.
Proof. As $G=A B$ is a factorization of G, the sets

$$
\begin{equation*}
e B, u B, v B, w B \tag{4}
\end{equation*}
$$

form a partition of G. Multiplying the factorization $G=A B$ by u we get the factorization $G=G u=(A u) B$. So the sets

$$
u B, u^{2} B, u v B, u w B
$$

form a partition of G. As $u^{2}=e$ we get that the sets

$$
\begin{equation*}
u B, e B, u v B, u w B \tag{5}
\end{equation*}
$$

form a partition of G. Comparing the partitions (4) and (5) we get

$$
v B \cup w B=u v B \cup u w B
$$

From (4) we can see that $e B \cap u B=\emptyset$. Multiplying by v provides that $v B \cap u v B=\emptyset$. It follows that $v B \subset u w B$. A consideration on the cardinalities implies $v B=u w B$. In other words in (4) $w B$ can be replaced by $u v B$ which shows that the sets

$$
e B, u B, v B, u v B
$$

form a partition of G. Therefore $G=W B$ is a factorization of G. Similar arguments give that $G=V B, G=U B$ are factorizations.

This completes the proof.

Lemma 3 Using the notations introduced before Lemma 2 the subset A is a subgroup of G if and only if $d=e$.

Proof. Suppose that A is a subgroup of G. Let us consider the product of u and v. As $u v \in A$ we face the following possibilities

$$
u v=e, u v=u, u v=v, u v=w .
$$

The first three lead to the

$$
u=v, v=e, u=e
$$

contradictions respectively. Thus $u v=w$. Consequently $u v w=e$, that is, $d=e$ as required.

Suppose that $d=e$. Now $e=u v w$ and so $w=u v$. Therefore $A=\langle u, v\rangle$ is a subgroup of G.

Theorem 4 Let G be a finite elementary 2-group and let $G=A_{1} \cdots A_{n}$ be a normalized factorization of G, where $\left|A_{i}\right|=4$, for each $i, 1 \leq i \leq n$. Then A_{i} is a subgroup of G for some $i, 1 \leq i \leq n$.

Proof. Assume on the contrary that there is a counterexample

$$
\begin{equation*}
G=A_{1} \cdots A_{n} \tag{6}
\end{equation*}
$$

where none of the factors A_{i} is a subgroup of G. For $n=1$, the factor A_{1} is equal to G and so we may assume that $n \geq 2$. Among the counterexamples we choose one for which n is as small as possible.

We introduce the following notation. For each $i, 1 \leq i \leq n$ let

$$
\begin{aligned}
A_{i} & =\left\{e, u_{i}, v_{i}, w_{i}\right\} \\
U_{i} & =\left\langle v_{i}, w_{i}\right\rangle \\
V_{i} & =\left\langle u_{i}, w_{i}\right\rangle \\
W_{i} & =\left\langle u_{i}, v_{i}\right\rangle \\
X_{i} & =U_{i} \cup V_{i} \cup W_{i} \\
d_{i} & =u_{i} v_{i} w_{i}
\end{aligned}
$$

Note that $u_{i}^{2}=v_{i}^{2}=w_{i}^{2}=e$. Since A_{i} is not a subgroup, by Lemma $3, d_{i} \neq e$ must hold.

By Lemma 2, in the factorization (6) the factor A_{1} can be replaced by U_{1}, V_{1}, W_{1} to get the factorizations

$$
\begin{align*}
G & =U_{1} A_{2} \cdots A_{n} \tag{7}\\
G & =V_{1} A_{2} \cdots A_{n} \tag{8}\\
G & =W_{1} A_{2} \cdots A_{n} \tag{9}
\end{align*}
$$

respectively. From (7), by considering the factor group G / U_{1} we get the factorization

$$
G / U_{1}=\left(A_{2} U_{1}\right) / U_{1} \cdots\left(A_{n} U_{1}\right) / U_{1}
$$

of G / U_{1}. Here

$$
\left(A_{i} U_{1}\right) / U_{1}=\left\{a U_{1}: a \in A_{i}\right\}
$$

The minimality of the counterexample (6) implies that $\left(A_{i} U_{1}\right) / U_{1}$ is a subgroup of G / U_{1} for some $i, 2 \leq i \leq n$. By Lemma $3\left(u_{i} U_{1}\right)\left(v_{i} U_{1}\right)\left(w_{i} U_{1}\right)$ must be equal to $e U_{1}$, that is, $u_{i} v_{i} w_{i} \in U_{1}$. This means $d_{i} \in U_{1}$ must hold.

Starting with factorization (8) we get that there is an index $j, 2 \leq j \leq n$ such that $d_{j} \in V_{1}$. Starting with factorization (9) we get that there is an index $k, 2 \leq k \leq n$ for which $d_{k} \in W_{1}$.

