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Abstract
Recently Jiménez-Urroz and Yebra constructed, for any given a and b, solutions

x to the title equation. Moreover they showed how these can be lifted to higher
powers of b to obtain a b-adic solution for certain integers b. In this paper we find
all positive integer solutions x to the title equation, proving that, for given a and
b, there are X/b + Ob(1) solutions x ≤ X. We also show how solutions may be
lifted in more generality. Moreover we show that the construction of Jiménez-Urroz
and Yebra (and obvious modifications) cannot always find all solutions to ax ≡ x
(mod b).

1. Introduction

Jiménez-Urroz and Yebra [3] begin with: “The fact that 7343 ends in 343 could just
be a curiosity. However, when this can be uniquely extended to

77659630680637333853643331265511565172343

= . . . 7659630680637333853643331265511565172343,

and more, it begins to be interesting.” They go on to show that one can construct
such an x satisfying ax ≡ x (mod 10n) for any a ≥ 1 with (a, 10) = 1 and any
n ≥ 1.

To find solutions to ax ≡ x (mod b) Jiménez-Urroz and Yebra proceed as follows:
From a solution, y, to ay ≡ y (mod φ(b)) one takes x = ay and then ax ≡ x (mod b)
by Euler’s theorem. Since φ(b) < b for all b ≥ 2, one can recursively construct
solutions, simply and elegantly. The only drawback here is that the method does
not give all solutions. In this paper we proceed in a more pedestrian manner (via
the Chinese Remainder Theorem) to find all solutions, beginning with all solutions
modulo a prime power:

For any prime p and each n, 0 ≤ n ≤ p − 2, define a sequence {xk(p, n)}k≥0 of
residues (mod pk(p− 1)), by x0 = n and then

xk+1 ≡ pxk − (p− 1)axk (mod pk+1(p− 1)) (1)

for each k ≥ 0 (where xk = xk(p, n) for simplicity of notation).
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Theorem 1Suppose that prime p and integers a and k ≥ 1 are given. If p|a and x

is a positive integer then

ax ≡ x (mod pk) if and only if x ≡ 0 (mod pk).

If (p, a) = 1 and x is an integer then

ax ≡ x (mod pk) if and only if x ≡ xk(p, n) (mod pk(p−1)) for some 0 ≤ n ≤ p−2.

Remark. If p = 2 and a is odd then we have the simpler definition x0 = 0 and
then xk+1 ≡ axk (mod 2k+1) for each k ≥ 0, as 2(xk − axk) ≡ 0 (mod 2k+1).

Actually one can “simplify” Theorem 1 a little bit:

Corollary 2 Suppose that prime p and integer a are given. If p|a, k ≥ 1 and x is
a positive integer then

ax ≡ x (mod pk) if and only if x ≡ 0 (mod pk).

If (p, a) = 1 then define, for n, 0 ≤ n ≤ ordp(a) − 1, a sequence {x′k(p, n)}k≥0 of
residues (mod pkordp(a)) with x′0 = n and then

x′k+1 ≡ px′k − (p− 1)ax′k (mod pk+1ordp(a))

for each k ≥ 0. If k ≥ 1 and x is an integer then

ax ≡ x (mod pk) if and only if x ≡ x′k(p, n) (mod pkordp(a)) for some 0 ≤ n ≤ ordp(a)−1.

To construct p-adic solutions we need the following result:

Lemma 3 Suppose that prime p and integers n and a are given. Then

xk+1(p, n) ≡ xk(p, n) (mod pk(p− 1))

for each k ≥ 0.
Hence,

x∞(p, n) := lim
k→∞

xk(p, n)

exists in Zp × Z/(p− 1)Z (where Zp := lim
←−

Z/pkZ are the p-adic numbers) and

ax∞ = x∞ in Zp × Z/(p− 1)Z.

Note that there are p− 1 distinct solutions if (a, p) = 1.
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Theorem 4 Given integers a and b, let

L(b, a) := LCM[b; p− 1 : p|b, p ! a].

The positive integers x such that ax ≡ x (mod b) are those integers that belong to
exactly L(b, a)/b residue classes mod L(b, a). That is, 1/b of the integers satisfy this
congruence.

(Here and later the notation LCM[b; p − 1 : p|b, p ! a] means the least common
multiple of b with all the p− 1 for primes p dividing b that do not divide a.)

Note that L(b, a) divides LCM[b,φ(b)] for all a.

