BALANCED SUBSET SUMS IN DENSE SETS OF INTEGERS

Gyula Károlyi ${ }^{1}$
Institute of Mathematics, Eötvös University, Pázmány P. sétány 1/C, Budapest, H-1117, Hungary
karolyi@cs.elte.hu

Received: 10/31/07, Revised: 6/10/09, Accepted: 7/7/09, Published: 11/27/09

Abstract

Let $1 \leq a_{1}<a_{2}<\cdots<a_{n} \leq 2 n-2$ denote integers. Assuming that n is large enough, we prove that there exist $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{-1,+1\}$ such that $\left|\varepsilon_{1}+\cdots+\varepsilon_{n}\right| \leq 1$ and $\left|\varepsilon_{1} a_{1}+\cdots+\varepsilon_{n} a_{n}\right| \leq 1$. This result is sharp, and in turn it confirms a conjecture of Lev. We also prove that when n is even, every integer in a large interval centered at $\left(a_{1}+a_{2}+\cdots+a_{n}\right) / 2$ can be represented as the sum of $n / 2$ elements of the sequence.

1. Introduction

At the Workshop on Combinatorial Number Theory held at DIMACS, 1996, Lev proposed the following problem. Suppose that $1 \leq a_{1}<a_{2}<\cdots<a_{n} \leq 2 n-1$ are integers such that their sum $\sigma=\sum_{i=1}^{n} a_{i}$ is even. Assuming that n is large enough, does there exist $I \subset\{1,2, \ldots, n\}$ such that $\sum_{i \in I} a_{i}=\sigma / 2$? Note that a restriction has to be imposed on n, since the sequences $(1,4,5,6)$ and $(1,2,3,9,10,11)$ provide counterexamples otherwise. The answer is in the affirmative: It follows from a result of Lev [3], that if n is large enough, then every integer in the interval [840n, $\sigma-840 n$] can be expressed as the sum of different a_{i} 's, see [1]. In this paper we prove the following strong version of Lev's conjecture.

Theorem 1 Let $1 \leq a_{1}<a_{2}<\cdots<a_{n} \leq 2 n-1$ denote integers such that at least one of the numbers a_{i} is even. If $n \geq 89$, then there exist $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{-1,+1\}$ such that $\left|\varepsilon_{1}+\cdots+\varepsilon_{n}\right| \leq 1$ and $\left|\varepsilon_{1} a_{1}+\cdots+\varepsilon_{n} a_{n}\right| \leq 1$.

Note that although most likely the condition $n \geq 89$ can be relaxed, it is not merely technical. The sequence $(1,2,3,8,9,10,14,15)$ demonstrates that Theorem 1 is not valid with $n=8$. A more intrinsic aspect of the evenness condition is that there exists an index $1 \leq \nu \leq n-1$ such that $a_{\nu+1}-a_{\nu}=1$. This is certainly the case if $a_{n} \leq 2 n-2$.

Corollary 2 Let $1 \leq a_{1}<a_{2}<\ldots<a_{n} \leq 2 n-2$ denote integers. If $n \geq 89$, then there exist $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{-1,+1\}$ such that $\left|\varepsilon_{1}+\cdots+\varepsilon_{n}\right| \leq 1$ and $\left|\varepsilon_{1} a_{1}+\cdots+\varepsilon_{n} a_{n}\right| \leq$ 1.

[^0]Now the conjecture of Lev follows almost immediately from the above theorem, unless $a_{i}=2 i-1$ for $1 \leq i \leq n$. Even in that case, it is easy to check that the conclusion of Theorem 1 remains valid if $n \equiv 0,1$ or $3(\bmod 4)$. This is not the case, however, if $n \equiv 2(\bmod 4)$. Indeed, let $n=4 k+2$ and suppose that $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{-1,+1\}$ such that $\left|\varepsilon_{1}+\cdots+\varepsilon_{n}\right| \leq 1$. Consider $I=\left\{1 \leq i \leq n \mid \varepsilon_{i}=\right.$ $+1\}$, then $|I|=2 k+1$. Therefore $A=\sum_{i \in I} a_{i}$ and $B=\sum_{i \notin I} a_{i}$ are odd numbers. However, $A+B=\sum_{i=1}^{n} a_{i}=(4 k+2)^{2}$ is divisible by 4 , hence $A-B \equiv 2(\bmod 4)$, and $\left|\varepsilon_{1} a_{1}+\cdots+\varepsilon_{n} a_{n}\right|=|A-B| \geq 2$. Nevertheless, choosing

$$
I=\{1,2,3,5\} \cup \bigcup_{i=2}^{k}\{4 i, 4 i+1\} \subseteq\{1,2, \ldots, n\}
$$

we find that

$$
\sum_{i \in I} a_{i}=\frac{1}{2} \sum_{i=1}^{n} a_{i}=\frac{\sigma}{2}
$$

confirming the conjecture of Lev in this remaining case, too.

