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Abstract
Let (V,E) be the coprime graph with vertex set V = {1, 2, . . . , n} and edges (i, j) ∈
E if gcd(i, j) = 1. We determine the kernels of the coprime graph and its loopless
counterpart as well as so-called simple bases for them (in case such bases exist),
which means that basis vectors have entries only from {−1, 0, 1}. For the loopless
version knowledge about the value distribution of Mertens’ function is required.

1. Introduction

For each integer n > 1 the “traditional” coprime graph TCGn = (V,E) has the
vertex set V = {1, 2, . . . , n} and edges (i, j) ∈ E if and only if gcd(i, j) = 1.
Obviously, TCGn has a loop at 1. Since one usually prefers loopless graphs, we
also consider the slightly modified loopless coprime graph LCGn = (V ′, E′) with
V ′ = V and E′ = E \ {(1, 1)}. With regard to what we intend to prove LCGn

requires more involved techniques than TCGn. For that reason we shall mainly
deal with LCGn and comment only in the final section on the corresponding results
for TCGn, which can be obtained by the same method with less effort.

The first problem concerning the coprime graph and its subgraphs was introduced
by Erdős [8] in 1962. Meanwhile interesting features relating number theory and
graph theory have been unearthed (for various “graphs on the integers” the reader
is referred to [17], Chapter 20, 7.4):

• In 1984 Pomerance and Selfridge [18] proved Newman’s coprime mapping con-
jecture: If I1 = {1, 2, . . . , n} and I2 is any interval of n consecutive integers,
then there is a perfect coprime matching from I1 to I2. Note that the state-
ment is not true if I1 is also an arbitrary interval of n consecutive integers.
Example: I1 = {2, 3, 4} and I2 = {8, 9, 10}; any one-to-one correspondence
between I1 and I2 must have at least one pair of even numbers in the corre-
spondence.

• In a series of papers between 1994 and 1996 Ahlswede and Khachatrian (cf.
[2], [3], [4]) and very recently Ahlswede and Blinovsky [1] proved results on
extremal sets without coprime elements, extremal sets without k + 1 pairwise
coprime elements, and sets of integers with pairwise common divisors. Two
edges in the coprime graph are not coprime if they are connected in the com-
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plementary graph TCGn of TCGn. Therefore one has to search for maximal
complete subgraphs in TCGn.

• In 1996 Erdős and G.N. Sárközy [9] gave lower bounds for the maximal length
of cycles in the coprime graph. Three years later Sárközy [23] studied complete
tripartite subgraphs in TCGn.

Let An = (ai,j)n×n be the adjacency matrix of LCGn, i.e.,

ai,j =
{

0 if gcd(i, j) > 1 or i = j = 1,
1 otherwise. (1)

Apparently LCGn is an undirected loopless graph, and An is symmetric.
For several decades spectra and eigenspaces of graphs (cf. [11]), that is, spec-

tra and eigenspaces of their adjacency matrices, have been studied for quite a few
different types of graphs (for references see [6], [7] or [10]). For reasons like char-
acterization of graphs or computational advantages it is of particular interest to
find so-called simple bases (all entries are −1, 0, 1) for eigenspaces, especially for
the kernel of a graph. Such bases can be found for trees and forests (see [20], [5]),
unicyclic graphs [21] and powers of circuit graphs [22].

Computational experiments provided evidence for the following observations:

• The dimensions of the kernels of the coprime graphs TCGn and LCGn, re-
spectively, are growing with n.

• These kernels always have a simple basis in the above sense.

It is the purpose of this work to clarify the observations made. In fact, we shall prove
precise formulae for dimKerTCGn and dimKerLCGn and construct an explicit
simple basis for each of them – if one exists. In order to determine those kernels
which have no simple basis, results about the Mertens function

M(n) :=
n∑

k=1

µ(k)

will be involved, where µ(n) denotes Möbius’ function.

2. Basic Facts

We denote by κ(m) =
∏

p∈P, p|m p the squarefree kernel of a positive integer m. For
each squarefree integer k > 1 the vector b = (b1, b2, . . . , bn) ∈ Rn is called k-basic
if for some m, k < m ≤ n, satisfying κ(m) = k,

bj =






1 for j = k,
–1 for j = m,
0 otherwise.
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If b ∈ Rn is k-basic for some squarefree k, we call it a basic vector. The set of all
basic vectors b ∈ Rn will be denoted by Bn.

Lemma 1 The number ν(n) := |Bn| of basic vectors satisfies

ν(n) = n−
∑

k≤n

|µ(k)|.

Proof. Associate with each non-squarefree positive integer m ≤ n the basic vector
b ∈ Rn defined by

bj =






1 for j = κ(m),
–1 for j = m,
0 otherwise.

