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Abstract
We provide tiling proofs of several algebraic formulas for the Pell numbers of odd index, all

of which involve alternating sums of binomial coefficients, as well as consider polynomial

generalizations of these formulas. In addition, we provide a combinatorial interpretation

for a Diophantine equation satisfied by the Pell numbers of odd index.

1. Introduction

Combinatorial proofs which use tilings have recently been given to explain and
extend a variety of algebraic identities, including ones involving Fibonacci numbers
[2], determinants [1], and binomial coefficients [4, 8]. Here, we use tilings to explain
(and generalize) several formulas for the Pell numbers of odd index, all of which
involve alternating sums of binomial coefficients. We also look at an example of a
Diophantine equation whose solution has a tiling interpretation.

Let pn, n ! 0, denote the sequence of Pell numbers given by the recurrence

pn = 2pn−1 + pn−2, n ! 2, (1)

with initial conditions p0 = 1, p1 = 2. (See A000129 in [10] for more information
on these numbers.) From (1), one sees that pn counts tilings of a board of length n
with cells labelled 1, 2, ..., n using squares and dominos, where squares are painted
black or white (which we’ll term Pell n-tilings). For example, p0 = 1 counts the
empty tiling and p2 = 5 since a board of length 2 may be covered (exactly) by
either a domino or by two squares, each painted black or white. Benjamin, Plott,
and Sellers [5] have provided combinatorial proofs of several recent Pell number
identities which were q-generalized by Briggs, Little, and Sellers [6].

Let an := p2n−1, n ! 1, denote the nth Pell number of odd index with a0 := 0.
(See A001542 in [10].) The an satisfy the recurrence [7]

an = 6an−1 − an−2, n ! 2, (2)

with initial conditions a0 = 0, a1 = 2. From (2), it is obvious that the an are actually
all even, which may also be realized by toggling the color of the first square in a Pell



INTEGERS: 9 (2009) 54

tiling of odd length. For a combinatorial explanation of (2), first perform one of the
following six operations on a Pell (2n− 3)-tiling, where n ! 2: (i) Add two squares
painted black or white to the end in one of four ways, (ii) add a domino to the end,
or (iii) insert a domino directly prior to the final piece. Note that all Pell (2n− 1)-
tilings arise once from performing these six operations on the Pell (2n − 3)-tilings
except those ending in at least two dominos, which arise twice, of which there are
an−2.

In this note, we provide combinatorial proofs of several formulas [7] for the an and
generalizations, thereby avoiding the use of such algebraic techniques as induction,
generating functions, and Binet formulas. In addition, we provide a bijective proof
that the squares of the numbers an

2 , n ! 0, are all triangular numbers, which
supplies a combinatorial insight into why the Diophantine equation

T 2 =
(

Y + 1
2

)
(3)

has T = an
2 as its solution.

If n ! 1 and 0 " k " "n/2#, recall that there are
(n−k

k

)
ways to tile a board

of length n with k dominos and n − 2k squares, such tilings being equivalent to
sequential arrangements of k dominos and n − 2k squares. Similarly, there are
2n−2k

(n−k
k

)
Pell n-tilings containing k dominos, since each of the n − 2k squares

may be painted either black or white. Summing over k gives the well-known explicit
formulas

fn =
"n/2#∑

k=0

(
n− k

k

)
, n ! 0, (4)

and

pn =
"n/2#∑

k=0

2n−2k

(
n− k

k

)
, n ! 0, (5)

for the Fibonacci and Pell numbers, respectively. Throughout, we represent Pell
tilings as sequences in b, w and d, standing for black square, white square, and
domino, respectively. If n is a positive integer, then let [n] denote the set {1, 2, ..., n}
and Pn denote the set of all Pell n-tilings. By convention, we let [0] be the empty
set and P0 be the singleton set consisting of the empty tiling.

