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Abstract
In this paper, we prove the following result: Let A be an infinite set of positive
integers. For all positive integer n, let τn denote the smallest element of A which
doesn’t divide n. Then we have

lim
N→+∞

1
N

N∑

n=1

τn =
∞∑

n=0

1
lcm{a ∈ A | a ≤ n} .

In the two particular cases when A is the set of all positive integers and when
A is the set of the prime numbers, we give a more precise result for the average
asymptotic behavior of (τn)n. Furthermore, we discuss the irrationality of the limit
of τn (in the average sense) by applying a result of Erdős.

1. Introduction and Results

In Number Theory, it is frequent that a sequence of positive integers does not have
a regular asymptotic behavior but has a simple and regular asymptotic average
behavior. As examples, we can cite the following:

(i) The sequence (dn)n≥1, where dn denotes the number of divisors of n.

(ii) The sequence (σ(n))n≥1, where σ(n) denotes the sum of divisors of n.

(iii) The Euler totient function (ϕ(n))n≥1, where ϕ(n) denotes the number of
positive integers, not exceeding n, that are relatively prime to n.

We refer the reader to [3] for many other examples.
In this paper, we give another type of sequence which we describe as follows:

Let a1 < a2 < . . . be an increasing sequence of positive integers which we denote
by A. For all positive integers n, let τn denote the smallest element of A which
doesn’t divide n. Then, we shall prove the following theorem.



INTEGERS: 9 (2009) 556

Theorem 1 We have:

lim
N→+∞

1
N

N∑

n=1

τn =
∞∑

n=0

1
lcm{a ∈ A | a ≤ n}

in both cases when the series on the right-hand side converges or diverges.

In the particular cases when A is the sequence of all positive integers and when it
is the sequence of the prime numbers, we refine the proof of Theorem 1 to obtain
the following more precise results:

Corollary 2 For all positive integers n, let en denote the smallest positive integer
which doesn’t divide n. Then, we have

1
N

N∑

n=1

en = $1 + ON

(
(log N)2

N log log N

)
,

where
$1 :=

∑

n∈N

1
lcm(1, 2, . . . , n)

< +∞.

Corollary 3 For all positive integers n, let qn denote the smallest prime number
which doesn’t divide n. Then, we have

1
N

N∑

n=1

qn = $2 + ON

(
(log N)2

N log log N

)
,

where

$2 :=
∑

n∈N

1∏
p prime, p ≤ n

p
< +∞.

Further, by applying a result of Erdős [1], we derive a sufficient condition for the
average limit of (τn)n to be an irrational number. We have the following.

Proposition 4 Let d(A) denote the lower asymptotic density of A; that is,

d(A) := lim inf
N→+∞

1
N

∑

a∈A
a≤N

1.

Suppose that d(A) > 1 − log 2. Then the average limit of (τn)n is an irrational
number. In particular, the numbers $1 and $2, appearing respectively in Corollaries
2 and 3, are irrational.
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2. The Proofs

2.1. Some Preparations and Preliminary Results

Throughout this paper, we let N∗ denote the set N\{0} of all positive integers. For
a given real number x, we let %x& and 〈x〉 denote respectively the integer part and
the fractional part of x. Further, we adopt the natural convention that the least
common multiple and the product of the elements of an empty set are equal to 1.

We fix an increasing sequence of positive integers a1 < a2 < · · · , which we denote
by A, and for all positive integer n, we let τn denote the smallest element of A which
doesn’t divide n.

For all α ∈ A, we let L(α) denote the positive integer defined by

L(α) :=
lcm{a ∈ A | a ≤ α}
lcm{a ∈ A | a < α} . (1)

We then let B denote the subset of A defined by

B := {a ∈ A | L(a) > 1} . (2)

We shall see later that B is just the set of the values of the sequence (τn)n. We
begin with the following lemma.