The method of the proof of Theorem 1 allows us to obtain the following generalization.

Theorem 3 For every $\varepsilon>0$ there is an integer $n_{0}=n_{0}(\varepsilon)$ with the following property. If $n \geq n_{0}, 1 \leq a_{1}<a_{2}<\ldots<a_{n} \leq 2 n-2$ are integers, and N is an integer such that $|N| \leq\left(\frac{9}{100}-\varepsilon\right) n^{2}$, then there exist $\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{-1,+1\}$ such that $\left|\varepsilon_{1}+\cdots+\varepsilon_{n}\right| \leq 1$ and $\left|\varepsilon_{1} a_{1}+\cdots+\varepsilon_{n} a_{n}-N\right| \leq 1$.

Consequently, every integer in a long interval can be expressed as a 'balanced' subset sum.

Corollary 4 If n is large enough and $1 \leq a_{1}<a_{2}<\cdots<a_{n} \leq 2 n-2$ are integers, then for every integer

$$
k \in\left[\sigma / 2-n^{2} / 24, \sigma / 2+n^{2} / 24\right]
$$

there exists a set of indices $I \subset\{1,2, \ldots, n\}$ such that $|I| \in\{\lfloor n / 2\rfloor,\lceil n / 2\rceil\}$ and $\sum_{i \in I} a_{i}=k$.

Proof. We apply Theorem 3 with $\varepsilon=9 / 100-1 / 12$. If $k=\sigma / 2+x$ is an integer in the prescribed interval, then for the integer $N=2 x$ there exist $\varepsilon_{1}, \ldots, \varepsilon_{n} \in$ $\{-1,+1\}$ such that $\left|\varepsilon_{1}+\cdots+\varepsilon_{n}\right| \leq 1$ and $\left|\varepsilon_{1} a_{1}+\cdots+\varepsilon_{n} a_{n}-N\right| \leq 1$. Since $N=2 x \equiv \sigma \equiv \varepsilon_{1} a_{1}+\ldots+\varepsilon_{n} a_{n}(\bmod 2)$, it follows that $\varepsilon_{1} a_{1}+\cdots+\varepsilon_{n} a_{n}=N$, and with $I=\left\{i \mid \varepsilon_{i}=+1\right\}$ we have $|I| \in\{\lfloor n / 2\rfloor,\lceil n / 2\rceil\}$ and

$$
\sum_{i \in I} a_{i}=\frac{1}{2}\left(\sum_{i=1}^{n} a_{i}+\sum_{i=1}^{n} \varepsilon_{i} a_{i}\right)=\frac{\sigma}{2}+x=k
$$

Note that all these results can be extended to sparser sequences under the assumption that the sequence contains sufficiently many small gaps. We do not elaborate on this here.

Finally we note that if balancedness is not required, then the following result, anticipated in [2], is now available, see [1].

Theorem 5 Let $1 \leq a_{1}<a_{2}<\cdots<a_{n} \leq \ell \leq 2 n-6$ denote integers. If n is large enough, then every integer in the interval

$$
[2 \ell-2 n+1, \sigma-(2 \ell-2 n+1)]
$$

can be expressed as the sum of different a_{i} 's. Neither the length of this interval can be extended, nor can the bound $2 n-6$ be replaced by $2 n-1$.

2. The Proof of Theorem 1

First we note that it is enough to prove Theorem 1 when n is an even number. Indeed, let n be odd, and assume that the statement has been proved for $n+1$. Consider the sequence

$$
b_{1}=1<b_{2}=a_{1}+1<\cdots<b_{n+1}=a_{n}+1<2(n+1)-1
$$

There exist $\eta_{1}, \ldots, \eta_{n+1} \in\{-1,+1\}$ such that

$$
\left|\eta_{1}+\cdots+\eta_{n+1}\right| \leq 1 \quad \text { and } \quad\left|\eta_{1} b_{1}+\cdots+\eta_{n+1} b_{n+1}\right| \leq 1
$$

Since $n+1$ is even, it follows that $\eta_{1}+\cdots+\eta_{n+1}=0$. Let $\varepsilon_{i}=\eta_{i+1}$, then $\left|\varepsilon_{1}+\cdots+\varepsilon_{n}\right|=\left|-\eta_{1}\right|=1$, and

$$
\left|\sum_{i=1}^{n} \varepsilon_{i} a_{i}\right|=\left|\sum_{i=1}^{n} \eta_{i+1} a_{i}+\sum_{i=1}^{n+1} \eta_{i}\right|=\left|\sum_{i=1}^{n+1} \eta_{i} b_{i}\right| \leq 1 .
$$

Accordingly, we assume that $n=2 m$ with an integer $m \geq 45$. To illustrate the initial idea of the proof, consider the differences $e_{i}=a_{2 i}-a_{2 i-1}$ for $i=1,2, \ldots, m$. If we can find $\delta_{1}, \ldots, \delta_{m} \in\{-1,+1\}$ such that $\left|\sum_{i=1}^{m} \delta_{i} e_{i}\right|<2$, then the choice $\varepsilon_{2 i}=\delta_{i}, \varepsilon_{2 i-1}=-\delta_{i}$ clearly gives the desired result. This is the case, in fact, when $\sum_{i=1}^{m} e_{i} \leq 2 m-2$, as it can be easily derived from the following two simple lemmas. They are intentionally formulated so that their application is not limited to integer sequences.