2. Combinatorial Proofs

In this section, we provide combinatorial interpretations of six formulas for the odd
Pell number an := p2n−1, n ! 1. The proofs are divided into four parts as follows:

(1) Describe a set of tilings Cm whose signed sum is given by the right-hand side;

(2) Set aside an exceptional subset C′
m ⊆ Cm, all of whose members have positive

sign;
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(3) Define a sign-changing involution of Cm − C′
m;

(4) Provide an argument for the cardinality of C′
m.

In all the proofs of this section (except for Identity 3), the sign of a tiling λ ∈ Cm will
be given by (−1)v(λ), where v(λ) denotes the number of dominos in λ. The tilings
themselves will consist of dominos and squares, circled and marked in various ways.

Identity 1.

an+1 = 2
"n

2 #∑

k=0

(−1)k6n−2k

(
n− k

k

)
, n ! 0.

Proof. We start with descriptions of Cn and C′
n.

Description of the set Cn: Let Cn denote the set of tilings of [n] in which
each square is marked with a member of [6]. Then half the right-hand side gives
the signed sum over all the members of Cn according to the number of dominos k.

Description of the set C′
n: Let C′

n ⊆ Cn consist of those tilings λ which sat-
isfy the following three conditions:

(i) λ contains no dominos;

(ii) There are no two consecutive squares which cover the numbers 2i− 1 and 2i
for some i, 1 " i " "n

2 #, and are marked with 1 and 2, respectively;

(iii) There are no two consecutive squares which cover the numbers 2i and 2i + 1
for some i, 1 " i " "n−1

2 #, and are marked with 3 and 4, respectively.

We proceed with an involution.

Sign-changing involution of Cn − C′
n: Given λ ∈ Cn − C′

n, let i0 be the
smallest index i ! 1 such that one of the following occurs:

(i) The numbers 2i − 1 and 2i are covered by a domino or by squares marked
with 1 and 2, respectively;

(ii) The numbers 2i and 2i + 1 are covered by a domino or by squares marked
with 3 and 4, respectively.

If (i) occurs, then either replace a domino covering the numbers 2i0−1 and 2i0 with
two squares marked with 1 and 2, respectively, or vice-versa. Similarly, exchange
the two cases within (ii) if (ii) occurs, which results in a sign-changing involution
of Cn − C′

n and implies |C′
n| equals half the right side of Identity 1.

Cardinality of the set C′
n: To complete the proof, we show an+1 = 2|C′

n|,
n ! 0. Given a square painted black or white and c = c1c2 · · · cn ∈ C′

n, where ci

denotes the member of [6] assigned to the ith square, we’ll construct a member of
P2n+1, denoted c′, in n steps according to the iterative procedure below. (If 1 " i "
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ci, 1 " i " n Addition to λi−1 when i is odd Addition to λi−1 when i is even
1 d at end wb
2 wb d prior to last square
3 bw d at end
4 d prior to last square bw
5 ww ww
6 bb bb

n, then λi denotes the resulting member of P2i+1 obtained after making i additions
as described below, with λ0 denoting the painted square you start with.)

For example, if n = 5, c = 41323 ∈ C′
5, and λ0 = w, then λ1 = dw, λ2 = dw2b,

λ3 = dw2b2w, λ4 = dw2b2dw, and λ5 = dw2b2dwbw, which implies c′ = λ5 ∈ P11.
Note that c ∈ C′

n implies that there is always a square ending λi−1 whenever ci = 2
and i is even or whenever ci = 4 and i ! 3 is odd. The mapping c &→ c′ is reversible,
upon starting with the last piece of a member of P2n+1 and considering the parity
of n. !

Identity 2.

an+1 = 2
n∑

k=0

(−1)k8n−k

(
2n + 1− k

k

)
, n ! 0.

Proof. The proof follows the structure of the last proof.