Lemma 5 For all positive integer n, we have:

lcm {a ∈ A | a ≤ n} = lcm {b ∈ B | b ≤ n} .

Proof. Let n ≥ 1 and let a1, . . . , ak be the elements of A not exceeding n. By using
the following well-known property of the least common multiple:

lcm(a1, . . . , ai, . . . , ak) = lcm(lcm(a1, . . . , ai), ai+1, . . . , ak) (for i = 1, 2, . . . , k),

we remark that when ai *∈ B, we have L(ai) = 1 and then lcm(a1, . . . , ai) =
lcm(a1, . . . , ai−1). So, each ai not belonging to B can be eliminated from the list
a1, . . . , ak without changing the value of the least common multiple of that list. The
lemma follows. !

From Lemma 5, we derive another formula for L(α) (α ∈ A). For all α ∈ A we
have

L(α) =
lcm{b ∈ B | b ≤ α}
lcm{b ∈ B | b < α} . (3)

The next lemma gives a useful characterization for the terms of the sequence
(τn)n.

Lemma 6 For all positive integers n and all α ∈ A, we have:

τn = α ⇐⇒ ∃k ∈ N∗, k *≡ 0 mod L(α) such that n = k · lcm{b ∈ B | b < α}.
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Proof. Let n ∈ N∗ and α ∈ A. By the definition of the sequence (τn)n, the equality
τn = α amounts to saying that n is a multiple of each element a ∈ A satisfying
a < α and that n is not a multiple of α. Equivalently, τn = α if and only if n is a
multiple of lcm{a ∈ A | a < α} without being a multiple of lcm{a ∈ A | a ≤ α}.
So, it suffices to set k := n

lcm{a∈A | a<α} to obtain the equivalence:

τn = α ⇐⇒ ∃k ∈ N∗, k *≡ 0 mod L(α) such that n = k · lcm{a ∈ A | a < α}.

The lemma then follows from Lemma 5. !

Corollary 7 The sequence (τn)n takes its values in the set B. Besides, any element
of B is taken by (τn)n infinitely often.

Proof. Let α ∈ A. If α *∈ B, then we have L(α) = 1 and thus there is no k ∈ N∗

such that k *≡ 0 mod (L(α)). It follows, according to Lemma 6, that α cannot be
a value of (τn)n.
Next, if α ∈ B, then L(α) ≥ 2 and thus there are infinitely many k ∈ N∗ such that
k *≡ 0 mod (L(α)). This implies (according to Lemma 6) that there are infinitely
many n ∈ N∗ satisfying τn = α. The corollary is proved. !

Actually, given α ∈ B, Lemma 6 even gives an estimation for the number of
solutions of the equation τn = α in an interval [1, x] (x ∈ R+). For x > 0 and
α ∈ B, define

ϕ(α;x) := #{n ∈ N∗, n ≤ x | τn = α}.

Then, we have the following:

Corollary 8 Let α ∈ B and x > 0. Then we have

ϕ(α;x) =
L(α)− 1

lcm{b ∈ B | b ≤ α} .x + cα,x,

where |cα,x| < 1. Furthermore, if lcm{b ∈ B | b < α} > x, then we have ϕ(α;x) = 0.

Proof. Let α ∈ B and x > 0. By Lemma 6, we have

ϕ(α;x) = #
{

k ∈ N∗ | k ≤ x

lcm{b ∈ B | b < α} and k *≡ 0 mod (L(α))
}

=
⌊

x

lcm{b ∈ B | b < α}

⌋
−

⌊
x

L(α).lcm{b ∈ B | b < α}

⌋

=
x

lcm{b ∈ B | b < α} −
x

L(α).lcm{b ∈ B | b < α} + cα,x,

where cα,x := −
〈

x
lcm{b∈B | b<α}

〉
+

〈
x

L(α).lcm{b∈B | b<α}

〉
. So, it is clear that |cα,x| < 1.
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Next, we have

