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Abstract
Let 1 ≤ a1 < a2 < · · · < an ≤ 2n − 2 denote integers. Assuming that n is large
enough, we prove that there exist ε1, . . . , εn ∈ {−1,+1} such that |ε1 + · · ·+εn| ≤ 1
and |ε1a1+ · · ·+εnan| ≤ 1. This result is sharp, and in turn it confirms a conjecture
of Lev. We also prove that when n is even, every integer in a large interval centered
at (a1 + a2 + · · · + an)/2 can be represented as the sum of n/2 elements of the
sequence.

1. Introduction

At the Workshop on Combinatorial Number Theory held at DIMACS, 1996, Lev
proposed the following problem. Suppose that 1 ≤ a1 < a2 < · · · < an ≤ 2n− 1 are
integers such that their sum σ =

∑n
i=1 ai is even. Assuming that n is large enough,

does there exist I ⊂ {1, 2, . . . , n} such that
∑

i∈I ai = σ/2? Note that a restriction
has to be imposed on n, since the sequences (1, 4, 5, 6) and (1, 2, 3, 9, 10, 11) provide
counterexamples otherwise. The answer is in the affirmative: It follows from a result
of Lev [3], that if n is large enough, then every integer in the interval [840n,σ−840n]
can be expressed as the sum of different ai’s, see [1]. In this paper we prove the
following strong version of Lev’s conjecture.

Theorem 1 Let 1 ≤ a1 < a2 < · · · < an ≤ 2n−1 denote integers such that at least
one of the numbers ai is even. If n ≥ 89, then there exist ε1, . . . , εn ∈ {−1,+1}
such that |ε1 + · · · + εn| ≤ 1 and |ε1a1 + · · · + εnan| ≤ 1.

Note that although most likely the condition n ≥ 89 can be relaxed, it is not merely
technical. The sequence (1, 2, 3, 8, 9, 10, 14, 15) demonstrates that Theorem 1 is not
valid with n = 8. A more intrinsic aspect of the evenness condition is that there
exists an index 1 ≤ ν ≤ n− 1 such that aν+1 − aν = 1. This is certainly the case if
an ≤ 2n− 2.

Corollary 2 Let 1 ≤ a1 < a2 < . . . < an ≤ 2n− 2 denote integers. If n ≥ 89, then
there exist ε1, . . . , εn ∈ {−1,+1} such that |ε1+· · ·+εn| ≤ 1 and |ε1a1+· · ·+εnan| ≤
1.

1Visiting the CWI in Amsterdam. Research partially supported by Hungarian Scientific Re-
search Grants OTKA T043631 and K67676.
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Now the conjecture of Lev follows almost immediately from the above theorem,
unless ai = 2i − 1 for 1 ≤ i ≤ n. Even in that case, it is easy to check that the
conclusion of Theorem 1 remains valid if n ≡ 0, 1 or 3 (mod 4). This is not
the case, however, if n ≡ 2 (mod 4). Indeed, let n = 4k + 2 and suppose that
ε1, . . . , εn ∈ {−1,+1} such that |ε1 + · · · + εn| ≤ 1. Consider I = {1 ≤ i ≤ n | εi =
+1}, then |I| = 2k + 1. Therefore A =

∑
i∈I ai and B =

∑
i"∈I ai are odd numbers.

However, A+B =
∑n

i=1 ai = (4k+2)2 is divisible by 4, hence A−B ≡ 2 (mod 4),
and |ε1a1 + · · · + εnan| = |A−B| ≥ 2. Nevertheless, choosing

I = {1, 2, 3, 5} ∪
k⋃

i=2

{4i, 4i + 1} ⊆ {1, 2, . . . , n}

we find that
∑

i∈I

ai =
1
2

n∑

i=1

ai =
σ

2
,

confirming the conjecture of Lev in this remaining case, too.

The method of the proof of Theorem 1 allows us to obtain the following gener-
alization.