(2)

This correspondence is apparently one-to-one. Now ν(n) precisely counts the non-
squarefree positive integers m ≤ n. !

Proposition 2 Let n > 1 be an arbitrary integer.

(i) If b ∈ Bn then b ∈ KerAn.

(ii) Bn is linearly independent over R.

Proof. (i) Let b ∈ Bn, i.e., b is k-basic for some squarefree k > 1. Hence b has
entries 0 apart from bk = 1 and bm = −1 for some m satisfying k < m ≤ n and
κ(m) = k. Now let ai be the i-th row vector of An. Then we have for the scalar
product

ai · b = ai,k − ai,m = 0,

because k and m have the same prime factors and therefore gcd(i, k) and gcd(i,m)
are both 1 or both greater than 1. This means that b belongs to KerAn.

(ii) Let m ≤ n be a non-squarefree positive integer. Then there is precisely one
basic vector b ∈ Bn satisfying bm = −1, namely the vector defined in (2). All other
vectors b′ ∈ Bn have b′m = 0. Thus, Bn is linearly independent. !

From Proposition 2 we obtain immediately

Corollary 3 For any integer n > 1 we have dimR KerAn ≥ ν(n).

We shall prove in the sequel that in fact dimR KerAn = ν(n) for most n. This was
suggested by numerical calculations. It turns out, however, that there are infinitely
many exceptions.

3. Truncated Möbius Inversion and Mertens’ Function

In the sequel we make use of the truncated version of the Möbius inversion formula
(cf. [13, Chapter 6.4, Theorem 4.1]). Then an important role is played by Mertens’
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well-known function

M(n) :=
n∑

k=1

µ(k).

Trivially |M(n)| ≤ n for all n. The relevance of this function becomes immediately
clear from the facts that M(n) = o(n) is equivalent to the prime number theorem
and M(n) = O(n 1

2+ε) is equivalent to the Riemann hypothesis. The famous Mertens
conjecture from 1897 saying that |M(n)| <

√
n for all x > 1 was disproved by

Odlyzko and te Riele [15] in 1985. For our purpose it is essential to know something
about the value distribution of M(n) (see Remark 6(ii)).

Proposition 4 Let n > 1 be an arbitrary integer. A vector b = (b1, . . . , bn) ∈ Rn

lies in KerAn if and only if
(M(n)− 1) b1 = 0 (3)

and for 2 ≤ k ≤ n, µ(k) &= 0

n∑

j=k
j≡0 mod k

bj − b1 = 0. (4)

Proof. It is well-known that the summatory function ε(n) =
∑

d|n µ(d) of the
Möbius function satisfies

ε(n) =
{

1 for n = 1,
0 for n > 1.

This implies

ε(gcd(i, j)) =
∑

d|i
d|j

µ(d) =
{

1 for gcd(i, j) = 1,
0 for gcd(i, j) > 1, (5)

and therefore we have for the entries ai,j of the adjacency matrix of LCGn (see (1))

ai,j = ε(gcd(i, j))− γij (6)

for all 1 ≤ i, j ≤ n, where γij equals 1 for i = j = 1 and 0 otherwise.
For a given vector b = (b1, b2, . . . , bn) ∈ Rn let f : {1, 2, . . . , n} → R be defined

by

f(k) := µ(k)
n∑

j=1
j≡0 mod k

bj .
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By (5) and (6) it follows that the summatory function g of f satisfies, for 1 ≤ i ≤ n,

g(i) :=
∑

d|i

f(d) =
∑

d|i

µ(d)
n∑

j=1
j≡0 mod d

bj

=
n∑

j=1

bj

∑

d|i
d|j

µ(d) =
n∑

j=1

bjε(gcd(i, j)) (7)

=
n∑

j=1

(ai,jbj + γijbj) =
n∑

j=1

ai,jbj + γi1b1.

A vector b = (b1, . . . , bn) ∈ Rn lies in KerAn if and only if
∑n

j=1 ai,jbj = 0 for
1 ≤ i ≤ n. By (7) this is equivalent to g(i) = γi1b1 for 1 ≤ i ≤ n. By the truncated
version of the Möbius inversion formula (cf. [13], Chapt. 6.4, Theor. 4.1) this
means that, for 1 ≤ k ≤ n,

f(k) =
∑

d|k

µ(d)g
(k

d

)
= µ(k)g(1) = µ(k)b1,

and hence by the definition of f ,

µ(k)
n∑

j=1
j≡0 mod k

bj = µ(k)b1.

