ON THE EQUATION $\mathbf{a}^{\mathbf{x}} \equiv \mathrm{x}(\bmod \mathbf{b})$

Jam Germain
Université de Montréal, Montréal, Canada
jamgermaingmail.com

Received: 10/30/08, Revised: 8/12/09, Accepted: 8/22/09, Published: 12/18/09

Abstract

Recently Jiménez-Urroz and Yebra constructed, for any given a and b, solutions x to the title equation. Moreover they showed how these can be lifted to higher powers of b to obtain a b-adic solution for certain integers b. In this paper we find all positive integer solutions x to the title equation, proving that, for given a and b, there are $X / b+O_{b}(1)$ solutions $x \leq X$. We also show how solutions may be lifted in more generality. Moreover we show that the construction of Jiménez-Urroz and Yebra (and obvious modifications) cannot always find all solutions to $a^{x} \equiv x$ $(\bmod b)$.

1. Introduction

Jiménez-Urroz and Yebra [3] begin with: "The fact that 743 ends in 343 could just be a curiosity. However, when this can be uniquely extended to

```
77659630680637333853643331265511565172343
    = ..7659630680637333853643331265511565172343,
```

and more, it begins to be interesting." They go on to show that one can construct such an x satisfying $a^{x} \equiv x\left(\bmod 10^{n}\right)$ for any $a \geq 1$ with $(a, 10)=1$ and any $n \geq 1$.

To find solutions to $a^{x} \equiv x(\bmod b)$ Jiménez-Urroz and Yebra proceed as follows: From a solution, y, to $a^{y} \equiv y(\bmod \phi(b))$ one takes $x=a^{y}$ and then $a^{x} \equiv x(\bmod b)$ by Euler's theorem. Since $\phi(b)<b$ for all $b \geq 2$, one can recursively construct solutions, simply and elegantly. The only drawback here is that the method does not give all solutions. In this paper we proceed in a more pedestrian manner (via the Chinese Remainder Theorem) to find all solutions, beginning with all solutions modulo a prime power:

For any prime p and each $n, 0 \leq n \leq p-2$, define a sequence $\left\{x_{k}(p, n)\right\}_{k \geq 0}$ of residues $\left(\bmod p^{k}(p-1)\right)$, by $x_{0}=n$ and then

$$
\begin{equation*}
x_{k+1} \equiv p x_{k}-(p-1) a^{x_{k}} \quad\left(\bmod p^{k+1}(p-1)\right) \tag{1}
\end{equation*}
$$

for each $k \geq 0$ (where $x_{k}=x_{k}(p, n)$ for simplicity of notation).

Theorem 1Suppose that prime p and integers a and $k \geq 1$ are given. If $p \mid a$ and x is a positive integer then

$$
a^{x} \equiv x \quad\left(\bmod p^{k}\right) \text { if and only if } x \equiv 0 \quad\left(\bmod p^{k}\right)
$$

If $(p, a)=1$ and x is an integer then
$a^{x} \equiv x\left(\bmod p^{k}\right)$ if and only if $x \equiv x_{k}(p, n)\left(\bmod p^{k}(p-1)\right)$ for some $0 \leq n \leq p-2$.

Remark. If $p=2$ and a is odd then we have the simpler definition $x_{0}=0$ and then $x_{k+1} \equiv a^{x_{k}}\left(\bmod 2^{k+1}\right)$ for each $k \geq 0$, as $2\left(x_{k}-a^{x_{k}}\right) \equiv 0\left(\bmod 2^{k+1}\right)$.

Actually one can "simplify" Theorem 1 a little bit:

Corollary 2 Suppose that prime p and integer a are given. If $p \mid a, k \geq 1$ and x is a positive integer then

$$
a^{x} \equiv x \quad\left(\bmod p^{k}\right) \text { if and only if } x \equiv 0 \quad\left(\bmod p^{k}\right)
$$

If $(p, a)=1$ then define, for $n, 0 \leq n \leq \operatorname{ord}_{p}(a)-1$, a sequence $\left\{x_{k}^{\prime}(p, n)\right\}_{k \geq 0}$ of residues $\left(\bmod p^{k} \operatorname{ord}_{p}(a)\right)$ with $x_{0}^{\prime}=n$ and then

$$
x_{k+1}^{\prime} \equiv p x_{k}^{\prime}-(p-1) a^{x_{k}^{\prime}} \quad\left(\bmod p^{k+1} \operatorname{ord}_{p}(a)\right)
$$

for each $k \geq 0$. If $k \geq 1$ and x is an integer then
$a^{x} \equiv x\left(\bmod p^{k}\right)$ if and only if $x \equiv x_{k}^{\prime}(p, n)\left(\bmod p^{k} \operatorname{ord}_{p}(a)\right)$ for some $0 \leq n \leq \operatorname{ord}_{p}(a)-1$.