Theorem 3 For every ε > 0 there is an integer n0 = n0(ε) with the following
property. If n ≥ n0, 1 ≤ a1 < a2 < . . . < an ≤ 2n − 2 are integers, and N is an
integer such that |N | ≤ ( 9

100 −ε)n2, then there exist ε1, . . . , εn ∈ {−1,+1} such that
|ε1 + · · · + εn| ≤ 1 and |ε1a1 + · · · + εnan −N | ≤ 1.

Consequently, every integer in a long interval can be expressed as a ‘balanced’ subset
sum.

Corollary 4 If n is large enough and 1 ≤ a1 < a2 < · · · < an ≤ 2n−2 are integers,
then for every integer

k ∈ [σ/2− n2/24,σ/2 + n2/24]

there exists a set of indices I ⊂ {1, 2, . . . , n} such that |I| ∈ {)n/2*, +n/2,} and
∑

i∈I ai = k.

Proof. We apply Theorem 3 with ε = 9/100 − 1/12. If k = σ/2 + x is an integer
in the prescribed interval, then for the integer N = 2x there exist ε1, . . . , εn ∈
{−1,+1} such that |ε1 + · · · + εn| ≤ 1 and |ε1a1 + · · · + εnan − N | ≤ 1. Since
N = 2x ≡ σ ≡ ε1a1 + . . . + εnan (mod 2), it follows that ε1a1 + · · · + εnan = N ,
and with I = {i | εi = +1} we have |I| ∈ {)n/2*, +n/2,} and

∑

i∈I

ai =
1
2

( n∑

i=1

ai +
n∑

i=1

εiai

)
=

σ

2
+ x = k.
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!

Note that all these results can be extended to sparser sequences under the assump-
tion that the sequence contains sufficiently many small gaps. We do not elaborate
on this here.

Finally we note that if balancedness is not required, then the following result,
anticipated in [2], is now available, see [1].

Theorem 5 Let 1 ≤ a1 < a2 < · · · < an ≤ $ ≤ 2n− 6 denote integers. If n is large
enough, then every integer in the interval

[2$− 2n + 1,σ − (2$− 2n + 1)]

can be expressed as the sum of different ai’s. Neither the length of this interval can
be extended, nor can the bound 2n− 6 be replaced by 2n− 1.

2. The Proof of Theorem 1

First we note that it is enough to prove Theorem 1 when n is an even number.
Indeed, let n be odd, and assume that the statement has been proved for n + 1.
Consider the sequence

b1 = 1 < b2 = a1 + 1 < · · · < bn+1 = an + 1 < 2(n + 1)− 1.

There exist η1, . . . , ηn+1 ∈ {−1,+1} such that

|η1 + · · · + ηn+1| ≤ 1 and |η1b1 + · · · + ηn+1bn+1| ≤ 1.

Since n + 1 is even, it follows that η1 + · · · + ηn+1 = 0. Let εi = ηi+1, then
|ε1 + · · · + εn| = |− η1| = 1, and

∣∣∣
n∑

i=1

εiai

∣∣∣ =
∣∣∣

n∑

i=1

ηi+1ai +
n+1∑

i=1

ηi

∣∣∣ =
∣∣∣
n+1∑

i=1

ηibi

∣∣∣ ≤ 1.

Accordingly, we assume that n = 2m with an integer m ≥ 45. To illustrate the
initial idea of the proof, consider the differences ei = a2i− a2i−1 for i = 1, 2, . . . ,m.
If we can find δ1, . . . , δm ∈ {−1,+1} such that |

∑m
i=1 δiei| < 2, then the choice

ε2i = δi, ε2i−1 = −δi clearly gives the desired result. This is the case, in fact, when
∑m

i=1 ei ≤ 2m−2, as it can be easily derived from the following two simple lemmas.
They are intentionally formulated so that their application is not limited to integer
sequences.

Lemma 6 Let e1, . . . , ek ≥ 1 and suppose that

E =
k∑

i=1

ei ≤ βk − (β2 − β)
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for some positive real number β. Then
∑

ei<s+1

ei ≥ s

holds for every real number s satisfying β − 1 ≤ s ≤ k − β.