So far we have shown that b ∈ KerAn if and only if

n∑

j=1
j≡0 mod k

bj = b1 (1 ≤ k ≤ n, µ(k) &= 0). (8)

We have

n∑

k=2
µ(k)"=0

µ(k)
n∑

j=1
j≡0 mod k

bj =
n∑

k=2

µ(k)
n∑

j=2
j≡0 mod k

bj

=
n∑

j=2

bj

n∑

k=2
k|j

µ(k) =
n∑

j=2

bj

j∑

k=2
k|j

µ(k) (9)

=
n∑

j=2

bj(ε(j)− 1) = −
n∑

j=2

bj ,
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and by adding the corresponding equations for k = 2, . . . , n with µ(k) &= 0 in (8) we
obtain

−
n∑

j=2

bj =
n∑

k=2
µ(k)"=0

µ(k)
n∑

j=1
j≡0 mod k

bj =
n∑

k=2
µ(k)"=0

µ(k)b1 = b1

n∑

k=2

µ(k) = b1(M(n)− 1).

The addition of this to the equation for k = 1 in (8) gives

b1 =
n∑

j=1

bj −
n∑

j=2

bj = b1 + b1(M(n)− 1),

and replacing the equation for k = 1 in (8) by this one does not change the set of
solutions. This completes the proof of the proposition. !

4. Main Results

Theorem 5 For any integer n > 1 we have

dimR KerLCGn =
{

ν(n) for M(n) &= 1,
ν(n) + 1 for M(n) = 1, (10)

where ν(n) is defined in Lemma 1. Consequently

dimR KerLCGn =
(

1− 6
π2

)
n + O(

√
n). (11)

Proof. By Proposition 4 a vector b = (b1, . . . , bn) ∈ Rn lies in KerLCGn = KerAn

if and only if b satisfies the homogeneous system consisting of the linear equations
(4) for 2 ≤ k ≤ n, µ(k) &= 0, and, in addition, equation (3). Therefore we obtain

b2 +b4 +b6 +b8 +b10 . . . −b1 = 0
b3 +b6 +b9 . . . −b1 = 0

b5 +b10 . . . −b1 = 0
b6 . . . −b1 = 0

b7 . . . −b1 = 0
b10 . . . −b1 = 0

.. .
... =

...
. . .

... =
...

(M(n)− 1)b1 = 0






. (12)
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Apparently (12) is a homogeneous system in row-echelon form with n variables.
Hence the rank of the coefficient matrix Bn obviously satisfies

rank Bn =
{ ∑n

k=1 |µ(n)| for M(n) &= 1,∑n
k=1 |µ(n)|− 1 for M(n) = 1.

Consequently dimR KerLCGn = dimR KerAn = n− rank Bn, and by Lemma 1 this
proves (10).

It is well-known that

n∑

k=1

|µ(k)| =
1

ζ(2)
n + O(

√
n) =

6
π2

n + O(
√

n)

(cf. [12], p. 270). Now Lemma 1 and (10) imply (11). !

Remarks 6

(i) The proof of Theorem 5 showed that

b ∈ KerLCGn ⇐⇒ Bnb̃ = 0,

where Bn is the coefficient matrix of (12) and b̃ := (b2, b3, . . . , bn, b1).

(ii) Apparently dimR KerLCGn depends on the value of M(n), more precisely
on whether M(n) = 1 or not. Results of Pintz and others (cf. [16]) show
that M(n) oscillates between ±

√
n, and since |M(n + 1) −M(n)| ≤ 1, each

value between these bounds is attained infinitely many times. In particular
|{n : M(n) = 1}| = ∞. The smallest integers n > 1 with M(n) = 1 are
n = 94, 97, 98, 99, 100, 146, 147, 148, . . ..

Theorem 7 If n is an integer satisfying M(n) &= 1, we have the following:

(i) Bn is a basis of KerLCGn.

(ii) KerLCGn has a simple basis, i.e., the components of all basis vectors are 0,
1 or −1.

(iii) Let ι : Rn → Rn+1 with ι(b1, . . . , bn) := (b1, . . . , bn, 0) be the canonical injec-
tion. Then we have ι(KerLCGn) ⊆ KerLCGn+1.

Proof. The assertion (i) follows from Theorem 5, Lemma 1 and Proposition 2. This
immediately implies (ii).

