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Abstract
Two results on factorization of finite abelian groups are proved using combinato-
rial character free arguments. The first one is a weaker form of Rédei’s theorem
and presented only to motivate the method. The second one is an extension of
Rédei’s theorem for elementary 2-groups, which was originally proved by means of
characters.

1. Introduction

We will use multiplicative notation in connection with abelian groups. The neutral
element of a group will be called identity element and it will be denoted by e. Let G
be a finite abelian group and let Ay, ..., A, be subsets of G. The product A; --- A,
is defined to be the set

{a1-+-an: a1 € Ay,...,a, € A, }.
The product A; --- A, is called direct if
1,1 Q1 =021 G2n, Q11,021 € A1,...,01,n,02, € Ay

imply that a11 = a2.1,...,a1,n = asn. If the product A; --- A, is direct and if it is
equal to G, then we say that G = A; --- A, is a factorization of G.

A subset A of G is called normalized if ¢ € A. A factorization G = A;--- A,
is called normalized if each A; is a normalized subset of G. Rédei [2] has proved
the following result. Let G be a finite abelian group and let G = A;--- A, be a
normalized factorization of G. If each | 4;| is a prime, then at least one of the factors
Ay, ..., A, must be a subgroup of G.

Examples show that the condition that each factor has a prime number of ele-
ments cannot be dropped from Rédei’s theorem. However for elementary 2-groups
Sands and Szabé [3] proved the following generalization. Let G be a finite elemen-
tary 2-group and let G = A;--- A, be a normalized factorization of G. If each
|A;| = 4, then at least one of the factors Ay, ..., A, is a subgroup of G.

In this paper we will present an elementary combinatorial argument to verify a
weaker version of Rédei’s theorem for elementary p-groups, where p is an odd prime.
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Then applying the method to elementary 2-groups we obtain a combinatorial char-
acter free proof for the Sands-Szabd result.

2. Elementary p-groups

Let G be a finite abelian group of odd order. Let G = A; --- A,, be a normalized
factorization of G, where each |4;| is a prime. By Rédei’s theorem at least one of
the factors Ay, ..., A, is a subgroup of G. Say A; is a subgroup of G. Now as |A;|
is odd, it follows that the product of the elements of A; is equal to e. This indicates
that the following theorem is a weaker version of Rédei’s theorem. The essential
point is that we are able to give a combinatorial proof of this result.

Theorem 1 Let p be an odd prime. Let G be a finite elementary p-group and
let G = Ay--- A, be a normalized factorization of G, where |A;| = p, for each i,

1<i1<n. Let
di = H a.
a€A;

Then d; = e for some i, 1 <1i <n.
Proof. Assume on the contrary that there is a counterexample
G=A;-An, (1)

where none of the elements d; is equal to e. For n = 1, the factor A; is equal to G
and so d; = e. Thus we may assume that n > 2. Among the counterexamples we
choose one with minimal n.

We introduce the following notations. For each 7, 1 < i < n let

A, = He,ai1,-- aip-1}s
Ui (ai),

Vi = (ai2),

X; = U UV,

di = a1 ip1.

If A; is a subgroup of G, then d; = e. In the counterexample (1) d; # e and so A;
is not a subgroup of G. In particular A; # U;. We may choose the notation such
that a; 2 & U;. As a consequence, U; # V.

By Lemma 5 of [1], in the factorization (1) the factor A; can be replaced by Uq,
V1 to get the factorizations

G = Uidy-- A, (2)
G = ViAy--- Ay, (3)
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respectively. From (2), by considering the factor group G/U; we get the factoriza-
tion
G/Uy = (A2U1) /Uy -+ (AnU1) /Un

of G/U;. Here
(AiUl)/Ul = {CLUl Lac Az}

The minimality of the counterexample (1) forces that

diUl = H aU1

a€A;

must be equal to eU; for some i, 2 < i < n. Or equivalently d; € U; must hold for
some i, 2 <1 < n.

Starting with factorization (3) we get that there is an index j, 2 < j < n, such
that dj e V.