x

lcm{b ∈ B | b < α} −
x

L(α).lcm{b ∈ B | b < α} =
L(α)− 1

L(α).lcm{b ∈ B | b < α} .x

=
L(α)− 1

lcm{b ∈ B | b ≤ α} .x,

by using (3). This confirms the first part of the corollary.
Now, if lcm{b ∈ B | b < α} > x, then none of the integers of the range [1, x]

is a multiple of lcm{b ∈ B | b < α}. It follows, according to Lemma 6, that the
equation τn = α doesn’t have any solution in the range [1, x]. Hence ϕ(α, x) = 0.
This confirms the second part of the corollary and ends this proof. !

Now, let b1 < b2 < . . . be the elements of B. To prove our main result, we will
need some properties of the sequence (bn)n. For simplicity, for all n ≥ 1, let

Ln := L(bn) ≥ 2.

Then, by (3), we have:

Ln =
lcm{b ∈ B | b ≤ bn}
lcm{b ∈ B | b < bn}

=
lcm(b1, b2, . . . , bn)

lcm(b1, b2, . . . , bn−1)
,

which gives

lcm(b1, b2, . . . , bn) = Ln · lcm(b1, b2, . . . , bn−1) (∀n ≥ 1).

By iteration, we obtain for all n ≥ 1:

lcm(b1, b2, . . . , bn) = L1L2 · · ·Ln ≥ 2n. (4)

For the simplicity of some formulas in what follows, it is useful to set b0 := 0 and
L0 := 1. Note that b0 *∈ B. We have the two following lemmas:

Lemma 9 We have

∑

n∈N

1
lcm{a ∈ A | a ≤ n} =

∞∑

k=1

bk − bk−1

L1L2 · · ·Lk−1
.

Proof. According to Lemma 5, we have:

∑

n∈N

1
lcm{a ∈ A | a ≤ n} =

∑

n∈N

1
lcm{b ∈ B | b ≤ n}

=
∞∑

k=1

∑

bk−1≤n<bk

1
lcm{b ∈ B | b ≤ n}
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=
∞∑

k=1

bk − bk−1

lcm(b1, b2, . . . , bk−1)

=
∞∑

k=1

bk − bk−1

L1L2 · · ·Lk−1
(according to (4)).

The lemma is proved. !

Lemma 10 Let r be a positive integer and N be an integer such that

lcm(b1, b2, . . . , br−1) ≤ N < lcm(b1, b2, . . . , br).

Then, we have
1
N

N∑

n=1

τn = S1(N) + S2(N)f(N, r),

where

S1(N) := − br

L1L2 · · ·Lr
+

r∑

k=1

bk − bk−1

L1L2 · · ·Lk−1
, S2(N) :=

1
N

r∑

k=1

bk

and f(N, r) is a function of N and r, satisfying |f(N, r)| < 1.

Proof. According to Corollaries 7 and 8, and to relation (4), we have

1
N

N∑

n=1

τn =
1
N

∑

α∈B

∑

1≤n≤N,τn=α

α

=
1
N

∑

α∈B
αϕ(α;N)

=
1
N

∑

α∈B
lcm{b∈B | b<α}≤N

αϕ(α;N)

=
1
N

r∑

k=1

bkϕ(bk;N)

=
1
N

r∑

k=1

bk

(
Lk − 1

L1L2 · · ·Lk
N + ck,N

)
(where |ck,N | < 1)

=
r∑

k=1

bk

(
1

L1L2 · · ·Lk−1
− 1

L1L2 · · ·Lk

)
+

1
N

r∑

k=1

bkck,N .
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Then, the lemma follows by remarking that:

r∑

k=1

bk

(
1

L1L2 · · ·Lk−1
− 1

L1L2 · · ·Lk

)
=

r∑

k=1

(
bk−1

L1L2 · · ·Lk−1
− bk

L1L2 · · ·Lk

)

+
r∑

k=1

bk − bk−1

L1L2 · · ·Lk−1

= − br

L1L2 · · ·Lr
+

r∑

k=1

bk − bk−1

L1L2 · · ·Lk−1

and by defining

f(N, r) :=
∑r

k=1 bkck,N∑r
k=1 bk

,

which satisfies |f(N, r)| < 1 (since |ck,N | < 1 for all k ≥ 1). This completes the
proof. !

