ON THE NUMBER OF ZERO-SUM SUBSEQUENCES OF RESTRICTED SIZE

Weidong Gao
Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, China
wdgao1963@yahoo.com.cn
Jiangtao Peng
Center for Combinatorics, LPMC-TJKLC, Nankai University, Tianjin, China
jtpeng1982@yahoo.com.cn

Received: 8/25/08, Revised: 5/23/09, Accepted: 5/30/09

Abstract

Let $n=2^{\lambda} m \geq 526$ with $m \in\{2,3,5,7,11\}$, and let S be a sequence of elements in $C_{n} \oplus C_{n}$ with $|S|=n^{2}+2 n-2$. Let $\mathrm{N}_{0}^{|G|}(S)$ denote the number of the subsequences with length $n^{2}(=|G|)$ and with sum zero. Among other results, we prove that either $\mathrm{N}_{0}^{|G|}(S)=1$ or $\mathrm{N}_{0}^{|G|}(S) \geq n^{2}+1$.

1. Introduction and Main Results

Let \mathbb{N} denote the set of positive integers and $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. Let \mathbb{Z} denote the set of integers. For $a, b \in \mathbb{Z}$ with $a \leq b$, we define $[a, b]=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$. Let G be an additively written finite abelian group. We denote by $|G|$ the order of G, and denote by $\exp (G)$ the exponent of G. Let $\mathcal{F}(G)$ be the free abelian monoid, multiplicatively written, with basis G. The elements of $\mathcal{F}(G)$ are called sequences over G. If a sequence $S \in \mathcal{F}(G)$ is written in the form $S=g_{1} \cdot \ldots \cdot g_{l}$, we call $|S|=l$ the length of S. For every $g \in G, k \in \mathbb{N}$, let $\mathrm{N}_{g}^{k}(S)$ denote the number of subsets $I \subseteq[1, l]$ such that $|I|=k$ and $\sum_{i \in I} g_{i}=g$. The famous Erdős-Ginzburg-Ziv theorem asserts that if $|S| \geq 2|G|-1$ then $\mathrm{N}_{0}^{|G|}(S) \geq 1[5]$.

When $G=C_{n}$ is the cyclic group of n elements, $\mathrm{N}_{g}^{n}(S)$ has been studied since 1967 by many authors including H.B. Mann, A. Bialostocki and M. Lotspeich, Z. Füredi and D.J. Kleitman, the first author, D.J. Grynkiewicz, and M. Kisin. Let p be a prime and let $S \in \mathcal{F}\left(C_{p}\right)$ with $|S|=2 p-1$. H.B. Mann [19] proved that if no element occurs more than p times in S then $\mathrm{N}_{g}^{p}(S) \geq 1$ for every $g \in C_{p}$. With the same assumption above, the first author [8] proved that $\mathrm{N}_{g}^{p}(S) \geq p$ for every $g \in C_{p} \backslash\{0\}$, and either $\mathrm{N}_{0}^{p}(S)=1$ or $\mathrm{N}_{0}^{p}(S) \geq p+1$. In 1999, the first author [9] showed that for every positive integer n, if $|S|=2 n-1$ then for every $g \in C_{n} \backslash\{0\}$ we have $\mathrm{N}_{g}^{n}(S)=0$ or $\mathrm{N}_{g}^{n}(S) \geq n$, and either $\mathrm{N}_{0}^{n}(S)=1$ or $\mathrm{N}_{0}^{n}(S) \geq n+1$. In 1992, Bialostocki and Lotspeich [2] formulated the following conjecture.

Conjecture 1 Let $n \geq 2$ be a positive integer, and let $S \in \mathcal{F}\left(C_{n}\right)$. Then

$$
\mathrm{N}_{0}^{n}(S) \geq\binom{\lfloor|S| / 2\rfloor}{ n}+\binom{\lceil|S| / 2\rceil}{ n}
$$

Conjecture 1.1 has been confirmed if one of the following conditions holds:
(i) $n=p^{a} q^{b}$ where p, q are primes (M. Kisin, [18]);
(ii) $|S| \geq n^{6 n}$ (Füredi and Kleitman, [6]);
(iii) $|S| \leq 6.5 n$ (Grynkiewicz, [16]).

However, there is almost no result on $\mathrm{N}_{g}^{|G|}(S)$ for non-cyclic group G. In this paper we shall obtain some sharp results on $\mathrm{N}_{g}^{|G|}(S)$ for $G=C_{n} \oplus C_{n}$ and $|S|=$ $n^{2}+2 n-2$.