Lemma 6 Let $e_{1}, \ldots, e_{k} \geq 1$ and suppose that

$$
E=\sum_{i=1}^{k} e_{i} \leq \beta k-\left(\beta^{2}-\beta\right)
$$

for some positive real number β. Then

$$
\sum_{e_{i}<s+1} e_{i} \geq s
$$

holds for every real number s satisfying $\beta-1 \leq s \leq k-\beta$.
Proof. The inequality is clearly valid if $s \leq 0$. Suppose that s is a positive number satisfying

$$
\sum_{e_{i}<s+1} e_{i}<s
$$

Then the number of indices i such that $e_{i}<s+1$ is smaller than s. Hence the number of those i with $e_{i} \geq s+1$ is greater than $k-s$, therefore

$$
(s+1)(k-s)<E \leq \beta k-\left(\beta^{2}-\beta\right)
$$

The left-hand side is a concave function of s, attaining the value $\beta k-\left(\beta^{2}-\beta\right)$ at the points $\beta-1$ and $k-\beta$. Consequently, we have either $s<\beta-1$ or $s>k-\beta$, proving the assertion.

Lemma 7 Let $e_{1}, \ldots, e_{k} \geq 1$ and suppose that

$$
\begin{equation*}
\sum_{e_{i}<s+1} e_{i} \geq s \tag{1}
\end{equation*}
$$

holds for every integer $1 \leq s \leq \max \left\{e_{i} \mid 1 \leq i \leq k\right\}$. Let F be any number such that

$$
\begin{equation*}
|F|<\sum_{i=1}^{k} e_{i}+2 \tag{2}
\end{equation*}
$$

Then there exist $\varepsilon_{1}, \ldots, \varepsilon_{k} \in\{-1,+1\}$ such that

$$
\left|\sum_{i=1}^{k} \varepsilon_{i} e_{i}-F\right|<2
$$

in particular $F=\sum_{i=1}^{k} \varepsilon_{i} e_{i}$ if the e_{i} 's are integers and $F \equiv \sum_{i=1}^{k} e_{i} \quad(\bmod 2)$.

Proof. Without loss of generality, we may suppose that $e_{1} \geq e_{2} \geq \cdots \geq e_{k}$, so that $e_{k}<2$. The point is, that the condition allows us to construct $\varepsilon_{1}, \ldots, \varepsilon_{k}$ sequentially so that the sequence of partial sums $\sum_{j=1}^{i} \varepsilon_{j} e_{j}$ oscillates about F with smaller and smaller amplitude, until it eventually approximates F with the desired accuracy.

More precisely, let $\Delta_{0}=F$, and define ε_{n} and Δ_{n} recursively as follows. Let, for $n=1,2, \ldots, k$,

$$
\varepsilon_{n}= \begin{cases}1 & \text { if } \Delta_{n-1} \geq 0 \\ -1 & \text { if } \Delta_{n-1}<0\end{cases}
$$

and let $\Delta_{n}=\Delta_{n-1}-\varepsilon_{n} e_{n}$; then

$$
\Delta_{n}=F-\varepsilon_{1} e_{1}-\varepsilon_{2} e_{2}-\cdots-\varepsilon_{n} e_{n}
$$

for every $0 \leq n \leq k$. We prove, by induction, that

$$
\begin{equation*}
\left|\Delta_{n}\right|<e_{n+1}+\cdots+e_{k-1}+e_{k}+2 \tag{3}
\end{equation*}
$$

for $n=0,1, \ldots, k$.
This is true for $n=0$. Thus, let $1 \leq n \leq k$, and suppose that (3) is satisfied with $n-1$ in place of n. Assume, without loss of generality, that $\Delta_{n-1} \geq 0$. Then, by definition,

$$
-e_{n} \leq \Delta_{n}=\Delta_{n-1}+(-1) e_{n}<e_{n+1}+\cdots+e_{k}+2
$$

Thus, to verify (3), it suffices to show that $e_{n}<e_{n+1}+\cdots+e_{k}+2$. This is definitely true, if $e_{n+1}=e_{n}$ or $n=k$. Otherwise we can write

$$
\sum_{i=n+1}^{k} e_{i}=\sum_{e_{i}<e_{n}} e_{i} \geq \sum_{e_{i}<\left\lfloor e_{n}\right\rfloor} e_{i} \geq\left\lfloor e_{n}\right\rfloor-1>e_{n}-2
$$

proving the assertion. Letting $n=k$ in (3), the statement of the lemma follows.