Proof. The inequality is clearly valid if s ≤ 0. Suppose that s is a positive number
satisfying ∑

ei<s+1

ei < s.

Then the number of indices i such that ei < s + 1 is smaller than s. Hence the
number of those i with ei ≥ s + 1 is greater than k − s, therefore

(s + 1)(k − s) < E ≤ βk − (β2 − β).

The left-hand side is a concave function of s, attaining the value βk − (β2 − β) at
the points β − 1 and k − β. Consequently, we have either s < β − 1 or s > k − β,
proving the assertion. !

Lemma 7 Let e1, . . . , ek ≥ 1 and suppose that
∑

ei<s+1

ei ≥ s (1)

holds for every integer 1 ≤ s ≤ max{ei | 1 ≤ i ≤ k}. Let F be any number such
that

|F | <
k∑

i=1

ei + 2 . (2)

Then there exist ε1, . . . , εk ∈ {−1,+1} such that

∣∣∣
k∑

i=1

εiei − F
∣∣∣ < 2 ,

in particular F =
∑k

i=1 εiei if the ei’s are integers and F ≡
∑k

i=1 ei (mod 2).

Proof. Without loss of generality, we may suppose that e1 ≥ e2 ≥ · · · ≥ ek, so
that ek < 2. The point is, that the condition allows us to construct ε1, . . . , εk

sequentially so that the sequence of partial sums
∑i

j=1 εjej oscillates about F with
smaller and smaller amplitude, until it eventually approximates F with the desired
accuracy.

More precisely, let ∆0 = F , and define εn and ∆n recursively as follows. Let, for
n = 1, 2, . . . , k,

εn =

{
1 if ∆n−1 ≥ 0,

−1 if ∆n−1 < 0,
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and let ∆n = ∆n−1 − εnen; then

∆n = F − ε1e1 − ε2e2 − · · ·− εnen

for every 0 ≤ n ≤ k. We prove, by induction, that

|∆n| < en+1 + · · · + ek−1 + ek + 2 (3)

for n = 0, 1, . . . , k.
This is true for n = 0. Thus, let 1 ≤ n ≤ k, and suppose that (3) is satisfied

with n− 1 in place of n. Assume, without loss of generality, that ∆n−1 ≥ 0. Then,
by definition,

−en ≤ ∆n = ∆n−1 + (−1)en < en+1 + · · · + ek + 2 .

Thus, to verify (3), it suffices to show that en < en+1+ · · ·+ek +2. This is definitely
true, if en+1 = en or n = k. Otherwise we can write

k∑

i=n+1

ei =
∑

ei<en

ei ≥
∑

ei<$en%

ei ≥ )en* − 1 > en − 2 ,

proving the assertion. Letting n = k in (3), the statement of the lemma follows. !

The main idea of the proof of Theorem 1 is to find k ≤ m and a partition

{a1, a2, . . . , an} =
k⋃

i=1

{xi, yi} ∪ {z1, . . . , zn−2k} (4)

such that ei = xi − yi (1 ≤ i ≤ k) and F =
∑n−2k

i=1 (−1)izi satisfy the conditions of
Lemma 7. Then Theorem 1 follows immediately.

To achieve this we will construct the above partition so that

k∑

i=1

ei ≤ 4k − 12 (resp.
k∑

i=1

ei ≤ 3k − 6), (5)

ei ≤ k − 4 (resp. ei ≤ k − 3) for i = 1, 2, . . . , k , (6)

|F | ≤ k + 1 , and (7)
∑

ei≤s

ei ≥ s for s = 1 and s = 2 . (8)

Then an application of Lemma 6 with β = 4 (resp. with β = 3) will show that ei

(1 ≤ i ≤ k) and F satisfy the conditions of Lemma 7. More precisely, it follows
from (5) and (8) that condition (1) holds for s ≤ k − β, hence for every integer
1 ≤ s ≤ max{ei | 1 ≤ i ≤ k} in view of (6). Finally, (2) follows from (7), given



INTEGERS: 9 (2009) 596

that
∑k

i=1 ei ≥ k. Therefore, once we find a partition (4) with properties (5)–(8),
the proof of Theorem 1 will be complete.

