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Abstract
Two results on factorization of finite abelian groups are proved using combinato-
rial character free arguments. The first one is a weaker form of Rédei’s theorem
and presented only to motivate the method. The second one is an extension of
Rédei’s theorem for elementary 2-groups, which was originally proved by means of
characters.

1. Introduction

We will use multiplicative notation in connection with abelian groups. The neutral
element of a group will be called identity element and it will be denoted by e. Let G
be a finite abelian group and let A1, . . . , An be subsets of G. The product A1 · · ·An

is defined to be the set

{a1 · · · an : a1 ∈ A1, . . . , an ∈ An}.

The product A1 · · ·An is called direct if

a1,1 · · · a1,n = a2,1 · · · a2,n, a1,1, a2,1 ∈ A1, . . . , a1,n, a2,n ∈ An

imply that a1,1 = a2,1, . . . , a1,n = a2,n. If the product A1 · · ·An is direct and if it is
equal to G, then we say that G = A1 · · ·An is a factorization of G.

A subset A of G is called normalized if e ∈ A. A factorization G = A1 · · ·An

is called normalized if each Ai is a normalized subset of G. Rédei [2] has proved
the following result. Let G be a finite abelian group and let G = A1 · · ·An be a
normalized factorization of G. If each |Ai| is a prime, then at least one of the factors
A1, . . . , An must be a subgroup of G.

Examples show that the condition that each factor has a prime number of ele-
ments cannot be dropped from Rédei’s theorem. However for elementary 2-groups
Sands and Szabó [3] proved the following generalization. Let G be a finite elemen-
tary 2-group and let G = A1 · · ·An be a normalized factorization of G. If each
|Ai| = 4, then at least one of the factors A1, . . . , An is a subgroup of G.

In this paper we will present an elementary combinatorial argument to verify a
weaker version of Rédei’s theorem for elementary p-groups, where p is an odd prime.
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Then applying the method to elementary 2-groups we obtain a combinatorial char-
acter free proof for the Sands-Szabó result.

2. Elementary p-groups

Let G be a finite abelian group of odd order. Let G = A1 · · ·An be a normalized
factorization of G, where each |Ai| is a prime. By Rédei’s theorem at least one of
the factors A1, . . . , An is a subgroup of G. Say Ai is a subgroup of G. Now as |Ai|
is odd, it follows that the product of the elements of Ai is equal to e. This indicates
that the following theorem is a weaker version of Rédei’s theorem. The essential
point is that we are able to give a combinatorial proof of this result.

Theorem 1 Let p be an odd prime. Let G be a finite elementary p-group and
let G = A1 · · ·An be a normalized factorization of G, where |Ai| = p, for each i,
1 ≤ i ≤ n. Let

di =
∏

a∈Ai

a.

Then di = e for some i, 1 ≤ i ≤ n.

Proof. Assume on the contrary that there is a counterexample

G = A1 · · ·An, (1)

where none of the elements di is equal to e. For n = 1, the factor A1 is equal to G
and so d1 = e. Thus we may assume that n ≥ 2. Among the counterexamples we
choose one with minimal n.

We introduce the following notations. For each i, 1 ≤ i ≤ n let

Ai = {e, ai,1, . . . , ai,p−1},
Ui = 〈ai,1〉,
Vi = 〈ai,2〉,
Xi = Ui ∪ Vi,

di = ai,1 · · · ai,p−1.

If Ai is a subgroup of G, then di = e. In the counterexample (1) di '= e and so Ai

is not a subgroup of G. In particular Ai '= Ui. We may choose the notation such
that ai,2 '∈ Ui. As a consequence, Ui '= Vi.

By Lemma 5 of [1], in the factorization (1) the factor A1 can be replaced by U1,
V1 to get the factorizations

G = U1A2 · · ·An, (2)
G = V1A2 · · ·An, (3)
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respectively. From (2), by considering the factor group G/U1 we get the factoriza-
tion

G/U1 = (A2U1)/U1 · · · (AnU1)/U1

of G/U1. Here
(AiU1)/U1 = {aU1 : a ∈ Ai}.

The minimality of the counterexample (1) forces that

diU1 =
∏

a∈Ai

aU1

must be equal to eU1 for some i, 2 ≤ i ≤ n. Or equivalently di ∈ U1 must hold for
some i, 2 ≤ i ≤ n.