We will finally need two lemmas on the convergence of sequences and series.

Lemma 11 Let (xn)n≥1 be a real non-increasing sequence. Suppose that the series
∑∞

n=1 xn converges. Then, we have

xn = o

(
1
n

)
(as n tends to infinity).

Lemma 12 Let (θn)n≥1 be a sequence of real numbers. Suppose that θn tends to 0
as n tends to infinity. Then the sequence with general term given by

1
2n

n∑

k=1

2kθk

also tends to 0 as n tends to infinity.

Remark. Note that Lemma 12 is in fact a particular case of a more general theorem
in summability theory, called Silverman-Toeplitz theorem (see e.g., [2]).

2.2. Proofs of the Main Results

Proof of Theorem 1. Let N be a positive integer. Since (according to (4)) the
sequence (lcm(b1, b2, . . . , bn))n increases and tends to infinity with n, N must lie
somewhere between two consecutive terms of this sequence. So, let r ≥ 1 such that

lcm(b1, b2, . . . , br−1) ≤ N < lcm(b1, b2, . . . , br).
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Then, by using Lemma 10, we have

1
N

N∑

n=1

τn = S1(N) + S2(N)f(N), (5)

where

S1(N) := − br

L1L2 · · ·Lr
+

r∑

k=1

bk − bk−1

L1L2 · · ·Lk−1
, (6)

S2(N) :=
1
N

r∑

k=1

bk (7)

and |f(N)| < 1.
Next, set

S :=
∞∑

n=0

1
lcm{a ∈ A | a ≤ n} .

To prove Theorem 1, we distinguish two cases according to whether S converges
or diverges.
1st case: S < +∞. In this case, since the sequence (1/lcm{a ∈ A | a < n})n≥1 is
clearly non-increasing, then by Corollary 11, we have

lim
n→+∞

n

lcm{a ∈ A | a < n} = 0.

By specializing in this limit n to the integers bk (k ≥ 1), we obtain (according to
Lemma 5 and Formula (4)) that

lim
k→+∞

bk

L1L2 · · ·Lk−1
= 0. (8)

On the one hand, according to (8) and to Lemma 9, we have (because r tends to
infinity with N)

lim
N→+∞

S1(N) =
∞∑

k=1

bk − bk−1

L1L2 · · ·Lk−1
= S (9)

and, on the other hand, we have

S2(N) :=
1
N

r∑

k=1

bk ≤
1

lcm(b1, . . . , br−1)

r∑

k=1

bk =
r∑

k=1

bk

L1L2 · · ·Lr−1

≤
r∑

k=1

bk

L1L2 · · ·Lk−1
2k−r (since Li ≥ 2 for all i ≥ 1)

=
1
2r

r∑

k=1

2k bk

L1L2 · · ·Lk−1
.
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But by applying Lemma 12 for θk := bk
L1L2···Lk−1

which is seen (from (8)) to tend
to 0 as k tends to infinity, we have

lim
r→+∞

1
2r

r∑

k=1

2k bk

L1L2 · · ·Lk−1
= 0.

So, it follows (because r tends to infinity with N) that

lim
N→+∞

S2(N) = 0. (10)

Finally, by inserting (9) and (10) into (5), we get

lim
N→+∞

1
N

N∑

n=1

τn = S,

as required.
2nd case: S = +∞. In this case, by using (5), we are going to bound from below
1
N

∑N
n=1 τn by an expression tending to infinity with N .