It remains to show (iii). Note that putting a zero at the end of a basic vector of
Bn turns it into a basic vector of Bn+1, so that ι(Bn) ⊆ Bn+1. The desired result
now follows from part (i). !
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Theorems 5 and 7 imply that in case M(n) = 1 the linearly independent set
Bn of basic vectors needs a single additional vector b̃ ∈ Rn, say, to obtain a basis
of KerLCGn. Such a vector b̃ = (b̃1, . . . , b̃n) can easily be defined recursively in
the following fashion: First put b̃1 = 1. Since all vectors in Bn have first entry 0,
Bn∪{b̃} is linearly independent. Now the other coefficients of b̃ are defined working
down the subscripts according to (12) (where the ultimate equation disappears). Set
b̃n = 1 if n is squarefree, and 0 otherwise. If the coefficients b̃n, b̃n−1, . . . , b̃k+1 with
k ≥ 2 have been chosen, let

b̃k := 1−
∑

2≤j≤n
k

b̃j·k.

Obviously, b̃ satisfies (12) and hence lies in KerLCGn by Proposition 4.
Apparently, for sufficiently large n the vector b̃ is not simple, hence Bn ∪ b̃n is

not a simple basis of KerLCGn. In fact, we have

Theorem 8 For any integer n satisfying M(n) = 1, KerLCGn does not have a
simple basis.

Proof. In 1952, Nagura [14] gave a rather short proof for the fact that, given x ≥ 25,
there is always a prime p in the interval x < p ≤ 6

5x. Setting x = n
6 we obtain that

for every integer n ≥ 150 there is a prime p satisfying
n

6
< p ≤ n

5
. (13)

The primes 17 and 29, respectively, show that (13) is also valid if 94 ≤ n ≤ 100 or
146 ≤ n ≤ 149. By Remark 6(ii) we thus can find a prime p in the interval (13) for
each integer n > 1 satisfying M(n) = 1. Alternatively, this follows from the more
complicated estimates given later by Rosser and Schoenfeld [19].

By Proposition 4 the basis vectors of KerLCGn are described by (12). Since
M(n) = 1, the last equation of (12) disappears. Hence there is at least one basis
vector b, say, with b1 &= 0. We shall prove that b cannot be simple.

From the equations b3p − b1 = 0 and b5p − b1 = 0 of (12), we get b3p = b5p = b1.
The equation b2p + b4p − b1 = 0 implies b2p + b4p = b1. By inserting these into the
equation bp + b2p + b3p + b4p + b5p − b1 = 0, we finally obtain bp = −2b1. So b has
the entries b1 &= 0 and bp = −2b1, thus it is not simple. !

5. The Traditional Coprime Graph

Let us finally consider the traditional coprime graph TCGn having a loop at the
vertex 1, i.e., its adjacency matrix Ãn = (ãi,j)n×n is defined as

ãi,j =
{

0 if gcd(i, j) > 1,
1 otherwise.



INTEGERS: 9 (2009) 577

Then the analogue of Proposition 4 reads

Proposition 9 Let n > 1 be an arbitrary integer. A vector b = (b1, . . . , bn) ∈ Rn

lies in KerÃn if and only if
b1 = 0

and for 2 ≤ k ≤ n, µ(k) &= 0
n∑

j=k
j≡0 mod k

bj = 0.

The proof of Proposition 9 as well as those of the subsequent main results are
easily obtained by adjusting the proofs of Proposition 4 and Theorems 5 and 7
accordingly.

Theorem 10 For any integer n > 1 we have dimR KerTCGn = ν(n), and

dimR KerTCGn = (1− 6
π2

)n + O(
√

n).

Theorem 11 For each positive integer n, we have

(i) Bn is a basis of KerTCGn.

(ii) KerTCGn has a simple basis, i.e., the components of all basis vectors are 0,
1 or −1.

(iii) Let ι : Rn → Rn+1 with ι(b1, . . . , bn) := (b1, . . . , bn, 0) be the canonical injec-
tion. Then we have ι(KerTCGn) ⊆ KerTCGn+1.
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[17] C. Pomerance and A. Sárközy, Combinatorial Number Theory, in R.L. Graham, M. Grötschel
and L. Lovász (editors), Handbook of Combinatorics, vol. I, MIT Press, 1995.

[18] C. Pomerance and J.L. Selfridge, Proof of D.J. Newman’s coprime mapping conjecture,
Mathematika 27 (1980), 69-83.

[19] J.B. Rosser and L. Schoenfeld, Sharper bounds for Chebyshev functions θ(x) and ψ(x), Math.
Comput. 29 (1975), 243-269.

[20] J.W. Sander and T. Sander, On simply structured bases of tree kernels, AKCE J. Graphs
Combin. 2 (2005), 45-56.

[21] T. Sander and J.W. Sander, On simply structured kernel bases of unicyclic graphs, AKCE
J. Graphs Combin. 4 (2007), 61-82.

[22] J.W. Sander and T. Sander, On kernels of circuit graphs and their powers, Mathematik-
Berichte der TU Clausthal 11 (2008), 1-31.



INTEGERS: 9 (2009) 579
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