First we take care of the condition (8). If we take xk = aν+1 and yk = aν , then
ek = 1. Moreover, since

n−1∑

i=1

(ai+1 − ai) ≤ 2n− 2,

there must be an index µ -∈ {ν − 1, ν, ν + 1, n}, such that aµ+1 − aµ ≤ 2. Taking
xk−1 = aµ+1 and yk−1 = aµ, condition (8) will be satisfied. Enumerating the
remaining n− 4 elements of the sequence (ai) as

1 ≤ b1 < b2 < . . . < b2m−4 ≤ 4m− 1,

with fi = b2i − b2i−1 we find that

m−2∑

i=1

fi =
m−2∑

i=1

(b2i − b2i−1) ≤ (4m− 2)− (m− 3) = 3m + 1. (9)

Since m > 21, there cannot be three different indices i with fi ≥ m − 5. We
distinguish between three cases.

Case 1. If fi ≤ m−6 for 1 ≤ i ≤ m−2, then we can choose k = m, F = 0. Taking
xi = b2i and yi = b2i−1 for 1 ≤ i ≤ k − 2, conditions (6) and (7) are obviously
satisfied, whereas (5) follows easily from (9):

k∑

i=1

ei ≤
m−2∑

i=1

fi + 3 ≤ 3m + 4 ≤ 4m− 12,

given that m ≥ 16.

Case 2. There exist indices u, v such that m− 5 ≤ fu ≤ fv. In view of (9) we have
fu +fv ≤ (3m+1)− (m−4) = 2m+5, and consequently m−5 ≤ fu ≤ fv ≤ m+10
and 0 ≤ fv − fu ≤ 15. Therefore we may choose k = m− 2, z1 = b2v−1, z2 = b2v,
z3 = b2u, z4 = b2u−1. Constructing xi, yi (1 ≤ i ≤ m − 4) from the remaining
elements of the sequence (bi) in the obvious way we find that |F | ≤ 15 < m−2 = k,
each ei satisfies ei ≤ m− 6 = k − 4, and once again (9) gives

k∑

i=1

ei ≤
m−2∑

i=1

fi − 2(m− 5) + 3 ≤ m + 14 < 4m− 20 = 4k − 12.

Case 3. There exists exactly one index u with m−5 ≤ fu. From (9) it follows that
fu ≤ (3m + 1)− (m− 3) = 2m + 4. We claim that there exist indices v, w different
from u such that

|b2w + b2w−1 − b2v − b2v−1 − fu| ≤ m− 2. (10)
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In that case we can choose k = m − 3 and z1 = b2u, z2 = b2u−1, z3 = b2v,
z4 = b2w, z5 = b2w−1, z6 = b2u−1 to have |F | ≤ m− 2 = k + 1. Constructing xi, yi

(1 ≤ i ≤ m − 4) from the remaining elements of the sequence (bi) in the obvious
way this time we find that each ei satisfies ei ≤ m− 6 = k − 3, and

k∑

i=1

ei ≤
m−2∑

i=1

fi − (m− 5)− 2 + 3 ≤ 2m + 7 ≤ 3m− 15 = 3k − 6.

It only remains to prove the above claim. The idea is to find v, w in such a way
that fv, fw are small and at the same time b2w − b2v lies in a prescribed interval
that depends on the size of fu. It turns out that the optimum strategy for such an
approach is the following. First, for any positive integer κ ≥ 2, introduce

Iκ = {i | 1 ≤ i ≤ m− 2, i -= u, fi ≤ κ}.

Denote by x the number of indices i -= u for which fi > κ. Then

(m− 3− x) + (κ + 1)x ≤
m−2∑

i=1

fi − fu ≤ (3m + 1)− (m− 5) = 2m + 6.