On the one hand, we have

S1(N) := − br

L1L2 · · ·Lr
+

r∑

k=1

bk − bk−1

L1L2 · · ·Lk−1

= − br

L1L2 · · ·Lr
+

br − br−1

L1L2 · · ·Lr−1
+

r−1∑

k=1

bk − bk−1

L1L2 · · ·Lk−1

≥ br

L1L2 · · ·Lr−1
− 2 +

r−1∑

k=1

bk − bk−1

L1L2 · · ·Lk−1
(11)

(because we obviously have bi ≤ lcm(b1, . . . , bi) = L1L2 · · ·Li, for all i ≥ 1).
On the other hand, we have

S2(N) :=
1
N

r∑

k=1

bk ≤
r∑

k=1

bk

L1L2 · · ·Lr−1

≤ br

L1L2 · · ·Lr−1
+

r−1∑

k=1

L1L2 · · ·Lk

L1L2 · · ·Lr−1
(since bi ≤ L1L2 · · ·Li, for all i)

=
br

L1L2 · · ·Lr−1
+

r−1∑

k=1

1
Lk+1Lk+2 · · ·Lr−1

≤ br

L1L2 · · ·Lr−1
+

r−1∑

k=1

1
2r−k−1

(since Li ≥ 2 for all i)

<
br

L1L2 · · ·Lr−1
+ 2. (12)
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It follows, by inserting (11) and (12) into (5), that

1
N

N∑

n=1

τn = S1(N) + S2(N)f(N)

≥ S1(N)− S2(N) (since |f(N)| < 1)

≥
r−1∑

k=1

bk − bk−1

L1L2 · · ·Lk−1
− 4.

But since (according to Lemma 9)
∑∞

k=1
bk−bk−1

L1L2···Lk−1
= S = +∞, we conclude that

lim
N→+∞

1
N

N∑

n=1

τn = +∞.

This completes the proof of the theorem. !

Proof of Corollary 2. In the situation of Corollary 2, A is the set of all positive
integers and then B is the set of the powers of prime numbers. We must repeat
the proof of Theorem 1 and give more precision to the two quantities br

L1L2···Lr
and

∑r
k=1 bk. First let us show that

br ∼ log N (as N tends to infinity). (13)

By the definition of r, recall that

lcm(b1, b2, . . . , br−1) ≤ N < lcm(b1, b2, . . . , br). (14)

Next, by Lemma 5, we have (since A = N∗):

lcm(b1, b2, . . . , br) = lcm(1, 2, . . . , br) ,

lcm(b1, b2, . . . , br−1) = lcm(1, 2, . . . , br−1)

and by the prime number theorem (see, e.g., [3]), we have, on the one hand,

log lcm(1, 2, . . . , n) ∼ n (as n tends to infinity)

and, on the other hand (because B is the set of the powers of prime numbers),

bn ∼ bn−1 (as n tends to infinity).

Taking into account all these facts, we derive from (14) that effectively br ∼ log N ,
confirming (13).
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Now, we are going to be precise the order of magnitude of br
L1L2···Lr

and
∑r

k=1 bk.
We have

br

L1L2 · · ·Lr
=

br

lcm(b1, b2, . . . , br)
<

br

N
(according to (14)).

It follows, according to (13), that

br

L1L2 · · ·Lr
= O

(
log N

N

)
. (15)

Next, because B is the set of the powers of the prime numbers, we have

r∑

k=1

bk =
∑

e≥1,p prime

pe≤br

pe =
∑

p prime

p≤br

( ∑

1≤e≤( log br
log p )

pe

)
=

∑

p prime

p≤br

p

p− 1

(
p(

log br
log p ) − 1

)
.