The main idea of the proof of Theorem 1 is to find $k \leq m$ and a partition

$$
\begin{equation*}
\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}=\bigcup_{i=1}^{k}\left\{x_{i}, y_{i}\right\} \cup\left\{z_{1}, \ldots, z_{n-2 k}\right\} \tag{4}
\end{equation*}
$$

such that $e_{i}=x_{i}-y_{i}(1 \leq i \leq k)$ and $F=\sum_{i=1}^{n-2 k}(-1)^{i} z_{i}$ satisfy the conditions of Lemma 7. Then Theorem 1 follows immediately.

To achieve this we will construct the above partition so that

$$
\begin{gather*}
\sum_{i=1}^{k} e_{i} \leq 4 k-12 \quad\left(\text { resp. } \quad \sum_{i=1}^{k} e_{i} \leq 3 k-6\right), \tag{5}\\
e_{i} \leq k-4 \quad\left(\text { resp. } \quad e_{i} \leq k-3\right) \quad \text { for } \quad i=1,2, \ldots, k, \tag{6}\\
|F| \leq k+1, \quad \text { and } \tag{7}\\
\sum_{e_{i} \leq s} e_{i} \geq s \quad \text { for } \quad s=1 \quad \text { and } s=2 \tag{8}
\end{gather*}
$$

Then an application of Lemma 6 with $\beta=4$ (resp. with $\beta=3$) will show that e_{i} $(1 \leq i \leq k)$ and F satisfy the conditions of Lemma 7. More precisely, it follows from (5) and (8) that condition (1) holds for $s \leq k-\beta$, hence for every integer $1 \leq s \leq \max \left\{e_{i} \mid 1 \leq i \leq k\right\}$ in view of (6). Finally, (2) follows from (7), given
that $\sum_{i=1}^{k} e_{i} \geq k$. Therefore, once we find a partition (4) with properties (5)-(8), the proof of Theorem 1 will be complete.

First we take care of the condition (8). If we take $x_{k}=a_{\nu+1}$ and $y_{k}=a_{\nu}$, then $e_{k}=1$. Moreover, since

$$
\sum_{i=1}^{n-1}\left(a_{i+1}-a_{i}\right) \leq 2 n-2
$$

there must be an index $\mu \notin\{\nu-1, \nu, \nu+1, n\}$, such that $a_{\mu+1}-a_{\mu} \leq 2$. Taking $x_{k-1}=a_{\mu+1}$ and $y_{k-1}=a_{\mu}$, condition (8) will be satisfied. Enumerating the remaining $n-4$ elements of the sequence $\left(a_{i}\right)$ as

$$
1 \leq b_{1}<b_{2}<\ldots<b_{2 m-4} \leq 4 m-1
$$

with $f_{i}=b_{2 i}-b_{2 i-1}$ we find that

$$
\begin{equation*}
\sum_{i=1}^{m-2} f_{i}=\sum_{i=1}^{m-2}\left(b_{2 i}-b_{2 i-1}\right) \leq(4 m-2)-(m-3)=3 m+1 \tag{9}
\end{equation*}
$$

Since $m>21$, there cannot be three different indices i with $f_{i} \geq m-5$. We distinguish between three cases.

Case 1. If $f_{i} \leq m-6$ for $1 \leq i \leq m-2$, then we can choose $k=m, F=0$. Taking $x_{i}=b_{2 i}$ and $y_{i}=b_{2 i-1}$ for $1 \leq i \leq k-2$, conditions (6) and (7) are obviously satisfied, whereas (5) follows easily from (9):

$$
\sum_{i=1}^{k} e_{i} \leq \sum_{i=1}^{m-2} f_{i}+3 \leq 3 m+4 \leq 4 m-12
$$

given that $m \geq 16$.
Case 2. There exist indices u, v such that $m-5 \leq f_{u} \leq f_{v}$. In view of (9) we have $f_{u}+f_{v} \leq(3 m+1)-(m-4)=2 m+5$, and consequently $m-5 \leq f_{u} \leq f_{v} \leq m+10$ and $0 \leq f_{v}-f_{u} \leq 15$. Therefore we may choose $k=m-2, z_{1}=b_{2 v-1}, z_{2}=b_{2 v}$, $z_{3}=b_{2 u}, z_{4}=b_{2 u-1}$. Constructing $x_{i}, y_{i}(1 \leq i \leq m-4)$ from the remaining elements of the sequence $\left(b_{i}\right)$ in the obvious way we find that $|F| \leq 15<m-2=k$, each e_{i} satisfies $e_{i} \leq m-6=k-4$, and once again (9) gives

$$
\sum_{i=1}^{k} e_{i} \leq \sum_{i=1}^{m-2} f_{i}-2(m-5)+3 \leq m+14<4 m-20=4 k-12
$$