Thus, κx ≤ m + 9, and m − 3 − x ≥ (1 − 1/κ)m − 3 − 9/κ. We have proved the
following.

Claim 8 |Iκ| ≥
κ− 1

κ
m− 9

κ
− 3. In particular t = |I7| ≥

6m− 30
7

.

Write c0 = 0 and let
⋃

i∈I7

{b2i−1, b2i} = {c1 < c2 < . . . < c2t−1 < c2t}.

Now we separate two subcases as follows.

Case 3a. m− 5 ≤ fu ≤ 2m− 14. We will prove that there exist 1 ≤ i < j ≤ t such
that

m

2
− 3 ≤ ∆i,j = c2j − c2i ≤ m− 7. (11)

Since we have
1 ≤ c2i − c2i−1, c2j − c2j−1 ≤ 7, (12)

we can argue that

m− 12 ≤ 2∆i,j − 6 ≤ c2j + c2j−1 − c2i − c2i−1 ≤ 2∆i,j + 6 < 2m− 7,

and that implies (10). If there exists 1 ≤ i ≤ t− 1 such that

m

2
− 3 ≤ c2i+2 − c2i ≤ m− 7,
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then (11) follows immediately. Otherwise we have

c2i+2 − c2i ≤
m

2
− 7

2
or c2i+2 − c2i ≥ m− 6

for every integer 1 ≤ i ≤ t− 1. In this way we distinguish between ‘small gaps’ and
‘large gaps’ in the sequence c2, c4, . . . , c2t. The large gaps partition this sequence
into ‘blocks’, where the gap between two consecutive elements within a block is
always small. For such a block B = (c2i, c2i+2, . . . , c2i′), we call the length of B the
quantity $(B) = 2(i′ − i). Since

2 ·
(m

2
− 7

2

)
< m− 6,

in order to have a pair i, j with (11), it is enough to prove that at least one block
has a length ≥ m/2− 3. Then the smallest integer j satisfying c2j − c2i ≥ m/2− 3
will be convenient.

We claim that there cannot be more than three blocks. Indeed, since every gap
is at least 2, were there three or more large gaps, we would find that

4m− 1 ≥
t−1∑

i=0

(c2i+2 − c2i) ≥ 3(m− 6) + (t− 3)2

≥ 3m− 18 + 2
(6m− 30

7
− 3

)
,

implying m ≤ 221/5 < 45, a contradiction.
Since there are at most three blocks, one must contain at least t/3 different c2i’s,

and thus its length

$(B) ≥ 2
( t

3
− 1

)
≥ 4m− 20

7
− 2.

Given m ≥ 26, we conclude that indeed $(B) ≥ m/2− 3.

Case 3b. 2m− 13 ≤ fu ≤ 2m + 4. This time we prove that

m

2
+ 6 ≤ ∆i,j ≤

3
2
m− 21

2
(13)

holds with suitable 1 ≤ i < j ≤ t. In view of (12) this implies

m + 6 ≤ 2∆i,j − 6 ≤ c2j + c2j−1 − c2i − c2i−1 ≤ 2∆i,j + 6 ≤ 3m− 15,

and from that (10) follows. Similarly to the previous case, we may assume that
there are only small and large gaps, which in this case means that

c2i+2 − c2i ≤
m

2
+

11
2

or c2i+2 − c2i ≥
3
2
m− 10
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holds for every integer 1 ≤ i ≤ t− 1. Given that (here we use m ≥ 44)

2 ·
(m

2
+

11
2

)
<

3
2
m− 10,

it suffices to prove that there is a block B with $(B) ≥ m/2 + 6.
If there were two or more large gaps, we would find that

4m− 1 ≥
t−1∑

i=0

(c2i+2 − c2i) ≥ 2
(3

2
m− 10

)
+ (t− 2)2

≥ 3m− 20 + 2
(6m− 30

7
− 2

)
,

implying m ≤ 221/5 < 45, a contradiction. Therefore there are at most two blocks,
one of which containing at least t/2 different c2i’s. The length of that block thus
satisfies

$(B) ≥ 2
( t

2
− 1

)
≥ 6m− 30

7
− 2.