Description of the set C2n+1: Let C2n+1 denote the set of tilings of [2n + 1]
in which squares are painted black or white and squares covering even numbers may
be circled. The right side of Identity 2 then gives the signed sum over all members of
C2n+1 according to the number of dominos k; note that there are 8n−k choices with
regard to the first n− k pairs of squares (squares must alternate between covering
odd and then even numbers) and two choices with regard to the final square (which
must cover an odd number).

Description of the set C′
2n+1: Let C′

2n+1 ⊆ C2n+1 consist of those tilings λ
which satisfy the following three conditions:

(i) λ contains no dominos;

(ii) No consecutive numbers 2i− 1, 2i are covered by ww© for any i, 1 " i " n;

(iii) No consecutive numbers 2i, 2i + 1 are covered by b©b for any i, 1 " i " n.

Involution of C2n+1 −C′
2n+1: Given λ ∈ C2n+1−C′

2n+1, identify the smallest
j ! 1 for which one of the following holds:

(i) 2j − 1 and 2j are covered by either a domino or by ww©;

(ii) 2j and 2j + 1 are covered by either a domino or by b©b.
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Switching to the other option in either case produces a sign-changing involution of
C2n+1 − C′

2n+1.

Cardinality of the set C′
2n+1:] Note that |C′

2n+1| = an+1, as seen upon taking
members of P2n+1 and replacing any domino whose initial segment covers an odd
number with bw© and replacing any domino whose initial segment covers an even
number with b©w (leaving any squares unchanged). !

Remark: By allowing the tilings to have varying lengths in the proofs above for the
first two identities, one can also combinatorially explain

p2n = 1 + 2
n∑

k=1

ak = 1 + 4
n∑

k=1

6n−k

" k−1
2 #∑

j=0

(−1)j

(
n− k + j

j

)

and

p2n = 1 + 4
n∑

k=1

8n−k
k−1∑

j=0

(−1)j

(
2n− 2k + j + 1

j

)
.

Identity 3.

a2
n =

2n∑

k=1

24n−2k
k∑

j=1

(−1)j−1

(
4n− k − j

4n− 2k

)
, n ! 1.

Proof. This proof also follows the structure of Identity 1’s proof.

Description of the set C4n: Given n ! 1, let Ck,j comprise those Pell (4n −
2j)-tilings containing exactly k− j dominos, where 1 " j " k " 2n. Define the sign
of λ ∈ Ck,j by (−1)j−1. Note that |Ck,j | = 24n−2k

(4n−k−j
4n−2k

)
since members of Ck,j

contain k − j dominos and thus 4n− 2j − 2(k − j) = 4n− 2k squares for a total of
4n− k− j pieces in all. The right side of Identity 3 then gives the signed sum over
all members of

C4n :=
⋃

Ck,j .
1!j!k!2n

Description of the set C′
4n: Let C′

4n ⊆ C4n consist of those tilings having
positive sign (i.e., belonging to Ck,j for some j odd) and ending in a square.

Involution of C4n−C′
4n:Define a sign-changing involution of C4n−C′

4n by adding
a domino to the end of a tiling having negative sign (i.e., belonging to Ck,j for some
j ! 2 even) and taking a domino away from the end of a tiling having positive sign
(which must end in at least one domino, by assumption).
Cardinality of the set C′

4n: We need to show |C′
4n| = a2

n, n ! 1. Observe
first that members of C′

4n are synonymous with Pell 4n-tilings ending in an odd
number of dominos preceded by a square (upon adding j dominos to the end, where
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j is odd). So write λ ∈ C′
4n as λ = αcd2i+1, where 0 " i " n − 1, c is a square

(either black or white), and α ∈ P4n−4i−3. From λ, we’ll construct a member
(λ1,λ2) ∈ P2n−1×P2n−1 as follows. If α can be decomposed further as α1α2, where
α1 and α2 are Pell tilings of lengths 2n− 2i− 1 and 2n− 2i− 2, respectively, then
let λ1 = α1di and λ2 = α2cdi. On the other hand, if α = α1dα2, where α1 and α2

have lengths 2n − 2i − 2 and 2n − 2i − 3, respectively, then let λ1 = α1cdi and
λ2 = α2di+1 (note that i " n− 2 in this case). The mapping λ &→ (λ1,λ2) may be
reversed upon considering whether or not λ1 ends in at least as many dominos as
λ2. !