Case 3. There exists exactly one index u with $m-5 \leq f_{u}$. From (9) it follows that $f_{u} \leq(3 m+1)-(m-3)=2 m+4$. We claim that there exist indices v, w different from u such that

$$
\begin{equation*}
\left|b_{2 w}+b_{2 w-1}-b_{2 v}-b_{2 v-1}-f_{u}\right| \leq m-2 \tag{10}
\end{equation*}
$$

In that case we can choose $k=m-3$ and $z_{1}=b_{2 u}, z_{2}=b_{2 u-1}, z_{3}=b_{2 v}$, $z_{4}=b_{2 w}, z_{5}=b_{2 w-1}, z_{6}=b_{2 u-1}$ to have $|F| \leq m-2=k+1$. Constructing x_{i}, y_{i} ($1 \leq i \leq m-4$) from the remaining elements of the sequence $\left(b_{i}\right)$ in the obvious way this time we find that each e_{i} satisfies $e_{i} \leq m-6=k-3$, and

$$
\sum_{i=1}^{k} e_{i} \leq \sum_{i=1}^{m-2} f_{i}-(m-5)-2+3 \leq 2 m+7 \leq 3 m-15=3 k-6
$$

It only remains to prove the above claim. The idea is to find v, w in such a way that f_{v}, f_{w} are small and at the same time $b_{2 w}-b_{2 v}$ lies in a prescribed interval that depends on the size of f_{u}. It turns out that the optimum strategy for such an approach is the following. First, for any positive integer $\kappa \geq 2$, introduce

$$
I_{\kappa}=\left\{i \mid 1 \leq i \leq m-2, i \neq u, f_{i} \leq \kappa\right\}
$$

Denote by x the number of indices $i \neq u$ for which $f_{i}>\kappa$. Then

$$
(m-3-x)+(\kappa+1) x \leq \sum_{i=1}^{m-2} f_{i}-f_{u} \leq(3 m+1)-(m-5)=2 m+6
$$

Thus, $\kappa x \leq m+9$, and $m-3-x \geq(1-1 / \kappa) m-3-9 / \kappa$. We have proved the following.

Claim $8\left|I_{\kappa}\right| \geq \frac{\kappa-1}{\kappa} m-\frac{9}{\kappa}-3$. In particular $t=\left|I_{7}\right| \geq \frac{6 m-30}{7}$.
Write $c_{0}=0$ and let

$$
\bigcup_{i \in I_{7}}\left\{b_{2 i-1}, b_{2 i}\right\}=\left\{c_{1}<c_{2}<\ldots<c_{2 t-1}<c_{2 t}\right\}
$$

Now we separate two subcases as follows.

Case 3a. $m-5 \leq f_{u} \leq 2 m-14$. We will prove that there exist $1 \leq i<j \leq t$ such that

$$
\begin{equation*}
\frac{m}{2}-3 \leq \Delta_{i, j}=c_{2 j}-c_{2 i} \leq m-7 \tag{11}
\end{equation*}
$$

Since we have

$$
\begin{equation*}
1 \leq c_{2 i}-c_{2 i-1}, c_{2 j}-c_{2 j-1} \leq 7 \tag{12}
\end{equation*}
$$

we can argue that

$$
m-12 \leq 2 \Delta_{i, j}-6 \leq c_{2 j}+c_{2 j-1}-c_{2 i}-c_{2 i-1} \leq 2 \Delta_{i, j}+6<2 m-7
$$

and that implies (10). If there exists $1 \leq i \leq t-1$ such that

$$
\frac{m}{2}-3 \leq c_{2 i+2}-c_{2 i} \leq m-7
$$

then (11) follows immediately. Otherwise we have

$$
c_{2 i+2}-c_{2 i} \leq \frac{m}{2}-\frac{7}{2} \quad \text { or } \quad c_{2 i+2}-c_{2 i} \geq m-6
$$

for every integer $1 \leq i \leq t-1$. In this way we distinguish between 'small gaps' and 'large gaps' in the sequence $c_{2}, c_{4}, \ldots, c_{2 t}$. The large gaps partition this sequence into 'blocks', where the gap between two consecutive elements within a block is always small. For such a block $B=\left(c_{2 i}, c_{2 i+2}, \ldots, c_{2 i^{\prime}}\right)$, we call the length of B the quantity $\ell(B)=2\left(i^{\prime}-i\right)$. Since

$$
2 \cdot\left(\frac{m}{2}-\frac{7}{2}\right)<m-6
$$

in order to have a pair i, j with (11), it is enough to prove that at least one block has a length $\geq m / 2-3$. Then the smallest integer j satisfying $c_{2 j}-c_{2 i} \geq m / 2-3$ will be convenient.

