A SHORT NOTE ON THE DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

Tsz Ho Chan
Department of Mathematical Sciences, University of Memphis, Memphis, TN
38152, U.S.A.
tchan@memphis.edu

Received: 5/25/09, Accepted: 9/17/09, Published: 12/23/09

Abstract

In a previous paper, the author studied the distribution of differences between the multiplicative inverses of consecutive integers modulo p and raised two conjectures. In this paper, one of the conjectures is resolved by an elementary method.

1. Introduction and Main Results

In this article, p stands for an odd prime number. For any integer $0<n<p$, \bar{n} denotes the integer between 0 and p satisfying $n \bar{n} \equiv 1(\bmod p)$. In [1], the author studied the distribution of the distances between multiplicative inverses of consecutive integers $(\bmod p)$ and showed that

$$
\begin{equation*}
\sum_{n=1}^{p-2}|\bar{n}-\overline{n+1}|=\frac{1}{3} p^{2}+O\left(p^{3 / 2} \log ^{3} p\right) \tag{1}
\end{equation*}
$$

Hence the distance between inverses of consecutive integers, $|\bar{n}-\overline{n+1}|$, is about $p / 3$ on average which is what one expects if taking multiplicative inverse behaves like a random permutation. A similar study on the distribution of $|n-\bar{n}|$ was made by Zhang [3] earlier. Since multiplicative inverse \bar{x} can be interpreted as the y-coordinates of the algebraic curve $f(x, y)=x y-1=0$ modulo p, Zhang's work was generalized to the study of distribution of points on irreducible curves modulo p in two-dimensional space by Zheng [4] and in higher dimensional case by Cobeli and Zaharescu [2].

Going back to (1), its proof boils down to showing

$$
T_{+}(p, k)=T_{-}(p, k)=k-\frac{k^{2}}{2 p}+O\left(p^{1 / 2} \log ^{3} p\right)
$$

for $0<k<p$, where

$$
\begin{aligned}
T_{+}(p, k) & :=\#\{n: 0<n<p-1,0<\bar{n}-\overline{n+1} \leq k\} \\
T_{-}(p, k) & :=\#\{n: 0<n<p-1,-k \leq \bar{n}-\overline{n+1}<0\}
\end{aligned}
$$

Based on numerical evidence, it was conjectured that

$$
m_{p}^{+}-m_{p}^{-}=o\left(p^{1 / 2}\right)
$$

where

$$
m_{p}^{+}:=\max _{0<k<p}\left|T_{+}(p, k)-\left(k-\frac{k^{2}}{2 p}\right)\right| \text { and } m_{p}^{-}:=\max _{0<k<p}\left|T_{-}(p, k)-\left(k-\frac{k^{2}}{2 p}\right)\right|
$$

However, a closer look at the tables towards the end of [1] suggests that $m_{p}^{+}-m_{p}^{-}=$ $O(1)$. Indeed, we have the following:

Theorem 1. For any integer $0<k<p$,

$$
\left|T_{+}(p, k)-T_{-}(p, k)\right| \leq 9
$$

Corollary 2. We have

$$
\left|m_{p}^{+}-m_{p}^{-}\right| \leq 9
$$

2. Proof of Theorem 1 and Corollary 2

Proof of Theorem 1. From the definition of $T_{+}(p, k)$, with $a=\bar{n}$ and $b=\overline{n+1}$, we have

$$
T_{+}(p, k)=\#\{(a, b): 1 \leq a, b \leq p-1, \bar{b}-\bar{a}=1,0<a-b \leq k\}
$$

As $0<\bar{a}, \bar{b}<p$,

$$
\begin{aligned}
\bar{b}-\bar{a}=1 \Leftrightarrow \bar{b}-\bar{a} \equiv 1 \quad(\bmod p) & \Leftrightarrow a-b \equiv a b \quad(\bmod p) \\
& \Leftrightarrow(a+1)(b-1) \equiv-1 \quad(\bmod p)
\end{aligned}
$$

we have

$$
\begin{aligned}
& T_{+}(p, k)=\#\{(a, b): 1 \leq a, b \leq p-1,(a+1)(b-1) \equiv-1 \quad(\bmod p) \\
&0<a-b \leq k\} \\
&=\#\left\{\left(a^{\prime}, b^{\prime}\right): 2 \leq a^{\prime} \leq p-1,1 \leq b^{\prime} \leq p-2, a^{\prime} b^{\prime} \equiv-1(\bmod p)\right. \\
&\left.2<a^{\prime}-b^{\prime} \leq k+2\right\}
\end{aligned}
$$