To construct p-adic solutions we need the following result:

Lemma 3 Suppose that prime p and integers n and a are given. Then

$$
x_{k+1}(p, n) \equiv x_{k}(p, n) \quad\left(\bmod p^{k}(p-1)\right)
$$

for each $k \geq 0$.
Hence,

$$
x_{\infty}(p, n):=\lim _{k \rightarrow \infty} x_{k}(p, n)
$$

exists in $\mathbb{Z}_{p} \times \mathbb{Z} /(p-1) \mathbb{Z}$ (where $\mathbb{Z}_{p}:=\lim \mathbb{Z} / p^{k} \mathbb{Z}$ are the p-adic numbers) and

$$
a^{x_{\infty}}=x_{\infty} \text { in } \mathbb{Z}_{p} \times \mathbb{Z} /(p-1) \mathbb{Z}
$$

Note that there are $p-1$ distinct solutions if $(a, p)=1$.

Theorem 4 Given integers a and b, let

$$
L(b, a):=\operatorname{LCM}[b ; p-1: p \mid b, p \nmid a] .
$$

The positive integers x such that $a^{x} \equiv x(\bmod b)$ are those integers that belong to exactly $L(b, a) / b$ residue classes mod $L(b, a)$. That is, $1 / b$ of the integers satisfy this congruence.
(Here and later the notation $\operatorname{LCM}[b ; p-1: p \mid b, p \nmid a]$ means the least common multiple of b with all the $p-1$ for primes p dividing b that do not divide a.)

Note that $L(b, a)$ divides $\operatorname{LCM}[b, \phi(b)]$ for all a.

Example. If $b=10$ and $5 \nmid a$ then $L(10, a)=\operatorname{LCM}[10,4,1]=20$ so exactly 2 out of the 20 residue classes mod 20 satisfy each given congruence. If $b=10$ and $5 \mid a$ then $L(10, a)=\operatorname{LCM}[10,1]=10$ so exactly 1 out of the 10 residue classes $\bmod 10$ satisfies each given congruence.

a	x
0	$10 \bmod 10$
1	$1,11 \bmod 20$
2	$14,16 \bmod 20$
3	$7,13 \bmod 20$
4	$6,16 \bmod 20$
5	$5 \bmod 10$
6	$6,16 \bmod 20$
7	$3,17 \bmod 20$
8	$14,16 \bmod 20$
9	$9,19 \bmod 20$

Table 1: All integers $x \geq 1$ such that $a^{x} \equiv x(\bmod 10)$

In general $a^{1-p} \equiv 1-p(\bmod p)$ whenever $p \nmid a$, and so $a^{x} \equiv x(\bmod p)$ for all integers x satisfying $x \equiv 1-p \equiv(p-1)^{2}(\bmod p(p-1))$.

Theorem 4 can be improved in the spirit of Corollary 2:
Corollary 5 Given integers a and b, let $L^{\prime}(b, a):=\operatorname{LCM}\left[b ; \operatorname{ord}_{p}(a): p \mid b, p \nmid a\right]$. The positive integers x such that $a^{x} \equiv x(\bmod b)$ are those integers that belong to exactly $L^{\prime}(b, a) / b$ residue classes mod $L^{\prime}(b, a)$. That is, $1 / b$ of the positive integers satisfy this congruence.

Let $v_{p}(r)$ denote the largest power of p dividing r, so that $v_{p}($.$) is the usual p$-adic valuation. Theorem 4 yields the following result about lifting solutions:

Corollary 6 Let $b=\prod_{p} p^{b_{p}}$ and then m be the smallest integer $\geq v_{p}(q-1) / b_{p}$ for all primes $p, q \mid b$ with $p, q \nmid a$. The solutions of $a^{x} \equiv x\left(\bmod b^{m}\right)$ lift, in a unique way, to the solutions of $a^{x} \equiv x\left(\bmod b^{n}\right)$, for all $n \geq m$.