Examples of the mapping λ "→ (λ1,λ2) :

n = 5, i = 2 : (bd2)(wdb)wd5 ∈ P20 &→ (bd4, wdbwd2) ∈ P9 × P9;

n = 4, i = 1 : (db2)d(bd)wd3 ∈ P16 &→ (db2wd, bd3) ∈ P7 × P7.

Identity 4.

a2
n = 4

2n−1∑

k=1

82n−k−1
k∑

j=1

(−1)k−j

(
4n− k − j

4n− 2k

)
, n ! 1.

Proof. This proof also follows the structure of Identity 1’s proof.
Description of the set C4n: Given n ! 1, let Ck,j consist of the tilings of
length 4n− 2j containing exactly k− j dominos in which squares are painted black
or white and squares covering even numbers may be circled, except for the last such
square, which isn’t circled. Note that |Ck,j | = 4 · 82n−k−1

(4n−k−j
4n−2k

)
since there are 8

choices (with regard to coloring and circling) for the first 2n−k−1 pairs of squares
and only 4 choices for the final pair of squares. The right side of Identity 4 then
gives the signed sum over all members of

C4n :=
⋃

Ck,j

1!j!k!2n−1

according to the number of dominos k − j.

Description of the set C′
4n: Let C′

4n ⊆ C4n consist of those tilings for which
j is odd (i.e., λ ∈ Ck,j for some j odd), there are no dominos (i.e., k = j), no
two consecutive numbers 2i− 1 and 2i are covered by ww©, and no two consecutive
numbers 2i and 2i + 1 are covered by b©b.

Involution of C4n − C′
4n: To define a sign-changing involution of C4n − C′

4n,
first apply the involution used in the proof of Identity 3 if it is the case that λ ∈ Ck,j ,
where either

(i) j is even, or

(ii) j is odd with the last piece in λ a domino.
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On the other hand, if j is odd and the last piece in λ is a square, then apply the
involution used to prove Identity 2. Note that the involution in the latter case would
not change the final piece in λ, a square which isn’t circled, by assumption; hence,
it is well-defined.

Cardinality of the set C′
4n: By prior reasoning, members of C′

4n are synony-
mous with members of P4n ending in an odd number of dominos (which number
a2

n by the previous proof) upon adding j dominos to the end and replacing all oc-
currences of bw© on 2i − 1, 2i as well as all occurrences of b©w on 2i, 2i + 1 with
dominos. (Note that the final square not being circled in a member of C′

4n ensures
that the resulting member of P4n ends in a square preceded by an odd number of
dominos.) !

Identity 5.

a2
n = 4

n∑

k=1

62n−2k
k∑

j=1

(−1)k−j

(
2n− k − j

2n− 2k

)
, n ! 1.

Proof. Again, we follow the structure of Identity 1’s proof.

Description of the set C2n: Let Ck,j consist of the (2n−2j)-tilings containing
exactly k − j dominos in which each square is marked with a member of [6]. One
fourth the right-hand side then gives the signed sum over all members of

C2n :=
⋃

Ck,j .
1!j!k!n

Description of the set C′
2n: Let C′

2n ⊆ C2n consist of those tilings in which
there are no dominos (i.e., k = j), no two numbers 2i− 1, 2i are covered by squares
marked with 1, 2, respectively, for any i, and no two numbers 2i, 2i+1 are covered
by squares marked with 3, 4, respectively, for any i.

Involution of C2n − C′
2n: Apply the involution used in the proof of Identity 1.