Similarly, with $a=\overline{n+1}$ and $b=\bar{n}$, we have

$$
T_{-}(p, k)=\#\{(a, b): 1 \leq a, b \leq p-1, \bar{b}-\bar{a}=-1,0<a-b \leq k\}
$$

As $0<\bar{a}, \bar{b}<p$,
$\bar{b}-\bar{a}=-1 \Leftrightarrow \bar{b}-\bar{a} \equiv-1 \quad(\bmod p) \Leftrightarrow a-b \equiv-a b \quad(\bmod p) \Leftrightarrow(a-1)(b+1) \equiv-1 \quad(\bmod p)$,
we have

$$
\begin{aligned}
& T_{-}(p, k)=\#\{(a, b): 1 \leq a, b \leq p-1,(a-1)(b+1) \equiv-1 \quad(\bmod p), 0<a-b \leq k\} \\
&=\#\left\{\left(a^{\prime}, b^{\prime}\right): 1 \leq a^{\prime} \leq p-2,2 \leq b^{\prime} \leq p-1, a^{\prime} b^{\prime} \equiv-1 \quad(\bmod p)\right. \\
&\left.-2<a^{\prime}-b^{\prime} \leq k-2\right\}
\end{aligned}
$$

One can see that $T_{+}(p, k)$ and $T_{-}(p, k)$ are almost the same except:

- when $a^{\prime}=p-1$ and $b^{\prime}=1$ which may contribute at most one to $T_{+}(p, k)$.
- when $a^{\prime}=1$ and $b^{\prime}=p-1$ which may contribute at most one to $T_{-}(p, k)$.
- when $2 \leq a^{\prime}, b^{\prime} \leq p-2$ and $a^{\prime}-b^{\prime}=k-1, k, k+1$ or $k+2$ which may contribute at most eight to $T_{+}(p, k)$.
- when $2 \leq a^{\prime}, b^{\prime} \leq p-2$ and $a^{\prime}-b^{\prime}=-1,0,1$ or 2 which may contribute at most eight to $T_{-}(p, k)$.

Here we use the fact that any quadratic polynomial has at most two solutions $(\bmod p)$. Therefore $-9 \leq T_{+}(p, k)-T_{-}(p, k) \leq 9$.

Proof of Corollary 2. For any $0<k<p$, let

$$
E_{+}(p, k):=T_{+}(p, k)-\left(k-\frac{k^{2}}{2 p}\right) \text { and } E_{-}(p, k):=T_{-}(p, k)-\left(k-\frac{k^{2}}{2 p}\right)
$$

Theorem 1 tells us that

$$
-9 \leq E_{+}(p, k)-E_{-}(p, k) \leq 9
$$

By definition,

$$
-m_{p}^{+} \leq E_{+}(p, k) \leq m_{p}^{+}
$$

Hence

$$
-m_{p}^{+}-9 \leq E_{+}(p, k)-9 \leq E_{-}(p, k) \leq E_{+}(p, k)+9 \leq m_{p}^{+}+9
$$

Thus $\left|E_{-}(p, k)\right| \leq m_{p}^{+}+9$ which implies that $m_{p}^{-} \leq m_{p}^{+}+9$ or $-9 \leq m_{p}^{+}-m_{p}^{-}$. Similarly, one can show that $m_{p}^{+}-m_{p}^{-} \leq 9$ and we have the corollary.

Note and Acknowledgement The reference on Cobeli and Zaharescu in the end note of [1] is incorrect. The correct reference should be the paper [2] quoted in this paper. The author would like to thank the anonymous referee for helpful suggestions.

References

[1] T.H. Chan, Distribution of differences between inverses of consecutive integers modulo p, Integers 4 (2004), A3, 11pp. (electronic).
[2] C. Cobeli and A. Zaharescu, On the distribution of the F_{p}-points on an affine curve in r dimensions, Acta Arith. 99 (2001), no. 4, 321-329.
[3] W. Zhang, On the distribution of inverses modulo n, J. Number Theory 61 (1996), 301-310.
[4] Z. Zheng, The distribution of zeros of an irreducible curve over a finite field, J. Number Theory 59 (1996), 106-118.