Proof. Since $L\left(b^{n}, a\right):=\operatorname{LCM}\left[b^{n} ; p-1: p \mid b, p \nmid a\right]$ for all $n \geq 1$, we note that $L\left(b^{n}, a\right) / b^{n}=L\left(b^{m}, a\right) / b^{m}$ for all $n \geq m$. Hence, by Theorem 4, there are the same number of residue classes of solutions $\bmod b^{n}$ as $\bmod b^{m}$ so each must lift uniquely.

Using Corollary 5 in place of Theorem 4, one can let m be the smallest integer $\geq v_{p}\left(\operatorname{ord}_{q}(a)\right) / b_{p}$ for all primes $p, q \mid b$ with $p, q \nmid a$.

Proposition 11 (in Section 5) explicitly gives the lift of Corollary 6, in terms of a recurrence relation based on (1).

It is certainly aesthetically pleasing if, as in the solutions to $7^{x} \equiv x\left(\bmod 10^{n}\right)$ discussed at the start of the introduction, one can lift solutions $x \bmod b^{n}$ (rather than $x \bmod L\left(b^{n}, a\right)$ as in Corollary 3$)$ and thus obtain a b-adic limit. From Theorem 4 and Corollary 6 this holds if $L\left(b^{m}, a\right)=b^{m}$ (and, from Corollaries 5 and 6 , if $\left.L^{\prime}\left(b^{m}, a\right)=b^{m}\right)$. Moreover $L^{\prime}\left(b^{m}, a\right)=b^{m}$ if and only if all of the prime factors of $\operatorname{ord}_{q}(a)$ with $q \mid b, q \nmid a$, divide b. Note that if this happens then there is a unique solution $x \bmod b^{m}$ (by Theorem 4).

This condition becomes most stringent if we select a to be a primitive root modulo each prime dividing b, in which case it holds if and only if the prime q divides b whenever q divides $p-1$ for some p dividing b (or, alternatively, the prime q divides b whenever q divides $\phi(b)$). In that case $L\left(b^{m}, a\right)=b^{m}$ for all integers $a \geq 1$.

Jiménez-Urroz and Yebra [3] called such an integer b a valid basis. Note that b is a valid basis if and only if the squarefree part of b (that is, $\prod_{p \mid b} p$) is a valid basis. Hence 10 is a valid basis, and 10^{n} for all $n \geq 1$, as well as 2 and its powers. Also 6,42 and $2 F_{n}$ for any Fermat prime $F_{n}=2^{2^{n}}+1$, as well as $\prod_{p \leq y} p$, and so on. We also note that b is a valid basis if and only if every prime p dividing every non-zero iterate of Euler's totient function acting on b (that is, $\phi(\phi(\ldots \phi(b) \ldots))$) also divides b. We note what we have discussed as the next result:

Proposition 7 Let b be a squarefree, valid basis, and select m to be the largest exponent of any prime power dividing $\operatorname{LCM}[q-1: q \mid b]$. If $n \geq m$ then there is a unique solution $x_{n}\left(\bmod b^{n}\right)$ to $a^{x_{n}} \equiv x_{n}\left(\bmod b^{n}\right)$, and these solutions have a b-adic limit, i.e., $x_{\infty}:=\lim _{n \rightarrow \infty} x_{n}$, which satisfies $a^{x_{\infty}}=x_{\infty}$ in \mathbb{Z}_{b}.

To be a valid basis seems to be quite a special property, so one might ask how many there are. In Section 6 we obtain the following upper and lower bounds:

Theorem 8 Let $V(x)=\#\{b \leq x: b$ is a valid basis $\}$. We have

$$
\begin{equation*}
x^{19 / 27} \ll V(x) \ll \frac{x}{e^{\{1+o(1)\} \sqrt{\log x \log \log \log x}} .} . \tag{2}
\end{equation*}
$$

We certainly believe that $V(x)=x^{1+o(1)}$, and give a heuristic which suggests that

$$
V(x) \gg x^{1-\{1+o(1)\} \frac{\log \log \log x}{\log \log x}}
$$

It would be interesting to get a more precise estimate for $V(x)$. We guess that there exists $c \in\left[\frac{1}{2}, 1\right]$ such that $V(x)=x / \exp \left((\log x)^{c+o(1)}\right)$.