Example. If b = 10 and 5 ! a then L(10, a) = LCM[10, 4, 1] = 20 so exactly 2 out
of the 20 residue classes mod 20 satisfy each given congruence. If b = 10 and 5|a
then L(10, a) = LCM[10, 1] = 10 so exactly 1 out of the 10 residue classes mod 10
satisfies each given congruence.

a x

0 10 mod 10
1 1, 11 mod 20
2 14, 16 mod 20
3 7, 13 mod 20
4 6, 16 mod 20
5 5 mod 10
6 6, 16 mod 20
7 3, 17 mod 20
8 14, 16 mod 20
9 9, 19 mod 20

Table 1: All integers x ≥ 1 such that ax ≡ x (mod 10)

In general a1−p ≡ 1 − p (mod p) whenever p ! a, and so ax ≡ x (mod p) for all
integers x satisfying x ≡ 1− p ≡ (p− 1)2 (mod p(p− 1)).

Theorem 4 can be improved in the spirit of Corollary 2:

Corollary 5 Given integers a and b, let L′(b, a) := LCM[b; ordp(a) : p|b, p ! a].
The positive integers x such that ax ≡ x (mod b) are those integers that belong to
exactly L′(b, a)/b residue classes mod L′(b, a). That is, 1/b of the positive integers
satisfy this congruence.

Let vp(r) denote the largest power of p dividing r, so that vp(.) is the usual p-adic
valuation. Theorem 4 yields the following result about lifting solutions:
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Corollary 6 Let b =
∏

p pbp and then m be the smallest integer ≥ vp(q − 1)/bp for
all primes p, q|b with p, q ! a. The solutions of ax ≡ x (mod bm) lift, in a unique
way, to the solutions of ax ≡ x (mod bn), for all n ≥ m.

Proof. Since L(bn, a) := LCM[bn; p − 1 : p|b, p ! a] for all n ≥ 1, we note that
L(bn, a)/bn = L(bm, a)/bm for all n ≥ m. Hence, by Theorem 4, there are the same
number of residue classes of solutions mod bn as mod bm so each must lift uniquely.

Using Corollary 5 in place of Theorem 4, one can let m be the smallest integer
≥ vp(ordq(a))/bp for all primes p, q|b with p, q ! a. !

Proposition 11 (in Section 5) explicitly gives the lift of Corollary 6, in terms of
a recurrence relation based on (1).

It is certainly aesthetically pleasing if, as in the solutions to 7x ≡ x (mod 10n)
discussed at the start of the introduction, one can lift solutions x mod bn (rather
than x mod L(bn, a) as in Corollary 3) and thus obtain a b-adic limit. From Theorem
4 and Corollary 6 this holds if L(bm, a) = bm (and, from Corollaries 5 and 6, if
L′(bm, a) = bm). Moreover L′(bm, a) = bm if and only if all of the prime factors of
ordq(a) with q|b, q ! a, divide b. Note that if this happens then there is a unique
solution x mod bm (by Theorem 4).

This condition becomes most stringent if we select a to be a primitive root modulo
each prime dividing b, in which case it holds if and only if the prime q divides b

whenever q divides p−1 for some p dividing b (or, alternatively, the prime q divides
b whenever q divides φ(b)). In that case L(bm, a) = bm for all integers a ≥ 1.

Jiménez-Urroz and Yebra [3] called such an integer b a valid basis. Note that
b is a valid basis if and only if the squarefree part of b (that is,

∏
p|b p) is a valid

basis. Hence 10 is a valid basis, and 10n for all n ≥ 1, as well as 2 and its powers.
Also 6, 42 and 2Fn for any Fermat prime Fn = 22n

+ 1, as well as
∏

p≤y p, and so
on. We also note that b is a valid basis if and only if every prime p dividing every
non-zero iterate of Euler’s totient function acting on b (that is, φ(φ(. . .φ(b) . . .)))
also divides b. We note what we have discussed as the next result:

Proposition 7 Let b be a squarefree, valid basis, and select m to be the largest
exponent of any prime power dividing LCM[q − 1 : q|b]. If n ≥ m then there is
a unique solution xn (mod bn) to axn ≡ xn (mod bn), and these solutions have a
b-adic limit, i.e., x∞ := limn→∞ xn, which satisfies ax∞ = x∞ in Zb.

To be a valid basis seems to be quite a special property, so one might ask how
many there are. In Section 6 we obtain the following upper and lower bounds:

Theorem 8 Let V (x) = #{b ≤ x : b is a valid basis}. We have

x19/27 & V (x)& x

e{1+o(1)}
√

log x log log log x
. (2)



INTEGERS: 9 (2009) 633

We certainly believe that V (x) = x1+o(1), and give a heuristic which suggests
that

V (x)' x1−{1+o(1)} log log log x
log log x .