Cardinality of the set C′
2n: We now show 4|C′

2n| = a2
n. Starting with a black

or white square and a member of C′
2n of length 2n − 2j, where 1 " j " n, obtain

α ∈ P4n−4j+1 as in the final part of the proof for Identity 1. To α, add a square
of either color, followed by 2j − 1 dominos, to obtain β ∈ P4n ending in an odd
number of dominos preceded by a square. Thus, members of C′

2n are in 1-to-
4 correspondence with members of P4n ending in an odd number of dominos, of
which there are a2

n, by the last part of the proof for Identity 3. !

Identity 6.

(an + an−1)2 = 4
2n−1∑

k=1

82n−k−1
k∑

j=1

(−1)k−j

(
4n− k − j − 2
4n− 2k − 2

)
, n ! 1.
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Proof. Using the structure of Identity 1’s proof, we have the following.

Description of the set C4n−2: Given n ! 1, let Ck,j consist of the tilings of
length 4n−2j−2 containing exactly k−j dominos in which squares may be painted
black or white and squares covering even numbers may be circled. One fourth of
the right-hand side then gives the signed sum over all members of

C4n−2 :=
⋃

Ck,j

1!j!k!2n−1

.

Description of the set C′
4n−2: Let C′

4n−2 ⊆ C4n−2 consist of the empty tiling
as well as the non-empty tilings for which k = j is odd (and so there are no
dominos), no b©b covers 2i, 2i + 1 for any i, and no ww© covers 2i − 1, 2i for any
i except for possibly i = 2n − j − 1 (and so we allow ww© to cover the numbers
4n− 2j − 3, 4n− 2j − 2).

Involution of C4n−2 − C′
4n−2: Apply the involution used in the proof of Iden-

tity 4 to C4n−2 − C′
4n−2.

Cardinality of the set C′
4n−2: To complete the proof, we need to show that

4|C′
4n−2| = (an + an−1)2. Reasoning as in the last part of the proof for Identity 2,

observe first that a non-empty tiling λ ∈ C′
4n−2 may be expressed as λ = αc, where

α is a Pell tiling of length 4n− 2j− 3, there are four options for the square c (black
or white, circled or uncircled), and j is odd, 1 " j " 2n− 3. This implies

|C′
4n−2| = 4|

n−1⋃

i=1

P4i−1| + 1.

Taking four copies of a member of P4i−1 and leaving one unchanged, adding
a black square to one, adding a white square to another, and, to the last, either
removing a final domino, removing a final white square, or changing a final black
square to a domino shows that

4|P4i−1| = |
3⋃

m=0

P4i−m|, 1 " i " n− 1,

and thus

|C′
4n−2| = 4|

n−1⋃

i=1

P4i−1| + 1 = |
4n−4⋃

i=0

Pi|.

(The empty member of C′
4n−2 is mapped to the empty Pell tiling.) In [5], a bijection

is given between
4n−4⋃

i=0

Pi and the set consisting of all ordered pairs of Pell (2n− 1)-

tilings ending in either a domino or in a black square, which number (p2n−2 +

p2n−3)2 =
1
4
(p2n−1 + p2n−3)2. Combining this bijection with the preceding implies

4|C′
4n−2| = (p2n−1 + p2n−3)2, as desired. !
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3. Generalizations

We generalize the Pell number identities of the prior section to ones involving Fib-
onacci polynomials (see, e.g., [3, p.141] or [9]). If a and b are indeterminates, then
define the sequence of polynomials gn(a, b) by the recurrence

gn(a, b) = agn−1(a, b) + bgn−2(a, b), n ! 2,

with initial conditions g0(a, b) = 1, g1(a, b) = a. When a = b = 1 and a = 2, b = 1,
the gn(a, b) reduce, respectively, to the Fibonacci and Pell number sequences. When
a and b are positive integers, the gn(a, b) count tilings of length n in which a square
may be painted with one of a colors and a domino with one of b colors.