Note that

$$
\begin{aligned}
U_{1} \cap V_{1} \cap W_{1} & =\left(U_{1} \cap V_{1}\right) \cap W_{1} \\
& =\left(\left\langle v_{1}, w_{1}\right\rangle \cap\left\langle u_{1}, w_{1}\right\rangle\right) \cap W_{1} \\
& =\left\langle w_{1}\right\rangle \cap W_{1} \\
& =\left\langle w_{1}\right\rangle \cap\left\langle u_{1}, v_{1}\right\rangle \\
& =\{e\} .
\end{aligned}
$$

If $d_{i}=d_{j}=d_{k}$, then $d_{i} \in U_{1} \cap V_{1} \cap W_{1}=\{e\}$ lands on the $d_{i}=e$ contradiction. Thus d_{i}, d_{j}, d_{k} cannot all be equal.

We may summarize the previous argument in the following way. For the index 1 there are indices $\alpha(1), \beta(1), \gamma(1)$ such that $d_{\alpha(1)}, d_{\beta(1)}, d_{\gamma(1)} \in X_{1}$ and $\alpha(1), \beta(1)$, $\gamma(1)$ are not all equal. In general, for the index $i, 1 \leq i \leq n$ there are indices $\alpha(i)$, $\beta(i), \gamma(i)$ such that $d_{\alpha(i)}, d_{\beta(i)}, d_{\gamma(i)} \in X_{i}$ and $\alpha(i), \beta(i), \gamma(i)$ are not all equal.

By Lemma 2, in the factorization (6) the factor A_{1} can be replaced by U_{1} to get the factorization $G=U_{1} A_{2} \cdots A_{n}$. In this factorization the factor A_{2} can be replaced by U_{2} to get the factorization $G=U_{1} U_{2} A_{3} \cdots A_{n}$. It follows that $U_{1} \cap U_{2}=\{e\}$. Similar arguments give that

$$
\begin{aligned}
U_{1} \cap U_{2} & =U_{1} \cap V_{2} \\
=U_{1} \cap W_{2} & =\{e\}, \\
V_{1} \cap U_{2} & =V_{1} \cap V_{2} \\
=V_{1} \cap W_{2} & =\{e\}, \\
W_{1} \cap U_{2} & =W_{1} \cap V_{2}
\end{aligned}=W_{1} \cap W_{2}=\{e\} . ~ \$
$$

Therefore,

$$
X_{1} \cap X_{2}=\left(U_{1} \cup V_{1} \cup W_{1}\right) \cap\left(U_{2} \cup V_{2} \cup W_{2}\right)=\{e\} .
$$

In general, $X_{i} \cap X_{j}=\{e\}$ for each $i, j, 1 \leq i, j \leq n, i \neq j$.

Choose i, j such that $1 \leq i, j \leq n, i \neq j$. If $\alpha(i)=\alpha(j)$, then $d_{\alpha(i)}=d_{\alpha(j)}$ and so $d_{\alpha(i)} \in X_{i} \cap X_{j}=\{e\}$ gives the $d_{\alpha(i)}=e$ contradiction. Thus $\alpha(i) \neq \alpha(j)$. Similar arguments give that

$$
\begin{array}{lll}
\alpha(i) \neq \alpha(j), & \alpha(i) \neq \beta(j), & \alpha(i) \neq \gamma(j), \\
\beta(i) \neq \alpha(j), & \beta(i) \neq \beta(j), & \beta(i) \neq \gamma(j), \\
\gamma(i) \neq \alpha(j), & \gamma(i) \neq \beta(j), & \gamma(i) \neq \gamma(j) .
\end{array}
$$

In particular the list $\alpha(1), \ldots, \alpha(n)$ is a permutation of the elements $1, \ldots, n$. We know that $\alpha(1), \beta(1), \gamma(1)$ are not all equal, say $\alpha(1) \neq \beta(1)$. Since $\alpha(1), \ldots, \alpha(n)$ is a permutation of $1, \ldots, n$, there is an $i, 2 \leq i \leq n$ such that $\alpha(i)=\beta(1)$. This contradicts to $\alpha(i) \neq \beta(j)$.

The proof is complete.

References

[1] K. Corrádi, S. Szabó, and P. Z. Hermann, A character free proof for Rédei's theorem, Mathematica Pannonica 20 (2009), 3-15.
[2] L. Rédei, Die neue Theorie der endlichen Abelschen Gruppen und Verallgemeinerung des Hauptsatzes von Hajós, Acta Math. Acad. Sci. Hung., 16 (1965), 329-373.
[3] A. D. Sands and S. Szabó, Factorization of periodic subsets, Acta Math. Acad. Sci. Hungar. 57 (1991), 159-167.