It would be interesting to get a more precise estimate for V (x). We guess that there
exists c ∈ [12 , 1] such that V (x) = x/ exp((log x)c+o(1)).

2. Finding All Solutions to ax ≡ x (mod pk)

Proof of Lemma 3 Note that xk+1 = axk + p(xk − axk) ≡ axk (mod pk+1) ≡ xk

(mod pk), and xk+1 ≡ xk (mod p − 1). Hence xk+1 ≡ xk (mod pk(p − 1)) by the
Chinese Remainder Theorem, as desired. !

Proof of Theorem 1. If p|a then x ≡ ax ≡ 0 (mod pmin{k,x}). Evidently k < x

else px|x so px ≤ x which is impossible. Therefore x ≡ 0 (mod pk). But then
ax ≡ 0 ≡ x (mod pk).

The result follows immediately for k = 1 by the definition of the x1(n). Suppose
that we know the result for k. If p ! a and ax ≡ x (mod pk+1) then ax ≡ x (mod pk)
and so x ≡ xk(n) (mod pk(p − 1)) for some 0 ≤ n ≤ p − 2. Hence we can write
x = xk + lpk(p− 1) so that x ≡ xk − lpk (mod pk+1) and

ax = axk(apk(p−1))
l
≡ axk1l = axk (mod pk+1).

Hence, ax ≡ x (mod pk+1) if and only if l ≡ (xk − axk)/pk (mod p). Therefore l is
uniquely determined mod p, and

x ≡ xk + (p− 1)(xk − axk) ≡ xk+1(n) (mod pk+1(p− 1))

as claimed. !

Proof of Corollary 2. This comes by taking x′k(n, p) ≡ xk(n, p) (mod pkordp(a)),
which gives all solutions since xk(m,p) ≡ xk(n, p) (mod pkordp(a)) whenever m ≡
n (mod ordp(a)) (as easily follows by induction). !

3. Finding All Solutions to ax ≡ x (mod b)

We proceed using the Chinese Remainder Theorem to break the modulus b up into
prime power factors, and then Theorem 1 for the congruence modulo each such
prime power factor. The key issue then is whether the congruences for x from
Theorem 1, for each prime power, can hold simultaneously. We use the fact that if
primes p1 < p2 then

x ≡ x1 (mod pk1
1 (p1 − 1)) and x ≡ x2 (mod pk2

2 (p2 − 1))
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if and only if
x2 ≡ x1 (mod (pk1

1 (p1 − 1), p2 − 1))

as (p2, p1 − 1) = 1. The details are complicated at first sight:
Let b =

∏
p pbp , r =

∏
p|(a,b) pbp and R = b/r =

∏I
i=1 pki

i with p1 < p2 < · · · <

pI . Define

L := LCM[b; p− 1 : p|b, p ! a] = LCM[r; p
kj

j (pj − 1) : 1 ≤ j ≤ I]

We begin by noting that ax ≡ x (mod b) if and only if ax ≡ x (mod pbp) for all
p|b, and hence x ≡ 0 (mod r). Next we construct the necessary conditions so that
the congruences mod p

kj

j (pj − 1) can all hold simultaneously:

Step 1. Select any integer n1, 0 ≤ n1 ≤ p1−2 with (r, p1−1)|n1. Then determine
xk1(p1, n1) (mod pk1

1 (p1 − 1)).

Step 2. Select any integer n2, 0 ≤ n2 ≤ p2 − 2 with (r, p2 − 1)|n2 and n2 ≡
xk1 (mod (pk1

1 (p1 − 1), p2 − 1)). Then determine xk2(p2, n2) (mod pk2
2 (p2 − 1)).

...

Step m ≥ 3. Select any integer nm, 0 ≤ nm ≤ pm − 2 with (r, pm − 1)|nm and
nm ≡ xkj (mod (pkj

j (pj−1), pm−1)) for each j < m. Then determine xkm(pm, nm)
(mod pkm

m (pm − 1)).

Finally we can select x (mod L), such that x ≡ 0 (mod r) and

x ≡ xkj (pj , nj) (mod p
kj

j (pj − 1))

for each j. This works since if i < j then

gcd(pki
i (pi − 1), pkj

j (pj − 1)) = gcd(pki
i (pi − 1), pj − 1)

and we have xkj (pj , nj) ≡ nj ≡ xki(pi, ni) (mod (pki
i (pi − 1), pj − 1)), by construc-

tion.

From this we can deduce the following.