2. Finding All Solutions to $a^{x} \equiv x\left(\bmod p^{k}\right)$

Proof of Lemma 3 Note that $x_{k+1}=a^{x_{k}}+p\left(x_{k}-a^{x_{k}}\right) \equiv a^{x_{k}}\left(\bmod p^{k+1}\right) \equiv x_{k}$ $\left(\bmod p^{k}\right)$, and $x_{k+1} \equiv x_{k}(\bmod p-1)$. Hence $x_{k+1} \equiv x_{k}\left(\bmod p^{k}(p-1)\right)$ by the Chinese Remainder Theorem, as desired.

Proof of Theorem 1. If $p \mid a$ then $x \equiv a^{x} \equiv 0\left(\bmod p^{\min \{k, x\}}\right)$. Evidently $k<x$ else $p^{x} \mid x$ so $p^{x} \leq x$ which is impossible. Therefore $x \equiv 0\left(\bmod p^{k}\right)$. But then $a^{x} \equiv 0 \equiv x\left(\bmod p^{k}\right)$.

The result follows immediately for $k=1$ by the definition of the $x_{1}(n)$. Suppose that we know the result for k. If $p \nmid a$ and $a^{x} \equiv x\left(\bmod p^{k+1}\right)$ then $a^{x} \equiv x\left(\bmod p^{k}\right)$ and so $x \equiv x_{k}(n)\left(\bmod p^{k}(p-1)\right)$ for some $0 \leq n \leq p-2$. Hence we can write $x=x_{k}+l p^{k}(p-1)$ so that $x \equiv x_{k}-l p^{k}\left(\bmod p^{k+1}\right)$ and

$$
a^{x}=a^{x_{k}}\left(a^{p^{k}(p-1)}\right)^{l} \equiv a^{x_{k}} 1^{l}=a^{x_{k}} \quad\left(\bmod p^{k+1}\right)
$$

Hence, $a^{x} \equiv x\left(\bmod p^{k+1}\right)$ if and only if $l \equiv\left(x_{k}-a^{x_{k}}\right) / p^{k}(\bmod p)$. Therefore l is uniquely determined $\bmod p$, and

$$
x \equiv x_{k}+(p-1)\left(x_{k}-a^{x_{k}}\right) \equiv x_{k+1}(n) \quad\left(\bmod p^{k+1}(p-1)\right)
$$

as claimed.
Proof of Corollary 2. This comes by taking $x_{k}^{\prime}(n, p) \equiv x_{k}(n, p)\left(\bmod p^{k} \operatorname{ord}_{p}(a)\right)$, which gives all solutions since $x_{k}(m, p) \equiv x_{k}(n, p)\left(\bmod p^{k} \operatorname{ord}_{p}(a)\right)$ whenever $m \equiv$ $n\left(\bmod \operatorname{ord}_{p}(a)\right)$ (as easily follows by induction).

3. Finding All Solutions to $a^{x} \equiv x(\bmod b)$

We proceed using the Chinese Remainder Theorem to break the modulus b up into prime power factors, and then Theorem 1 for the congruence modulo each such prime power factor. The key issue then is whether the congruences for x from Theorem 1, for each prime power, can hold simultaneously. We use the fact that if primes $p_{1}<p_{2}$ then

$$
x \equiv x_{1} \quad\left(\bmod p_{1}^{k_{1}}\left(p_{1}-1\right)\right) \text { and } x \equiv x_{2} \quad\left(\bmod p_{2}^{k_{2}}\left(p_{2}-1\right)\right)
$$

if and only if

$$
x_{2} \equiv x_{1} \quad\left(\bmod \left(p_{1}^{k_{1}}\left(p_{1}-1\right), p_{2}-1\right)\right)
$$

as $\left(p_{2}, p_{1}-1\right)=1$. The details are complicated at first sight:
Let $b=\prod_{p} p^{b_{p}}, r=\prod_{p \mid(a, b)} p^{b_{p}}$ and $R=b / r=\prod_{i=1}^{I} p_{i}^{k_{i}}$ with $p_{1}<p_{2}<\cdots<$ p_{I}. Define

$$
L:=\operatorname{LCM}[b ; p-1: p \mid b, p \nmid a]=\operatorname{LCM}\left[r ; p_{j}^{k_{j}}\left(p_{j}-1\right): 1 \leq j \leq I\right]
$$