Since m ≥ 172/5, we find that $(B) ≥ m/2 + 6, and the proof is complete.

3. The Proof of Theorem 3

Obviously we may assume that ε > 0 is small enough so that all the below arguments
work. We fix such an ε and assume that n is large enough. As in the proof of
Theorem 1, we may assume that n = 2m is an even number. Put c = 1/5− 2ε. We
will prove that there exists an integer k ≥ (1− c)m− 7 and a partition in the form
(4) such that for ei = xi − yi (1 ≤ i ≤ k) and F = N +

∑n−2k
i=1 (−1)izi the following

conditions hold:
k∑

i=1

ei ≤ 4k − 12, (14)

ei ≤ (1− c)m− 11 ≤ k − 4 for i = 1, 2, . . . , k , (15)

|F | ≤ (1− c)m− 6 ≤ k + 1 , and (16)
∑

ei≤s

ei ≥ s for s = 1 and s = 2 . (17)

As in the proof of Theorem 1, we can apply Lemma 6 with β = 4, and then Lemma
7 gives the result.

Clearly there exist 1 ≤ µ, ν ≤ n−1, µ -∈ {ν−1, ν, ν +1} such that aν+1−aν = 1
and aµ+1 − aµ ≤ 2. Putting x1 = aν+1, y1 = aν , x2 = aµ+1, y2 = aµ then takes
care of (17). Enumerate the remaining n− 4 elements of the sequence (ai) as

1 ≤ b1 < b2 < . . . < b2m−4 ≤ 4m− 2.
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Take q = +cm,. Since

q∑

i=1

(b2m−3−i − bi) ≥
q∑

i=1

(2m− 2i− 3) = 2qm− q(q + 4)

> 2cm2 − (cm + 1)(cm + 5) = (2c− c2)m2 − (6cm + 5)

>
( 9

25
− 16

5
ε− 4ε2

)
m2 − 2m >

( 9
25

− 4ε
)
m2 ≥ |N |

and b2m−3−i − bi ≤ 4m− 3 for every i, there exists an integer 0 ≤ r < cm + 1 such
that

∣∣∣N − sgn(N)
r∑

i=1

(b2m−3−i − bi)
∣∣∣ ≤ 2m− 2,

where sgn(N) = +1, if N ≥ 0 and sgn(N) = −1, if N < 0. Consider

r + 1 ≤ br+1 < br+2 < . . . < b2m−4−r ≤ 4m− 2− r,

and let fi = br+2i − br+2i−1 for 1 ≤ i ≤ m− 2− r, then

m−r−2∑

i=1

fi ≤
(
(4m− 2− r)− (r + 1)

)
− (m− r − 3) ≤ 3m. (18)

Were there 3 or more indices i with fi > (1− c)m− 11, it would imply

m−r−2∑

i=1

fi > 3
(
(1− c)m− 11

)
+ (m− r − 5) > (4− 4c)m− 39 > 3m,

a contradiction, if m is large enough. Thus there exist an integer s ∈ {0, 1, 2}
and indices i1, . . . , is such that fi > (1 − c)m − 11 if and only if i ∈ {i1, . . . , is}.
Moreover, if s ≥ 1, then for each j ∈ {1, . . . , s} we have

fij ≤ 3m− (m− r − 3) < (2 + c)m + 4.