Proof of Theorem 4. The number of choices for n1 above is

p1 − 1
(r, p1 − 1)

=
LCM[r, p1 − 1]

r
=

L2/pk1
1

L1

where Lm := LCM[r; p
kj

j (pj − 1) : 1 ≤ j < m] for each m ≥ 1. Similarly the
number of choices for nm above is

pm − 1
(Lm, pm − 1)

=
LCM[Lm, pm − 1]

Lm
=

Lm+1/pkm
m

Lm
.
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Hence, in total, the number of choices for the set {n1, n2, . . . , nI}, using our algo-
rithm above, is

I∏

m=1

Lm+1/pkm
m

Lm
=

LI+1/R

L1
=

L

rR
=

L

b
,

as L := LCM[b; pj − 1 : 1 ≤ j ≤ I]. !

4. The Spanish Construction

In the Introduction we described how the Spanish mathematicians Jiménez-Urroz
and Yebra [3] constructed solutions to ax ≡ x (mod b): From a solution y to ay ≡ y

(mod φ(b)) one takes x = ay and then ax ≡ x (mod b) by Euler’s theorem. As I
have described it, this argument is not quite correct since Euler’s theorem is only
valid if (a, b) = 1. However this can be taken into account:

Lemma 9 If ay ≡ y (mod φ(b)) with y ≥ 1 then ax ≡ x (mod b) where x = ay.

Proof. Since ax ≡ x (mod b) if and only if ax ≡ x (mod pk) for every prime power
pk‖b, we focus on the prime power congruences. Now φ(pk)|φ(b) and so ay ≡ y

(mod φ(pk)). If p ! a then we deduce that ax ≡ x (mod pk) by Euler’s theorem. If
p|a then pk−1|y by Theorem 1, since ay ≡ y (mod pk−1). Hence ppk−1 | ay = x and
ax, so that ax ≡ 0 ≡ x (mod pk) as pk−1 ≥ k. !

Let λ(b) := LCM[φ(pk) : pk|b]. One can improve Lemma 2 to “If ay ≡ y

(mod λ(b)) with y ≥ 1 then ax ≡ x (mod b) where x = ay,” by much the same
proof. Let

O(b, a) := LCM[pk−1ordp(a) : pk|b, p ! a]

and
k(b, a) := max[k : There exists prime p such that pk|b, p|a].

Lemma 9’ If ay ≡ y (mod O(b, a)) with y ≥ k(b, a) then ax ≡ x (mod b) where
x = ay.

Does the Spanish construction give all solutions to ax ≡ x (mod b)? An example
shows not: For b = 11 and a = 23 we begin with the solutions to 23y ≡ y (mod 10):
Then y ≡ ±7 (mod 20) (as we saw in the table in the introduction), leading to the
solutions x ≡ 23 or 67 (mod 110). However 23x ≡ x (mod 11) holds if and only if
x ≡ 1 (mod 11); so there are many other solutions x.

There is a variation on the Spanish construction: If (a+kb)y ≡ y (mod φ(b)) for
some given integer k, then

a(a+kb)y

≡ (a + kb)(a+kb)y

≡ (a + kb)y (mod b)
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so we can take x ≡ (a+kb)y (mod L). For b = 11 and a = 23 we look for solutions to
(23+11k)y ≡ y (mod 10) and then take x = (23+11k)y (mod 110). Using the table
in the introduction we obtain the solutions 23, 67; 56; 45; 56; 23, 67; 34, 56; 89; 1; 100;
34, 56 (mod 110) for k = 0, 1, . . . , 9, respectively, missing 12 and 78 (mod 110).

Another variation on the Spanish construction is to use Lemma 9’ in place of
Lemma 9, and with this we could have trivially found all solutions to 23x ≡ x

(mod 11). If we now take the example b = 11 and a = 6 then O(11, 6) = 10 = φ(11)
so Lemma 2’ and Lemma 2 are identical. In this case we proceed as above, using
Table 1 we obtain the solutions 16; 73, 107; 16, 64; 79; 100; 61; 16, 64; 73, 107; 16; 65
(mod 110) missing 48 and 102 (mod 110).

Note that 12 and 78, and 48 and 102 are all even and quadratic non-residues
mod 5. It can be proved that this is true in general (though we suppress the proof):

Proposition 10 Suppose that b = p = 1 + 2q where p and q are odd primes, and
that a is a primitive root mod p. The Spanish construction and our variations fail
to find the solution x ≡ n (mod p − 1) to ax ≡ x (mod p) if and only if n is even
and (n/q) = −1.