We claim that there cannot be more than three blocks. Indeed, since every gap is at least 2 , were there three or more large gaps, we would find that

$$
\begin{aligned}
4 m-1 & \geq \sum_{i=0}^{t-1}\left(c_{2 i+2}-c_{2 i}\right) \geq 3(m-6)+(t-3) 2 \\
& \geq 3 m-18+2\left(\frac{6 m-30}{7}-3\right)
\end{aligned}
$$

implying $m \leq 221 / 5<45$, a contradiction.
Since there are at most three blocks, one must contain at least $t / 3$ different $c_{2 i}$'s, and thus its length

$$
\ell(B) \geq 2\left(\frac{t}{3}-1\right) \geq \frac{4 m-20}{7}-2
$$

Given $m \geq 26$, we conclude that indeed $\ell(B) \geq m / 2-3$.
Case 3b. $2 m-13 \leq f_{u} \leq 2 m+4$. This time we prove that

$$
\begin{equation*}
\frac{m}{2}+6 \leq \Delta_{i, j} \leq \frac{3}{2} m-\frac{21}{2} \tag{13}
\end{equation*}
$$

holds with suitable $1 \leq i<j \leq t$. In view of (12) this implies

$$
m+6 \leq 2 \Delta_{i, j}-6 \leq c_{2 j}+c_{2 j-1}-c_{2 i}-c_{2 i-1} \leq 2 \Delta_{i, j}+6 \leq 3 m-15
$$

and from that (10) follows. Similarly to the previous case, we may assume that there are only small and large gaps, which in this case means that

$$
c_{2 i+2}-c_{2 i} \leq \frac{m}{2}+\frac{11}{2} \quad \text { or } \quad c_{2 i+2}-c_{2 i} \geq \frac{3}{2} m-10
$$

holds for every integer $1 \leq i \leq t-1$. Given that (here we use $m \geq 44$)

$$
2 \cdot\left(\frac{m}{2}+\frac{11}{2}\right)<\frac{3}{2} m-10
$$

it suffices to prove that there is a block B with $\ell(B) \geq m / 2+6$.
If there were two or more large gaps, we would find that

$$
\begin{aligned}
4 m-1 & \geq \sum_{i=0}^{t-1}\left(c_{2 i+2}-c_{2 i}\right) \geq 2\left(\frac{3}{2} m-10\right)+(t-2) 2 \\
& \geq 3 m-20+2\left(\frac{6 m-30}{7}-2\right)
\end{aligned}
$$

implying $m \leq 221 / 5<45$, a contradiction. Therefore there are at most two blocks, one of which containing at least $t / 2$ different $c_{2 i}$'s. The length of that block thus satisfies

$$
\ell(B) \geq 2\left(\frac{t}{2}-1\right) \geq \frac{6 m-30}{7}-2
$$

Since $m \geq 172 / 5$, we find that $\ell(B) \geq m / 2+6$, and the proof is complete.

3. The Proof of Theorem 3

Obviously we may assume that $\varepsilon>0$ is small enough so that all the below arguments work. We fix such an ε and assume that n is large enough. As in the proof of Theorem 1, we may assume that $n=2 m$ is an even number. Put $c=1 / 5-2 \varepsilon$. We will prove that there exists an integer $k \geq(1-c) m-7$ and a partition in the form (4) such that for $e_{i}=x_{i}-y_{i}(1 \leq i \leq k)$ and $F=N+\sum_{i=1}^{n-2 k}(-1)^{i} z_{i}$ the following conditions hold:

$$
\begin{gather*}
\sum_{i=1}^{k} e_{i} \leq 4 k-12 \tag{14}\\
e_{i} \leq(1-c) m-11 \leq k-4 \quad \text { for } \quad i=1,2, \ldots, k \tag{15}\\
|F| \leq(1-c) m-6 \leq k+1, \quad \text { and } \tag{16}\\
\sum_{e_{i} \leq s} e_{i} \geq s \quad \text { for } \quad s=1 \quad \text { and } \quad s=2 \tag{17}
\end{gather*}
$$

As in the proof of Theorem 1, we can apply Lemma 6 with $\beta=4$, and then Lemma 7 gives the result.

Clearly there exist $1 \leq \mu, \nu \leq n-1, \mu \notin\{\nu-1, \nu, \nu+1\}$ such that $a_{\nu+1}-a_{\nu}=1$ and $a_{\mu+1}-a_{\mu} \leq 2$. Putting $x_{1}=a_{\nu+1}, y_{1}=a_{\nu}, x_{2}=a_{\mu+1}, y_{2}=a_{\mu}$ then takes care of (17). Enumerate the remaining $n-4$ elements of the sequence $\left(a_{i}\right)$ as