Since for any prime number p, we have p
p−1 ≤ 2 and p(log br/ log p) ≤ plog br/ log p = br,

it follows that
r∑

k=1

bk ≤ 2brπ(br),

where π denotes the prime-counting function. But, by using again the prime number
theorem and (13), we have brπ(br) = O( b2r

log br
) = O( (log N)2

log log N ). Hence

r∑

k=1

br = O

(
(log N)2

log log N

)
. (16)

It finally remains to insert (15) and (16) into (6) and (7) respectively to obtain
(according to (5) and to Lemma 9) that

lim
N→+∞

1
N

N∑

n=1

τn =
∑

n∈N

1
lcm(1, 2, . . . , n)

+ O

(
(log N)2

N log log N

)
.

The corollary is proved. !

Proof of Corollary 3. In the situation of Corollary 3, A is the set of the prime
numbers and then B = A. So, for all n ≥ 1, we have an = bn = Ln = pn, where pn

denotes the nth prime number. Consequently, we have (in the context of the proof
of Theorem 1)

p1p2 · · · pr−1 ≤ N < p1p2 · · · pr. (17)

So, by the prime number theorem (see, e.g., [3]), we have

pr ∼ log N (as N tends to infinity).
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From this last, it follows that

br

L1L2 · · ·Lr
=

pr

p1p2 · · · pr
<

pr

N
∼ log N

N
(as N tends to infinity),

which gives
br

L1L2 · · ·Lr
= O

(
log N

N

)
(18)

and that
r∑

k=1

bk =
r∑

k=1

pk ∼
p2

r

2 log pr
∼ (log N)2

2 log log N
(as N tends to infinity),

which gives

1
N

r∑

k=1

bk = O

(
(log N)2

N log log N

)
. (19)

To conclude, it suffices to insert (18) and (19) into (6) and (7) respectively and use
(5) and Lemma 9. The result of the corollary follows. !

Now, we are going to prove Proposition 4. To do so, we need the following result
of Erdős [1].

Theorem (Erdős [1]) Let u1 < u2 < · · · be an infinite sequence of positive inte-
gers. Set U := {u1, u2, . . . } and suppose that

d(U) > 1− log 2 = 0.306 . . .

Then, the real positive number

∞∑

n=1

1
lcm{u ∈ U | u ≤ n}

is irrational.

Proof of Proposition 4. The first part of Proposition 4 which concerns a general
set A is clearly an immediate consequence of the Main Theorem 1 and the above
theorem of Erdős. Next, since the set N∗ of all positive integers has asymptotic
density 1 > 1 − log 2, the irrationality of the constant $1 of Corollary 2 is a direct
application of the first part of the proposition. Now, let us prove the irrationality
of the constant $2 appearing in Corollary 3. We must notice that this is not a direct
application of the first part of the proposition, because the set of the prime numbers
has asymptotic density 0 < 1− log 2.
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Let F denote the set of square-free numbers, that is the set of all positive integers
which are a product of pairwise distinct prime numbers. It is known that F has
asymptotic density 6

π2 > 1− log 2 (see, e.g., [3]). So, it follows by Erdős’ result that
the number

$3 :=
∑

n∈N

1
lcm{f ∈ F | f ≤ n}

is irrational.
But we remark that for all n ∈ N, we have:

lcm{f ∈ F | f ≤ n} =
∏

p prime

p≤n

p = lcm{p prime | p ≤ n},

which shows that actually $3 = $2. Consequently $2 is an irrational number. This
completes the proof of the proposition. !

Remark. The irrationality of the constants $1 and $2 appearing in Corollaries 2
and 3 respectively can be shown by a more elementary way than that presented in
Erdős’ paper for the general case.
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[1] P. Erdős, On the irrationality of certain series: problems and results, in New Advances in
Transcendence Theory (Durham, 1986), p. 102-109, Cambridge Univ. Press, Cambridge, 1988.

[2] G.H. Hardy, Divergent Series, Oxford Univ. Press, London, 1949.

[3] G.H. Hardy and E.M. Wright, The Theory of Numbers, 5th ed., Oxford Univ. Press, London,
1979.