If d; = dj, then by d; € U1 N Vi = {e} we end up with the d; = e contradiction.
Thus di 7é dj.

The argument above provides that for the index 1 there are indices «(1), 8(1)
such that do (1), dg1) € X1 and (1) # B(1). In general, for the index i, 1 <i <n
there are indices a(i), 3(i) such that dy ), dg) € Xi and a(i) # B(i).

By Lemma 5 of [1], in the factorization (1) the factor A; can be replaced by
Uy to get the factorization G = Uy As--- A,. In this factorization the factor As
can be replaced by Us to get the factorization G = Uy Uz Az - - - A,,. It follows that
Uy NUy = {e}. Similar arguments give that

Ui NUy UinVv, = {6}7
‘GQUQ = Vlﬂ‘/z = {6}

Therefore
X1NXy = U UVL) N (U UVa) = {e}.

In general, X; N X, = {e} for each 7, j, 1 <4,7 <mn, i #j.

Choose 4, j such that 1 < 4,5 < n, i # j. If a(i) = a(j), then dy) = dag)
and so dn(;) € X; N X; = {e} gives the d,(;) = e contradiction. Thus i # j implies
a(i) # a(j). Similar arguments give that i # j implies

a(i) #a(j), o) # B(),
B(@) # a(j), B@) # B()-

In particular the indices a(1),...,a(n) form a permutation of the elements 1, ..., n.
We know that «(1) # 8(1). Since «(1),...,a(n) is a permutation of 1,... n, there
is an 4, 2 < 4 < n, such that «(i) = 8(1). This violates a(i) # B(j).

The proof is complete. g
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3. Elementary 2-groups

Theorem 1 is a weaker version of Rédei’s theorem for elementary p-groups where p
is an odd prime. The method of the proof of this theorem can be used to prove an
extension of Rédei’s theorem. First we present two lemmas.

Let G be a finite abelian group and let A = {e,u,v,w} be a subset of G such
that u? = v2 = w? =e. Set

U = (v,w),

1% (u, w),

W = (u,v),

X = UUVUW,
d = ww.

Lemma 2 Let G be a finite abelian group and let G = AB be a factorization of G.
If A is a subset defined above, then

G=UB, G=VB, G=WB
are factorizations of G.
Proof. As G = AB is a factorization of G, the sets
eB, uB, vB, wB (4)

form a partition of G. Multiplying the factorization G = AB by u we get the
factorization G = Gu = (Au)B. So the sets

uB, u?B, uwB, uwB
form a partition of G. As u? = e we get that the sets
uB, eB, wB, uwB (5)
form a partition of G. Comparing the partitions (4) and (5) we get
vBUwB =uvB UuwbB.

From (4) we can see that eBNuB = ). Multiplying by v provides that vBNuvB = §.
It follows that vB C uwB. A consideration on the cardinalities implies vB = uvwB.
In other words in (4) wB can be replaced by wvB which shows that the sets

eB, uB, vB, uvB

form a partition of G. Therefore G = W B is a factorization of G. Similar arguments
give that G = VB, G = UB are factorizations.
This completes the proof. O
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Lemma 3 Using the notations introduced before Lemma 2 the subset A is a sub-
group of G if and only if d = e.

Proof. Suppose that A is a subgroup of G. Let us consider the product of u and v.
As uv € A we face the following possibilities

UV =e, UV = U, UV =0, UV = Ww.

The first three lead to the

U=v, v=e u==e

contradictions respectively. Thus uv = w. Consequently uvw = e, that is, d = e as

required.
Suppose that d = e. Now ¢ = wvw and so w = uv. Therefore A = (u,v) is a
subgroup of G. a

Theorem 4 Let G be a finite elementary 2-group and let G = Ay --- A, be a nor-
malized factorization of G, where |A;| = 4, for each i, 1 < i < mn. Then A; is a
subgroup of G for some i, 1 < i <n.

Proof. Assume on the contrary that there is a counterexample
G=A4,---A,, (6)

where none of the factors A; is a subgroup of G. For n = 1, the factor A; is equal
to G and so we may assume that n > 2. Among the counterexamples we choose
one for which n is as small as possible.