$$
1 \leq b_{1}<b_{2}<\ldots<b_{2 m-4} \leq 4 m-2
$$

Take $q=\lceil c m\rceil$. Since

$$
\begin{aligned}
\sum_{i=1}^{q}\left(b_{2 m-3-i}-b_{i}\right) & \geq \sum_{i=1}^{q}(2 m-2 i-3)=2 q m-q(q+4) \\
& >2 c m^{2}-(c m+1)(c m+5)=\left(2 c-c^{2}\right) m^{2}-(6 c m+5) \\
& >\left(\frac{9}{25}-\frac{16}{5} \varepsilon-4 \varepsilon^{2}\right) m^{2}-2 m>\left(\frac{9}{25}-4 \varepsilon\right) m^{2} \geq|N|
\end{aligned}
$$

and $b_{2 m-3-i}-b_{i} \leq 4 m-3$ for every i, there exists an integer $0 \leq r<c m+1$ such that

$$
\left|N-\operatorname{sgn}(N) \sum_{i=1}^{r}\left(b_{2 m-3-i}-b_{i}\right)\right| \leq 2 m-2
$$

where $\operatorname{sgn}(N)=+1$, if $N \geq 0$ and $\operatorname{sgn}(N)=-1$, if $N<0$. Consider

$$
r+1 \leq b_{r+1}<b_{r+2}<\ldots<b_{2 m-4-r} \leq 4 m-2-r
$$

and let $f_{i}=b_{r+2 i}-b_{r+2 i-1}$ for $1 \leq i \leq m-2-r$, then

$$
\begin{equation*}
\sum_{i=1}^{m-r-2} f_{i} \leq((4 m-2-r)-(r+1))-(m-r-3) \leq 3 m \tag{18}
\end{equation*}
$$

Were there 3 or more indices i with $f_{i}>(1-c) m-11$, it would imply

$$
\sum_{i=1}^{m-r-2} f_{i}>3((1-c) m-11)+(m-r-5)>(4-4 c) m-39>3 m
$$

a contradiction, if m is large enough. Thus there exist an integer $s \in\{0,1,2\}$ and indices i_{1}, \ldots, i_{s} such that $f_{i}>(1-c) m-11$ if and only if $i \in\left\{i_{1}, \ldots, i_{s}\right\}$. Moreover, if $s \geq 1$, then for each $j \in\{1, \ldots, s\}$ we have

$$
f_{i_{j}} \leq 3 m-(m-r-3)<(2+c) m+4
$$

Consequently, there exist $\delta_{1}, \ldots, \delta_{s} \in\{-1,+1\}$ such that

$$
\begin{equation*}
\left|N-\operatorname{sgn}(N) \sum_{i=1}^{r}\left(b_{2 m-3-i}-b_{i}\right)-\sum_{j=1}^{s} \delta_{j} f_{i_{j}}\right|<(2+c) m+4 \tag{19}
\end{equation*}
$$

Put $\kappa=\lceil 3 / \varepsilon\rceil \leq(1-c) m-11$ and introduce

$$
I_{\kappa}=\left\{i \mid 1 \leq i \leq m-r-2, f_{i} \leq \kappa\right\}
$$

Denoting by x the number of indices i with $f_{i}>\kappa$ we have

$$
(m-r-2-x)+(\kappa+1) x \leq \sum_{i=1}^{m-r-2} f_{i} \leq 3 m
$$

implying $\kappa x<(2+c) m+3$, and thus

$$
t=\left|I_{\kappa}\right|=m-r-2-x>\left(1-c-\frac{2+c}{\kappa}\right) m-3-\frac{3}{\kappa}>\left(\frac{4}{5}+\varepsilon\right) m
$$

Write $c_{0}=0$ and let

$$
\bigcup_{i \in I_{\kappa}}\left\{b_{r+2 i-1}, b_{r+2 i}\right\}=\left\{c_{1}<c_{2}<\ldots<c_{2 t-1}<c_{2 t}\right\}
$$

We prove that there exist $1 \leq i_{1}<j_{1} \leq t$ such that

$$
\begin{equation*}
\frac{2}{5} m \leq \Delta_{1}=c_{2 j_{1}}-c_{2 i_{1}} \leq \frac{4}{5} m \tag{20}
\end{equation*}
$$

This follows immediately if there exists $1 \leq i \leq t-1$ such that

$$
\frac{2}{5} m \leq c_{2 i+2}-c_{2 i} \leq \frac{4}{5} m
$$

otherwise we have

$$
c_{2 i+2}-c_{2 i}<\frac{2}{5} m \quad \text { or } \quad c_{2 i+2}-c_{2 i}>\frac{4}{5} m
$$

for every integer $1 \leq i \leq t-1$. Gaps in the sequence $c_{2}, c_{4}, \ldots, c_{2 t}$, which are larger than $4 m / 5$, partition this sequence into blocks, where the gap between two consecutive elements within a block is always smaller than $2 m / 5$. We claim that there cannot be more than three such blocks. Were there on the contrary at least three large gaps, we would find that

$$
4 m-2 \geq \sum_{i=0}^{t-1}\left(c_{2 i+2}-c_{2 i}\right)>3 \cdot \frac{4}{5} m+(t-3) \cdot 2>(4+2 \varepsilon) m-6
$$