We begin by noting that $a^{x} \equiv x(\bmod b)$ if and only if $a^{x} \equiv x\left(\bmod p^{b_{p}}\right)$ for all $p \mid b$, and hence $x \equiv 0(\bmod r)$. Next we construct the necessary conditions so that the congruences mod $p_{j}^{k_{j}}\left(p_{j}-1\right)$ can all hold simultaneously:
Step 1. Select any integer $n_{1}, 0 \leq n_{1} \leq p_{1}-2$ with $\left(r, p_{1}-1\right) \mid n_{1}$. Then determine $x_{k_{1}}\left(p_{1}, n_{1}\right)\left(\bmod p_{1}^{k_{1}}\left(p_{1}-1\right)\right)$.

Step 2. Select any integer $n_{2}, 0 \leq n_{2} \leq p_{2}-2$ with $\left(r, p_{2}-1\right) \mid n_{2}$ and $n_{2} \equiv$ $x_{k_{1}}\left(\bmod \left(p_{1}^{k_{1}}\left(p_{1}-1\right), p_{2}-1\right)\right)$. Then determine $x_{k_{2}}\left(p_{2}, n_{2}\right)\left(\bmod p_{2}^{k_{2}}\left(p_{2}-1\right)\right)$.

Step $m \geq 3$. Select any integer $n_{m}, 0 \leq n_{m} \leq p_{m}-2$ with $\left(r, p_{m}-1\right) \mid n_{m}$ and $n_{m} \equiv x_{k_{j}}\left(\bmod \left(p_{j}^{k_{j}}\left(p_{j}-1\right), p_{m}-1\right)\right)$ for each $j<m$. Then determine $x_{k_{m}}\left(p_{m}, n_{m}\right)$ $\left(\bmod p_{m}^{k_{m}}\left(p_{m}-1\right)\right)$.

Finally we can select $x(\bmod L)$, such that $x \equiv 0(\bmod r)$ and

$$
x \equiv x_{k_{j}}\left(p_{j}, n_{j}\right) \quad\left(\bmod p_{j}^{k_{j}}\left(p_{j}-1\right)\right)
$$

for each j. This works since if $i<j$ then

$$
\operatorname{gcd}\left(p_{i}^{k_{i}}\left(p_{i}-1\right), p_{j}^{k_{j}}\left(p_{j}-1\right)\right)=\operatorname{gcd}\left(p_{i}^{k_{i}}\left(p_{i}-1\right), p_{j}-1\right)
$$

and we have $x_{k_{j}}\left(p_{j}, n_{j}\right) \equiv n_{j} \equiv x_{k_{i}}\left(p_{i}, n_{i}\right)\left(\bmod \left(p_{i}^{k_{i}}\left(p_{i}-1\right), p_{j}-1\right)\right)$, by construction.

From this we can deduce the following.
Proof of Theorem 4. The number of choices for n_{1} above is

$$
\frac{p_{1}-1}{\left(r, p_{1}-1\right)}=\frac{\operatorname{LCM}\left[r, p_{1}-1\right]}{r}=\frac{L_{2} / p_{1}^{k_{1}}}{L_{1}}
$$

where $L_{m}:=\operatorname{LCM}\left[r ; p_{j}^{k_{j}}\left(p_{j}-1\right): 1 \leq j<m\right]$ for each $m \geq 1$. Similarly the number of choices for n_{m} above is

$$
\frac{p_{m}-1}{\left(L_{m}, p_{m}-1\right)}=\frac{\mathrm{LCM}\left[L_{m}, p_{m}-1\right]}{L_{m}}=\frac{L_{m+1} / p_{m}^{k_{m}}}{L_{m}}
$$

Hence, in total, the number of choices for the set $\left\{n_{1}, n_{2}, \ldots, n_{I}\right\}$, using our algorithm above, is

$$
\prod_{m=1}^{I} \frac{L_{m+1} / p_{m}^{k_{m}}}{L_{m}}=\frac{L_{I+1} / R}{L_{1}}=\frac{L}{r R}=\frac{L}{b}
$$

as $L:=\operatorname{LCM}\left[b ; p_{j}-1: 1 \leq j \leq I\right]$.