5. b-adic Solutions, b Squarefree

Let λ := LCM[p− 1 : p|b, p ! a] and λ′ =
∏

qe‖λ, q!b qe so that L(bk) = LCM[bk,λ].
This equals λ′bk for k ≥ m. Let Xk = {x (mod L(bk)) : ax ≡ x (mod bk)}.

Proposition 11 Let ν ≡ 1/b (mod λ′) (and ν = 1 if λ′ = 1). If k ≥ m then Xk+1

is the set of values (mod L(bk+1)) given by

xk+1 ≡ axk + bν(xk − axk) (mod L(bk+1)), (3)

for each xk ∈ Xk.

Proof. We will lift a solution (mod bk) to a solution (mod bk+1) by doing so for
each prime p dividing m (and combining the results using the Chinese Remainder
Theorem). The recurrence relation (1) gives

xk+1 ≡ p(xk − axk) + axk ≡ axk (mod pk+1)

(and this is also true if p|a since then both sides are ≡ 0) for each p|b, and so
combining them, by the Chinese Remainder Theorem, gives

xk+1 ≡ axk (mod bk+1).

The recurrence relation (1) also gives xk+1 ≡ xk (mod p − 1) if p|b, p ! a, and
so xk+1 ≡ xk (mod λ). Therefore, if k ≥ m then xk+1 ≡ axk (mod bk+1) and
xk+1 ≡ xk (mod λ′). One can verify that combining these two by the Chinese
Remainder Theorem gives (3) since L(bk+1) = λ′bk+1. !
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6. Counting Validity

In this section we use estimates on

Π(x, y) := #{primes q ≤ x : p|q − 1 =⇒ p ≤ y}

and
Φ1(x, y) := #{n ≤ x : p|φ(n) =⇒ p ≤ y}.

These have been long investigated, and it is believed that for x = yu with u fixed,
we have

Π(x, y) = π(x)/u{1+o(1)}u (4)

and
Φ1(x, y) = x/(log u){1+o(1)}u.

These are proved under reasonable assumptions by Lamzouri [4, Theorems 1.3 and
1.4].

6.1. Upper Bound on V (x)

Banks, Friedlander, Pomerance and Shparlinski [2] showed that

Φ1(x, y) ≤ x/(log u){1+o(1)}u

provided x ≥ y ≥ (log log x)1+o(1) and u→∞.
Now suppose that n ∈ V (x) and there exists prime p > y which divides φ(n).

Then either p2 divides n, or there exists q ≡ 1 (mod p) such that pq divides n.
Hence

V (x) ≤ Φ1(x, y) +
∑

p>y

x

p2
+

∑

p>y

∑

q≡1(mod p)
pq≤x

x

pq

≤ x

(log u){1+o(1)}u
+

∑

p>y

x

p2



1 +
∑

1≤m≤x/p2

1
m



& x

y1+o(1)

when y = exp(
√

log x log log log x), writing q = 1+mp and using the prime number
theorem. This implies the upper bound in (2).

6.2. Lower Bound on V (x)

Fix ε > 0. Let z = (log x)1−ε and m =
∏

p≤z p. Select some T, z ≤ T ≤ x/m, and
take u = [log(x/m)/ log T ]. Any integer which is m times the product of u primes
counted by Π(T, z) belongs to V (x), so that

V (x) ≥
(

Π(T, z) + u− 1
u

)
≥ Π(T, z)u

u!
'

(
eΠ(T, z)

u

)u

. (5)
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Now suppose that Π(T, z) ≥ T 1−o(1) for T = zB. Then u ∼ log x/ log T =
T 1/B+O(ε) so (5) becomes V (x) ≥ x1−1/B+O(ε)−o(1). Letting ε → 0, we obtain
V (x) ≥ x1−1/B−o(1). Baker and Harman [1] show that one can take B = 3.3772
implying the lower bound in (2). It is believed that one can take B arbitrarily large
in which case one would have V (x) ≥ x1−o(1), and hence V (x) = x1−o(1) (using the
lower bound from the previous subsection).

Suppose that (4) holds for y = exp(
√

log x) for all sufficiently large x. Let
T = zlog z so that Π(T, z) = T/(log z){1+o(1)} log z by (4), and thus eΠ(T, z)/u =
T/(log z){1+o(1)} log z. Hence (5) implies that

V (x) ≥ x

(log z){1+o(1)} log x
log z

= x1−{1+o(1)} log log z
log z = x1−{1+o(1)} log log log x

log log x

letting ε→ 0, as claimed at the end of the Introduction.
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