If n ! 1, then let cn(a, b) := g2n−1(a, b), where c0(a, b) := 0. The algebraic
arguments for Identities 1–6 of the prior section may be extended (we omit the
details) to yield the following generalizations:

Identity 7.

cn+1(a, b) = a

"n
2 #∑

k=0

(−1)kb2k(a2 + 2b)n−2k

(
n− k

k

)
, n ! 0.

Identity 8.

cn+1(a, b) = a
n∑

k=0

(−1)kbk(a2 + 4b)n−k

(
2n + 1− k

k

)
, n ! 0.

Identity 9.

c2
n(a, b) =

2n∑

k=1

a4n−2kbk−1
k∑

j=1

(−1)j−1

(
4n− k − j

4n− 2k

)
, n ! 1.

Identity 10.

c2
n(a, b) = a2

2n−1∑

k=1

bk−1(a2 + 4b)2n−k−1
k∑

j=1

(−1)k−j

(
4n− k − j

4n− 2k

)
, n ! 1.

Identity 11.

c2
n(a, b) = a2

n∑

k=1

b2k−2(a2 + 2b)2n−2k
k∑

j=1

(−1)k−j

(
2n− k − j

2n− 2k

)
, n ! 1.
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Identity 12.

(cn(a, b) + bcn−1(a, b))2

= a2
2n−1∑

k=1

bk−1(a2 + 4b)2n−k−1
k∑

j=1

(−1)k−j

(
4n− k − j − 2
4n− 2k − 2

)
, n ! 1.

Identities 7–12 reduce, respectively, to Identities 1–6 when a = 2 and b = 1 and to
identities for the odd Fibonacci number f2n−1 when a = b = 1.

By allowing squares to come in a colors and dominos to come in b colors, the
arguments given above for Identities 1, 3 and 5 may be modified to provide com-
binatorial interpretations for Identities 7, 9 and 11, respectively, when a and b are
positive integers (which proves them in general). We leave the details for the inter-
ested reader. On the other hand, we were unable to find combinatorial proofs for
Identities 8, 10 or 12 in either the general case where a and b are positive integers
or in the specific case where a = b = 1.
Remark: Let dn(a, b) := g2n(a, b), n ! 0. Using Identities 7–12 above for cn(a, b)
along with the relations

dn(a, b) =
cn+1(a, b)− bcn(a, b)

a
, n ! 1,

and
cn(a, b) =

dn(a, b)− bdn−1(a, b)
a

, n ! 1,

one gets similar, though more complicated, formulas for dn(a, b).

4. Recounting Square Triangular Numbers

Let Tn =
an

2
, n ! 0, and Yn be the sequence given by the recurrence

Yn = 6Yn−1 − Yn−2 + 2, n ! 2, (6)

with initial values Y0 = 0, Y1 = 1. The Diophantine equation (see, e.g., [7])

T 2 =
(

Y + 1
2

)
(7)

has as its solution the set of ordered pairs (T, Y ) = (Tn, Yn), n ! 0. This can
quickly be seen upon multiplying both sides of (7) by 8 and letting Z = 2Y +1 and
U = 2T to get

Z2 − 2U2 = 1, (8)

which is the d = 2 case of Pell’s equation.
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In this section, we provide a bijective proof that the squares of the Tn are all
triangular numbers, which justifies the solution to (7) and hence (8). Perhaps the
argument can be modified to show that there are no other perfect square triangular
numbers, which would supply a full combinatorial explanation of (7) and (8). It
would also be desirable to generalize our argument for (8) and provide a combina-
torial solution to Pell’s equation.

Upon multiplying (7) by 8, we need to show, equivalently,

2a2
n = (2Yn + 1)2 − 1, n ! 1. (9)

To do so, we specify combinatorial structures enumerated by the left and right sides
of (9) and then describe a bijection between them.

The left side: This clearly counts the ordered pairs in two copies of P2n−1 ×
P2n−1.