Starting with factorization (3) we get that there is an index j, 2 ≤ j ≤ n, such
that dj ∈ V1.

If di = dj , then by di ∈ U1 ∩ V1 = {e} we end up with the di = e contradiction.
Thus di '= dj .

The argument above provides that for the index 1 there are indices α(1), β(1)
such that dα(1), dβ(1) ∈ X1 and α(1) '= β(1). In general, for the index i, 1 ≤ i ≤ n
there are indices α(i), β(i) such that dα(i), dβ(i) ∈ Xi and α(i) '= β(i).

By Lemma 5 of [1], in the factorization (1) the factor A1 can be replaced by
U1 to get the factorization G = U1A2 · · ·An. In this factorization the factor A2

can be replaced by U2 to get the factorization G = U1U2A3 · · ·An. It follows that
U1 ∩ U2 = {e}. Similar arguments give that

U1 ∩ U2 = U1 ∩ V2 = {e},
V1 ∩ U2 = V1 ∩ V2 = {e}.

Therefore

X1 ∩X2 = (U1 ∪ V1) ∩ (U2 ∪ V2) = {e}.

In general, Xi ∩Xj = {e} for each i, j, 1 ≤ i, j ≤ n, i '= j.
Choose i, j such that 1 ≤ i, j ≤ n, i '= j. If α(i) = α(j), then dα(i) = dα(j)

and so dα(i) ∈ Xi ∩Xj = {e} gives the dα(i) = e contradiction. Thus i '= j implies
α(i) '= α(j). Similar arguments give that i '= j implies

α(i) '= α(j), α(i) '= β(j),
β(i) '= α(j), β(i) '= β(j).

In particular the indices α(1), . . . ,α(n) form a permutation of the elements 1, . . . , n.
We know that α(1) '= β(1). Since α(1), . . . ,α(n) is a permutation of 1, . . . , n, there
is an i, 2 ≤ i ≤ n, such that α(i) = β(1). This violates α(i) '= β(j).

The proof is complete. !
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3. Elementary 2-groups

Theorem 1 is a weaker version of Rédei’s theorem for elementary p-groups where p
is an odd prime. The method of the proof of this theorem can be used to prove an
extension of Rédei’s theorem. First we present two lemmas.

Let G be a finite abelian group and let A = {e, u, v, w} be a subset of G such
that u2 = v2 = w2 = e. Set

U = 〈v, w〉,
V = 〈u,w〉,
W = 〈u, v〉,
X = U ∪ V ∪W,

d = uvw.

Lemma 2 Let G be a finite abelian group and let G = AB be a factorization of G.
If A is a subset defined above, then

G = UB, G = V B, G = WB

are factorizations of G.

Proof. As G = AB is a factorization of G, the sets

eB, uB, vB, wB (4)

form a partition of G. Multiplying the factorization G = AB by u we get the
factorization G = Gu = (Au)B. So the sets

uB, u2B, uvB, uwB

form a partition of G. As u2 = e we get that the sets

uB, eB, uvB, uwB (5)

form a partition of G. Comparing the partitions (4) and (5) we get

vB ∪ wB = uvB ∪ uwB.

From (4) we can see that eB∩uB = ∅. Multiplying by v provides that vB∩uvB = ∅.
It follows that vB ⊂ uwB. A consideration on the cardinalities implies vB = uwB.
In other words in (4) wB can be replaced by uvB which shows that the sets

eB, uB, vB, uvB

form a partition of G. Therefore G = WB is a factorization of G. Similar arguments
give that G = V B, G = UB are factorizations.

This completes the proof. !
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Lemma 3 Using the notations introduced before Lemma 2 the subset A is a sub-
group of G if and only if d = e.

Proof. Suppose that A is a subgroup of G. Let us consider the product of u and v.
As uv ∈ A we face the following possibilities

uv = e, uv = u, uv = v, uv = w.

The first three lead to the

u = v, v = e, u = e

contradictions respectively. Thus uv = w. Consequently uvw = e, that is, d = e as
required.

Suppose that d = e. Now e = uvw and so w = uv. Therefore A = 〈u, v〉 is a
subgroup of G. !

Theorem 4 Let G be a finite elementary 2-group and let G = A1 · · ·An be a nor-
malized factorization of G, where |Ai| = 4, for each i, 1 ≤ i ≤ n. Then Ai is a
subgroup of G for some i, 1 ≤ i ≤ n.