Consequently, there exist δ1, . . . , δs ∈ {−1,+1} such that

∣∣∣N − sgn(N)
r∑

i=1

(b2m−3−i − bi)−
s∑

j=1

δjfij

∣∣∣ < (2 + c)m + 4. (19)

Put κ = +3/ε, ≤ (1− c)m− 11 and introduce

Iκ = {i | 1 ≤ i ≤ m− r − 2, fi ≤ κ}.
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Denoting by x the number of indices i with fi > κ we have

(m− r − 2− x) + (κ + 1)x ≤
m−r−2∑

i=1

fi ≤ 3m,

implying κx < (2 + c)m + 3, and thus

t = |Iκ| = m− r − 2− x >
(
1− c− 2 + c

κ

)
m− 3− 3

κ
>

(4
5

+ ε
)
m.

Write c0 = 0 and let
⋃

i∈Iκ

{br+2i−1, br+2i} = {c1 < c2 < . . . < c2t−1 < c2t}.

We prove that there exist 1 ≤ i1 < j1 ≤ t such that

2
5
m ≤ ∆1 = c2j1 − c2i1 ≤

4
5
m. (20)

This follows immediately if there exists 1 ≤ i ≤ t− 1 such that

2
5
m ≤ c2i+2 − c2i ≤

4
5
m,

otherwise we have

c2i+2 − c2i <
2
5
m or c2i+2 − c2i >

4
5
m

for every integer 1 ≤ i ≤ t − 1. Gaps in the sequence c2, c4, . . . , c2t, which are
larger than 4m/5, partition this sequence into blocks, where the gap between two
consecutive elements within a block is always smaller than 2m/5. We claim that
there cannot be more than three such blocks. Were there on the contrary at least
three large gaps, we would find that

4m− 2 ≥
t−1∑

i=0

(c2i+2 − c2i) > 3 · 4
5
m + (t− 3) · 2 > (4 + 2ε)m− 6,

a contradiction. Now one of the blocks must contain at least t/3 different c2i’s, and
thus its length satisfies

$(B) ≥ 2
( t

3
− 1

)
>

2
5
m.

Consequently, (20) holds with suitable elements c2i1 , c2j1 of B. Removing i1, j1 from
Iκ and repeating the argument we find 1 ≤ i2 < j2 ≤ t such that {i2, j2}∩{i1, j1} =
∅ and 2m/5 ≤ ∆2 = c2j2 − c2i2 ≤ 4m/5. Since for α = 1, 2 we have

1 ≤ c2iα − c2iα−1, c2jα − c2jα−1 ≤ κ, (21)

we can argue that

2∆α − κ + 1 ≤ Γα = c2jα + c2jα−1 − c2iα − c2iα−1 ≤ 2∆α + κ− 1,
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that is,
4
5
m− 3

ε
< Γα <

8
5
m +

3
ε
. (22)

In view of (19) and (22), there exist an integer p ∈ {0, 1, 2} and η1, . . . , ηp ∈
{−1,+1} such that

∣∣∣N − sgn(N)
r∑

i=1

(b2m−3−i − bi)−
s∑

j=1

δjfij −
p∑

α=1

ηαΓα

∣∣∣ <
4
5
m +

3
2ε

≤ (1− c)m− 6.

Consequently, we can choose k = m− r − s− 2p > (1− c)m− 7, and the elements
of the set

r⋃

i=1

{bi, b2m−3−i} ∪
s⋃

j=1

{br+2ij , br+2ij−1} ∪
p⋃

α=1

{c2iα , c2iα−1, c2jα , c2jα−1}

can be enumerated as z1, . . . , zn−2k so that F = N +
∑n−2k

i=1 (−1)izi satisfies (16).
Since fi ≤ (1 − c)m − 11 holds for every 1 ≤ i ≤ m − r − 2, i -∈ {i1, . . . , is},
removing z1, . . . , zn−2k from the sequence b1, . . . , b2m−4, the rest can be rearranged
as x3, y3, . . . , xk, yk such that 1 ≤ ei = xi − yi satisfies (15). Finally, it follows from
(18) that

k∑

i=1

ei ≤
m−r−2∑

i=1

fi + 3 ≤ 3m + 3 ≤ (4− 4c)m− 40 ≤ 4k − 12,

therefore condition (14) is also fulfilled. This completes the proof of Theorem 3.
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