4. The Spanish Construction

In the Introduction we described how the Spanish mathematicians Jiménez-Urroz and Yebra [3] constructed solutions to $a^{x} \equiv x(\bmod b)$: From a solution y to $a^{y} \equiv y$ $(\bmod \phi(b))$ one takes $x=a^{y}$ and then $a^{x} \equiv x(\bmod b)$ by Euler's theorem. As I have described it, this argument is not quite correct since Euler's theorem is only valid if $(a, b)=1$. However this can be taken into account:

Lemma 9 If $a^{y} \equiv y(\bmod \phi(b))$ with $y \geq 1$ then $a^{x} \equiv x(\bmod b)$ where $x=a^{y}$.
Proof. Since $a^{x} \equiv x(\bmod b)$ if and only if $a^{x} \equiv x\left(\bmod p^{k}\right)$ for every prime power $p^{k} \| b$, we focus on the prime power congruences. Now $\phi\left(p^{k}\right) \mid \phi(b)$ and so $a^{y} \equiv y$ $\left(\bmod \phi\left(p^{k}\right)\right)$. If $p \nmid a$ then we deduce that $a^{x} \equiv x\left(\bmod p^{k}\right)$ by Euler's theorem. If $p \mid a$ then $p^{k-1} \mid y$ by Theorem 1 , since $a^{y} \equiv y\left(\bmod p^{k-1}\right)$. Hence $p^{p^{k-1}} \mid a^{y}=x$ and a^{x}, so that $a^{x} \equiv 0 \equiv x\left(\bmod p^{k}\right)$ as $p^{k-1} \geq k$.

Let $\lambda(b):=\operatorname{LCM}\left[\phi\left(p^{k}\right): p^{k} \mid b\right]$. One can improve Lemma 2 to "If $a^{y} \equiv y$ $(\bmod \lambda(b))$ with $y \geq 1$ then $a^{x} \equiv x(\bmod b)$ where $x=a^{y}, "$ by much the same proof. Let

$$
\mathcal{O}(b, a):=\operatorname{LCM}\left[p^{k-1} \operatorname{ord}_{p}(a): p^{k} \mid b, p \nmid a\right]
$$

and

$$
k(b, a):=\max \left[k: \text { There exists prime } p \text { such that } p^{k}|b, p| a\right]
$$

Lemma 9' If $a^{y} \equiv y(\bmod \mathcal{O}(b, a))$ with $y \geq k(b, a)$ then $a^{x} \equiv x(\bmod b)$ where $x=a^{y}$.

Does the Spanish construction give all solutions to $a^{x} \equiv x(\bmod b)$? An example shows not: For $b=11$ and $a=23$ we begin with the solutions to $23^{y} \equiv y(\bmod 10)$: Then $y \equiv \pm 7(\bmod 20)$ (as we saw in the table in the introduction), leading to the solutions $x \equiv 23$ or $67(\bmod 110)$. However $23^{x} \equiv x(\bmod 11)$ holds if and only if $x \equiv 1(\bmod 11)$; so there are many other solutions x.

There is a variation on the Spanish construction: If $(a+k b)^{y} \equiv y(\bmod \phi(b))$ for some given integer k, then

$$
a^{(a+k b)^{y}} \equiv(a+k b)^{(a+k b)^{y}} \equiv(a+k b)^{y} \quad(\bmod b)
$$

so we can take $x \equiv(a+k b)^{y}(\bmod L)$. For $b=11$ and $a=23$ we look for solutions to $(23+11 k)^{y} \equiv y(\bmod 10)$ and then take $x=(23+11 k)^{y}(\bmod 110)$. Using the table in the introduction we obtain the solutions 23,$67 ; 56 ; 45 ; 56 ; 23,67 ; 34,56 ; 89 ; 1 ; 100$; $34,56(\bmod 110)$ for $k=0,1, \ldots, 9$, respectively, missing 12 and $78(\bmod 110)$.

Another variation on the Spanish construction is to use Lemma 9' in place of Lemma 9, and with this we could have trivially found all solutions to $23^{x} \equiv x$ $(\bmod 11)$. If we now take the example $b=11$ and $a=6$ then $\mathcal{O}(11,6)=10=\phi(11)$ so Lemma 2' and Lemma 2 are identical. In this case we proceed as above, using Table 1 we obtain the solutions $16 ; 73,107 ; 16,64 ; 79 ; 100 ; 61 ; 16,64 ; 73,107 ; 16 ; 65$ $(\bmod 110)$ missing 48 and $102(\bmod 110)$.