Proof. Assume on the contrary that there is a counterexample

G = A1 · · ·An, (6)

where none of the factors Ai is a subgroup of G. For n = 1, the factor A1 is equal
to G and so we may assume that n ≥ 2. Among the counterexamples we choose
one for which n is as small as possible.

We introduce the following notation. For each i, 1 ≤ i ≤ n let

Ai = {e, ui, vi, wi},
Ui = 〈vi, wi〉,
Vi = 〈ui, wi〉,

Wi = 〈ui, vi〉,
Xi = Ui ∪ Vi ∪Wi,

di = uiviwi.

Note that u2
i = v2

i = w2
i = e. Since Ai is not a subgroup, by Lemma 3, di '= e must

hold.
By Lemma 2, in the factorization (6) the factor A1 can be replaced by U1, V1,

W1 to get the factorizations

G = U1A2 · · ·An, (7)
G = V1A2 · · ·An, (8)
G = W1A2 · · ·An, (9)
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respectively. From (7), by considering the factor group G/U1 we get the factoriza-
tion

G/U1 = (A2U1)/U1 · · · (AnU1)/U1

of G/U1. Here

(AiU1)/U1 = {aU1 : a ∈ Ai}.

The minimality of the counterexample (6) implies that (AiU1)/U1 is a subgroup of
G/U1 for some i, 2 ≤ i ≤ n. By Lemma 3 (uiU1)(viU1)(wiU1) must be equal to
eU1, that is, uiviwi ∈ U1. This means di ∈ U1 must hold.

Starting with factorization (8) we get that there is an index j, 2 ≤ j ≤ n such that
dj ∈ V1. Starting with factorization (9) we get that there is an index k, 2 ≤ k ≤ n
for which dk ∈ W1.

Note that

U1 ∩ V1 ∩W1 = (U1 ∩ V1) ∩W1

= (〈v1, w1〉 ∩ 〈u1, w1〉) ∩W1

= 〈w1〉 ∩W1

= 〈w1〉 ∩ 〈u1, v1〉
= {e}.

If di = dj = dk, then di ∈ U1 ∩ V1 ∩ W1 = {e} lands on the di = e contradiction.
Thus di, dj , dk cannot all be equal.

We may summarize the previous argument in the following way. For the index 1
there are indices α(1), β(1), γ(1) such that dα(1), dβ(1), dγ(1) ∈ X1 and α(1), β(1),
γ(1) are not all equal. In general, for the index i, 1 ≤ i ≤ n there are indices α(i),
β(i), γ(i) such that dα(i), dβ(i), dγ(i) ∈ Xi and α(i), β(i), γ(i) are not all equal.

By Lemma 2, in the factorization (6) the factor A1 can be replaced by U1 to
get the factorization G = U1A2 · · ·An. In this factorization the factor A2 can
be replaced by U2 to get the factorization G = U1U2A3 · · ·An. It follows that
U1 ∩ U2 = {e}. Similar arguments give that

U1 ∩ U2 = U1 ∩ V2 = U1 ∩W2 = {e},
V1 ∩ U2 = V1 ∩ V2 = V1 ∩W2 = {e},
W1 ∩ U2 = W1 ∩ V2 = W1 ∩W2 = {e}.

Therefore,

X1 ∩X2 = (U1 ∪ V1 ∪W1) ∩ (U2 ∪ V2 ∪W2) = {e}.

In general, Xi ∩Xj = {e} for each i, j, 1 ≤ i, j ≤ n, i '= j.
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Choose i, j such that 1 ≤ i, j ≤ n, i '= j. If α(i) = α(j), then dα(i) = dα(j)

and so dα(i) ∈ Xi ∩Xj = {e} gives the dα(i) = e contradiction. Thus α(i) '= α(j).
Similar arguments give that

α(i) '= α(j), α(i) '= β(j), α(i) '= γ(j),
β(i) '= α(j), β(i) '= β(j), β(i) '= γ(j),
γ(i) '= α(j), γ(i) '= β(j), γ(i) '= γ(j).

In particular the list α(1), . . . ,α(n) is a permutation of the elements 1, . . . , n. We
know that α(1), β(1), γ(1) are not all equal, say α(1) '= β(1). Since α(1), . . . ,α(n)
is a permutation of 1, . . . , n, there is an i, 2 ≤ i ≤ n such that α(i) = β(1). This
contradicts to α(i) '= β(j).

The proof is complete. !
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