The right side: First consider the set Yn consisting of Pell (2n − 1)-tilings in
which a square covering cell 1 may also be green and containing at least one black
or white square, the first of which we require to be white. Note that |Y1| = 1 = Y1

and |Y2| = 8 = Y2. We use (6) to show |Yn| = Yn when n ! 3.
Note that members of Yn, n ! 3, may be formed from members of Yn−1 by either

adding two squares to the end in one of four ways (as bb, bw, wb, or ww), adding a
domino to the end, or inserting a domino just prior to the last piece. Members of
Yn ending in at least two dominos are clearly synonymous with members of Yn−2,
and are counted twice in the preceding, hence the second term on the right side
of (6). This accounts for all members of Yn, except for those whose first black or
white square (which must be white) covers cell 2n − 2, and there are exactly two
such tilings (a green square, followed by dn−2w2 or dn−2wb).

If n ! 1, then let Zn denote the set of Pell (2n − 1)-tilings in which a square
covering cell 1 may also be green. Note that |Zn| = 2|Yn| + 1 = 2Yn + 1 since two
members of Zn may be obtained from each member of Yn by allowing the first black
or white square to be black and since the single tiling comprised of a green square
followed by n− 1 dominos is also allowed, which we denote by λ∗. Thus, the right
side of (9) counts all members of Zn×Zn, where we exclude from consideration the
ordered pair (λ∗,λ∗).

The bijection:Let λ=(λ1,λ2)∈Zn×Zn. If neither λ1 nor λ2 starts with a green
square, apply the identity mapping to obtain an ordered pair belonging to the first
copy of P2n−1×P2n−1described above. So assume at least one of {λ1,λ2} begins with
a green square. Note that such members of Zn×Zn number p2

2n−2 +2p2n−2p2n−1 =
p2n−2(p2n−2 + 2p2n−1) = p2n−2p2n. Thus, the remaining members of Zn × Zn may
be identified with ordered pairs in P2n−2×P2n and normal tail-swapping (see, e.g.,
[3, p.7]) provides the needed near bijection between P2n−2 × P2n and the second
copy of P2n−1 × P2n−1. Note that only the ordered pair in P2n−2 × P2n in which
both coordinates are tilings consisting solely of dominos fails to be mapped and that
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this ordered pair corresponds to the excluded member (λ∗,λ∗) in Zn × Zn. Hence,
2|P2n−1 × P2n−1| = |Zn × Zn|− 1, which is (9), as desired.

References

[1] A. Benjamin, N. Cameron, and J. Quinn, Fibonacci determinants – A combinatorial ap-
proach, Fibonacci Quart. 45 (2007), 39–55.

[2] A. Benjamin, A. Eustis, and S. Plott, The 99th Fibonacci identity, Electron. J. Combin. 15
(2008), #R34.

[3] A. Benjamin and J. Quinn, Proofs that Really Count: The Art of Combinatorial Proof, The
Dolciani Mathematical Expositions, 27, Mathematical Association of America, 2003.

[4] A. Benjamin, J. Quinn, J. Sellers, and M. Shattuck, Paint it black – A combinatorial yawp,
Math. Mag. 81 (2008), 45–51.

[5] A. Benjamin, S. Plott, and J. Sellers, Tiling proofs of recent sum identities involving Pell
numbers, Ann. Comb. 12 (2008), 271–278.

[6] K. Briggs, D. Little, and J. Sellers, Combinatorial proofs of various q-Pell identities via
tilings, to appear in Ann. Comb.

[7] R. Ram, Triangle numbers that are perfect squares, available at
http://users.tellurian.net/hsejar/maths/triangle/.
See also http://mathworld.wolfram.com/TriangularNumber.html.

[8] M. Shattuck, Combinatorial proofs of some Moriarty-type binomial coefficient identities,
Integers 6 (2006), #A35.

[9] M. Shattuck and C. Wagner, A new statistic on linear and circular r-mino arrangements,
Electron. J. Combin. 13 (2006), #R42.

[10] N. J. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at
http://www.research.att.com/~njas/sequences/.