Note that 12 and 78 , and 48 and 102 are all even and quadratic non-residues $\bmod 5$. It can be proved that this is true in general (though we suppress the proof):

Proposition 10 Suppose that $b=p=1+2 q$ where p and q are odd primes, and that a is a primitive root mod p. The Spanish construction and our variations fail to find the solution $x \equiv n(\bmod p-1)$ to $a^{x} \equiv x(\bmod p)$ if and only if n is even and $(n / q)=-1$.

5. b-adic Solutions, b Squarefree

Let $\lambda:=\operatorname{LCM}[p-1: p \mid b, p \nmid a]$ and $\lambda^{\prime}=\prod_{q^{e} \| \lambda, q \nmid b} q^{e}$ so that $L\left(b^{k}\right)=\operatorname{LCM}\left[b^{k}, \lambda\right]$. This equals $\lambda^{\prime} b^{k}$ for $k \geq m$. Let $X_{k}=\left\{x\left(\bmod L\left(b^{k}\right)\right): a^{x} \equiv x\left(\bmod b^{k}\right)\right\}$.

Proposition 11 Let $\nu \equiv 1 / b\left(\bmod \lambda^{\prime}\right)\left(a n d \nu=1\right.$ if $\left.\lambda^{\prime}=1\right)$. If $k \geq m$ then X_{k+1} is the set of values $\left(\bmod L\left(b^{k+1}\right)\right)$ given by

$$
\begin{equation*}
x_{k+1} \equiv a^{x_{k}}+b \nu\left(x_{k}-a^{x_{k}}\right) \quad\left(\bmod L\left(b^{k+1}\right)\right) \tag{3}
\end{equation*}
$$

for each $x_{k} \in X_{k}$.
Proof. We will lift a solution $\left(\bmod b^{k}\right)$ to a solution $\left(\bmod b^{k+1}\right)$ by doing so for each prime p dividing m (and combining the results using the Chinese Remainder Theorem). The recurrence relation (1) gives

$$
x_{k+1} \equiv p\left(x_{k}-a^{x_{k}}\right)+a^{x_{k}} \equiv a^{x_{k}} \quad\left(\bmod p^{k+1}\right)
$$

(and this is also true if $p \mid a$ since then both sides are $\equiv 0$) for each $p \mid b$, and so combining them, by the Chinese Remainder Theorem, gives

$$
x_{k+1} \equiv a^{x_{k}} \quad\left(\bmod b^{k+1}\right)
$$

The recurrence relation (1) also gives $x_{k+1} \equiv x_{k}(\bmod p-1)$ if $p \mid b, p \nmid a$, and so $x_{k+1} \equiv x_{k}(\bmod \lambda)$. Therefore, if $k \geq m$ then $x_{k+1} \equiv a^{x_{k}}\left(\bmod b^{k+1}\right)$ and $x_{k+1} \equiv x_{k}\left(\bmod \lambda^{\prime}\right)$. One can verify that combining these two by the Chinese Remainder Theorem gives (3) since $L\left(b^{k+1}\right)=\lambda^{\prime} b^{k+1}$.

6. Counting Validity

In this section we use estimates on

$$
\Pi(x, y):=\#\{\text { primes } q \leq x: p \mid q-1 \Longrightarrow p \leq y\}
$$

and

$$
\Phi_{1}(x, y):=\#\{n \leq x: p \mid \phi(n) \Longrightarrow p \leq y\} .
$$

These have been long investigated, and it is believed that for $x=y^{u}$ with u fixed, we have

$$
\begin{equation*}
\Pi(x, y)=\pi(x) / u^{\{1+o(1)\} u} \tag{4}
\end{equation*}
$$

and

$$
\Phi_{1}(x, y)=x /(\log u)^{\{1+o(1)\} u}
$$

These are proved under reasonable assumptions by Lamzouri [4, Theorems 1.3 and 1.4].