We introduce the following notation. For each i, 1 <i < n let

A; = A{e,ui, v, w;i},
U; (vi, w3,
Vi <Uivwi>7
w; (ug, vi),
X; U; UV; UW,,
d; = u;vw;.

Note that u? = v? = w? = e. Since A; is not a subgroup, by Lemma 3, d; # e must
hold.

By Lemma 2, in the factorization (6) the factor A; can be replaced by Uy, Vi,
W1 to get the factorizations

G = UAy---A,, (

G Vids--- Ay, (
G = Widy---A,, (

w0 -
x

©
=
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respectively. From (7), by considering the factor group G/U; we get the factoriza-
tion

G/Uy = (AUh) /Uy -+ - (AnU1) /UL
of G/U;. Here

(AlUl)/Ul = {aU1 Lac Az}

The minimality of the counterexample (6) implies that (A4;U7)/U; is a subgroup of
G/U; for some i, 2 < i < n. By Lemma 3 (u;Uy)(v;U;)(w;U;) must be equal to
elUy, that is, u;v;w; € Uy. This means d; € U; must hold.

Starting with factorization (8) we get that there is an index j, 2 < j < n such that
d; € V1. Starting with factorization (9) we get that there is an index k, 2 <k <n
for which d € Wj.

Note that

uoonvinw, = ﬂV1>ﬂW1

(Uh
({1, wr) N {ug,wr)) N Wy
<w1> n W1

(

wi) N (u1,v1)

= {e}.

If d; = d; = di, then d; € Uy NVi NW; = {e} lands on the d; = e contradiction.
Thus d;, dj, d, cannot all be equal.

We may summarize the previous argument in the following way. For the index 1
there are indices a(1), 3(1), (1) such that dy(1), dg(1), dv1y) € X1 and (1), B(1),
~(1) are not all equal. In general, for the index i, 1 < i < n there are indices a(i),
B(i), v(i) such that du), dge), dy) € Xi and a(i), B(i), v(i) are not all equal.

By Lemma 2, in the factorization (6) the factor A; can be replaced by U; to
get the factorization G = UjAs---A,. In this factorization the factor As can
be replaced by Us to get the factorization G = UjUsAs--- A,. It follows that
Ui N U = {e}. Similar arguments give that

UinUs = UinVa = UiNW, = {e},
Vi n UQ = V1 N ‘/2 = V1 N W2 {6},
W1 ﬂUQ == W1 ﬂ‘/z = WlﬁWQ = {6}

Therefore,
X1 ﬁXz = (U1UV1 UWl)m(UQU‘/QUWQ) 2{6}

In general, X; N X, = {e} for each 7, j, 1 <4,7 <m, i #j.
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Choose 4, j such that 1 < 4,5 < n, i # j. If a(i) = aj), then dy) = dag)
and so dq(;) € X; N X; = {e} gives the d,(;) = e contradiction. Thus a(i) # a(j).
Similar arguments give that

a(i) # a(j), « g a(i) #v(5),
BGi) #a(g), BG)#63), B) #v(),
V(@) # o), (@) #BG), (@) # ()

In particular the list a(1),...,®(n) is a permutation of the elements 1,...,n. We
know that «(1), 8(1), v(1) are not all equal, say a(1) # §(1). Since a(1),...,a(n)
is a permutation of 1,...,n, there is an 4, 2 < ¢ < n such that a(i) = §(1). This
contradicts to a(i) # B(J).

The proof is complete. g
References

[1] K. Corradi, S. Szabéd, and P. Z. Hermann, A character free proof for Rédei’s theorem, Mathe-
matica Pannonica 20 (2009), 3-15.

[2] L. Rédei, Die neue Theorie der endlichen Abelschen Gruppen und Verallgemeinerung des
Hauptsatzes von Hajés, Acta Math. Acad. Sci. Hung., 16 (1965), 329-373.

[3] A. D. Sands and S. Szabd, Factorization of periodic subsets, Acta Math. Acad. Sci. Hungar.
57 (1991), 159-167.