a contradiction. Now one of the blocks must contain at least $t / 3$ different $c_{2 i}$'s, and thus its length satisfies

$$
\ell(B) \geq 2\left(\frac{t}{3}-1\right)>\frac{2}{5} m
$$

Consequently, (20) holds with suitable elements $c_{2 i_{1}}, c_{2 j_{1}}$ of B. Removing i_{1}, j_{1} from I_{κ} and repeating the argument we find $1 \leq i_{2}<j_{2} \leq t$ such that $\left\{i_{2}, j_{2}\right\} \cap\left\{i_{1}, j_{1}\right\}=$ \emptyset and $2 m / 5 \leq \Delta_{2}=c_{2 j_{2}}-c_{2 i_{2}} \leq 4 m / 5$. Since for $\alpha=1,2$ we have

$$
\begin{equation*}
1 \leq c_{2 i_{\alpha}}-c_{2 i_{\alpha}-1}, c_{2 j_{\alpha}}-c_{2 j_{\alpha}-1} \leq \kappa \tag{21}
\end{equation*}
$$

we can argue that

$$
2 \Delta_{\alpha}-\kappa+1 \leq \Gamma_{\alpha}=c_{2 j_{\alpha}}+c_{2 j_{\alpha}-1}-c_{2 i_{\alpha}}-c_{2 i_{\alpha}-1} \leq 2 \Delta_{\alpha}+\kappa-1
$$

that is,

$$
\begin{equation*}
\frac{4}{5} m-\frac{3}{\varepsilon}<\Gamma_{\alpha}<\frac{8}{5} m+\frac{3}{\varepsilon} \tag{22}
\end{equation*}
$$

In view of (19) and (22), there exist an integer $p \in\{0,1,2\}$ and $\eta_{1}, \ldots, \eta_{p} \in$ $\{-1,+1\}$ such that
$\left|N-\operatorname{sgn}(N) \sum_{i=1}^{r}\left(b_{2 m-3-i}-b_{i}\right)-\sum_{j=1}^{s} \delta_{j} f_{i_{j}}-\sum_{\alpha=1}^{p} \eta_{\alpha} \Gamma_{\alpha}\right|<\frac{4}{5} m+\frac{3}{2 \varepsilon} \leq(1-c) m-6$.

Consequently, we can choose $k=m-r-s-2 p>(1-c) m-7$, and the elements of the set

$$
\bigcup_{i=1}^{r}\left\{b_{i}, b_{2 m-3-i}\right\} \cup \bigcup_{j=1}^{s}\left\{b_{r+2 i_{j}}, b_{r+2 i_{j}-1}\right\} \cup \bigcup_{\alpha=1}^{p}\left\{c_{2 i_{\alpha}}, c_{2 i_{\alpha}-1}, c_{2 j_{\alpha}}, c_{2 j_{\alpha}-1}\right\}
$$

can be enumerated as $z_{1}, \ldots, z_{n-2 k}$ so that $F=N+\sum_{i=1}^{n-2 k}(-1)^{i} z_{i}$ satisfies (16). Since $f_{i} \leq(1-c) m-11$ holds for every $1 \leq i \leq m-r-2, i \notin\left\{i_{1}, \ldots, i_{s}\right\}$, removing $z_{1}, \ldots, z_{n-2 k}$ from the sequence $b_{1}, \ldots, b_{2 m-4}$, the rest can be rearranged as $x_{3}, y_{3}, \ldots, x_{k}, y_{k}$ such that $1 \leq e_{i}=x_{i}-y_{i}$ satisfies (15). Finally, it follows from (18) that

$$
\sum_{i=1}^{k} e_{i} \leq \sum_{i=1}^{m-r-2} f_{i}+3 \leq 3 m+3 \leq(4-4 c) m-40 \leq 4 k-12
$$

therefore condition (14) is also fulfilled. This completes the proof of Theorem 3.

Acknowledgment I am thankful to Vsevolod Lev who introduced me to the subject and whose suggestions simplified the presentation of this paper. I also gratefully acknowledge the hospitality and support of the CWI in Amsterdam, and of the Institute for Advanced Study in Princeton where the main part of this research was done with the support of the Alfred Sloan Foundation, NSF grant DMS-9304580 and by DIMACS under NSF grant STC-91-19999.

References

[1] G. KÁrolyi, Long arithmetic progressions in subset sums and a conjecture of Alon, submitted.
[2] V.F. Lev, On consecutive subset sums, Discrete Math. 187 (1998) 151-160.
[3] V.F. Lev, Blocks and progressions in subset sum sets, Acta Arithm. 106 (2003) 123-142.

[^0]: ${ }^{1}$ Visiting the CWI in Amsterdam. Research partially supported by Hungarian Scientific Research Grants OTKA T043631 and K67676.