6.1. Upper Bound on $V(x)$

Banks, Friedlander, Pomerance and Shparlinski [2] showed that

$$
\Phi_{1}(x, y) \leq x /(\log u)^{\{1+o(1)\} u}
$$

provided $x \geq y \geq(\log \log x)^{1+o(1)}$ and $u \rightarrow \infty$.
Now suppose that $n \in V(x)$ and there exists prime $p>y$ which divides $\phi(n)$. Then either p^{2} divides n, or there exists $q \equiv 1(\bmod p)$ such that $p q$ divides n. Hence

$$
\begin{aligned}
V(x) & \leq \Phi_{1}(x, y)+\sum_{p>y} \frac{x}{p^{2}}+\sum_{p>y} \sum_{\substack{q \equiv 1(\bmod p) \\
p q \leq x}} \frac{x}{p q} \\
& \leq \frac{x}{(\log u)^{\{1+o(1)\} u}}+\sum_{p>y} \frac{x}{p^{2}}\left(1+\sum_{1 \leq m \leq x / p^{2}} \frac{1}{m}\right) \ll \frac{x}{y^{1+o(1)}}
\end{aligned}
$$

when $y=\exp (\sqrt{\log x \log \log \log x})$, writing $q=1+m p$ and using the prime number theorem. This implies the upper bound in (2).

6.2. Lower Bound on $V(x)$

Fix $\epsilon>0$. Let $z=(\log x)^{1-\epsilon}$ and $m=\prod_{p \leq z} p$. Select some $T, z \leq T \leq x / m$, and take $u=[\log (x / m) / \log T]$. Any integer which is m times the product of u primes counted by $\Pi(T, z)$ belongs to $V(x)$, so that

$$
\begin{equation*}
V(x) \geq\binom{\Pi(T, z)+u-1}{u} \geq \frac{\Pi(T, z)^{u}}{u!} \gg\left(\frac{e \Pi(T, z)}{u}\right)^{u} \tag{5}
\end{equation*}
$$

Now suppose that $\Pi(T, z) \geq T^{1-o(1)}$ for $T=z^{B}$. Then $u \sim \log x / \log T=$ $T^{1 / B+O(\epsilon)}$ so (5) becomes $V(x) \geq x^{1-1 / B+O(\epsilon)-o(1)}$. Letting $\epsilon \rightarrow 0$, we obtain $V(x) \geq x^{1-1 / B-o(1)}$. Baker and Harman [1] show that one can take $B=3.3772$ implying the lower bound in (2). It is believed that one can take B arbitrarily large in which case one would have $V(x) \geq x^{1-o(1)}$, and hence $V(x)=x^{1-o(1)}$ (using the lower bound from the previous subsection).

Suppose that (4) holds for $y=\exp (\sqrt{\log x})$ for all sufficiently large x. Let $T=z^{\log z}$ so that $\Pi(T, z)=T /(\log z)^{\{1+o(1)\} \log z}$ by (4), and thus $e \Pi(T, z) / u=$ $T /(\log z)^{\{1+o(1)\} \log z}$. Hence (5) implies that

$$
V(x) \geq \frac{x}{(\log z)^{\{1+o(1)\} \frac{\log x}{\log z}}}=x^{1-\{1+o(1)\} \frac{\log \log z}{\log z}}=x^{1-\{1+o(1)\} \frac{\log \log \log x}{\log \log x}}
$$

letting $\epsilon \rightarrow 0$, as claimed at the end of the Introduction.
Acknowledgements Thanks are due to Professor Jorge Jiménez-Urroz for introducing me to this problem, to Professor Granville for his encouragement and for outlining the proof of (2), and to the referee for his or her helpful remarks.

References

[1] R. C. Baker and G. Harman, Shifted primes without large prime factors, Acta Arith 83 (1998), 331-361.
[2] William D. Banks, John B. Friedlander, Carl Pomerance, and Igor Shparlinski, Multiplicative structure of values of the Euler function, in: High primes and misdemeanours, pp. 29-47, Fields Inst. Comm 41, American Math. Society, 2004.
[3] Jorge Jiménez-Urroz and J. Luis A. Yebra,On the equation $a^{x} \equiv x\left(\bmod b^{n}\right)$, to appear in Integers.
[4] Youness Lamzouri,Smooth values of the iterates of the Euler phi-function, Canad. J. Math 59 (2007), 127-147.
[5] Carl Pomerance and Igor Shparlinski, Smooth orders and cryptographic applications, in: Algorithmic number theory, pp. 338-348, Lecture Notes in Comp. Sci 2369, 2002.