Before we can state our main results (see Corollary 1.4 and 1.6 below) more precisely, let us introduce some notation and terminology first. We write sequence $S \in \mathcal{F}(G)$ in the form

$$
S=\prod_{g \in G} g^{\mathrm{v}_{g}(S)}
$$

with $\mathrm{v}_{g}(S) \in \mathbb{N}_{0}$ for all $g \in G$.
We call $\mathrm{v}_{g}(S)$ the multiplicity of g in S. We say that S contains g if $\mathrm{v}_{g}(S)>0$. The unit element $1 \in \mathcal{F}(G)$ is called the empty sequence. A sequence S_{1} is called a subsequence of S if $S_{1} \mid S$ in $\mathcal{F}(G)$ (equivalently, $\mathrm{v}_{g}\left(S_{1}\right) \leq \mathrm{v}_{g}(S)$ for all $g \in G$), and it is called a proper subsequence of S if it is a subsequence with $1 \neq S_{1} \neq S$. Let $S_{1}, S_{2} \in \mathcal{F}(G)$, we denote by $S_{1} S_{2}$ the sequence

$$
\prod_{g \in G} g^{\mathrm{v}_{g}\left(S_{1}\right)+\mathrm{v}_{g}\left(S_{2}\right)} \in \mathcal{F}(G)
$$

If a sequence $S \in \mathcal{F}(G)$ is written in the form $S=g_{1} \cdot \ldots \cdot g_{l}$, we tacitly assume that $l \in \mathbb{N}_{0}$ and $g_{1}, \ldots, g_{l} \in G$. For $g_{0} \in G$, we set $g_{0}+S=\left(g_{0}+g_{1}\right) \cdot \ldots \cdot\left(g_{0}+g_{l}\right) \in \mathcal{F}(G)$.

For a sequence

$$
S=g_{1} \cdot \ldots \cdot g_{l}=\prod_{g \in G} g^{\mathrm{v}_{g}(S)} \in \mathcal{F}(G)
$$

we call

$$
\begin{aligned}
& |S|=l=\sum_{g \in G} \mathrm{v}_{g}(S) \in \mathbb{N}_{0} \quad \text { the length of } S, \\
& \mathrm{~h}(S)=\max \left\{\mathrm{v}_{g}(S) \mid g \in G\right\} \in[0,|S|] \text { the maximum of the multiplicities of } S, \\
& \sigma(S)=\sum_{i=1}^{l} g_{i}=\sum_{g \in G} \mathrm{v}_{g}(S) g \in G \quad \text { the sum of } S \\
& \sum(S)=\left\{\sum_{i \in I} g_{i} \mid I \subseteq[1, l] \text { with } 1 \leq|I| \leq l\right\} \quad \text { the set of all subsums of } S
\end{aligned}
$$

The sequence S is called

- zero-sumfree if $0 \notin \sum(S)$,
- a zero-sum sequence if $\sigma(S)=0$,
- a minimal zero-sum sequence if it is a non-empty zero-sum sequence and every proper subsequence is zero-sumfree,
- a short zero-sum sequence if it is a zero-sum sequence of length $|S| \in[1, \exp (G)]$.

We denote by $\mathrm{D}(G)$ the smallest integer $l \in \mathbb{N}$ such that every sequence $S \in \mathcal{F}(G)$ of length $|S| \geq l$ has a nonempty zero-sum subsequence. The invariant $\mathrm{D}(G)$ is called the Davenport constant of G.

Let $n \geq 2$ be a positive integer. We say that n has Property B if every minimal zero-sum sequence in $\mathcal{F}\left(C_{n} \oplus C_{n}\right)$ of length $2 n-1$ contains some element with multiplicity $n-1$. It has been conjectured that

Conjecture 2 Every positive integer $n \geq 2$ has Property B (e.g., see [11], [12], [15]).

Conjecture 1.2 has been confirmed for $n=2^{\lambda} m$ and $m \in\{2,3,5,7,11\}$ (see [11], [14]).

Write the elements in $C_{n} \oplus C_{n}$ in the form (a, b). Let $\mathbf{e}_{\mathbf{1}}=(1,0)$ and $\mathbf{e}_{2}=(0,1)$. Then every $(a, b) \in C_{n} \oplus C_{n}$ can be expressed as $(a, b)=a \mathbf{e}_{\mathbf{1}}+b \mathbf{e}_{\mathbf{2}}$ uniquely. Let $\mathbf{0}=(0,0)$.

Now we can state our main results precisely.
Theorem 3 Let $G=C_{n} \oplus C_{n}$ with $n \geq 2$, and let $S \in \mathcal{F}(G)$ be a sequence of length $|S|=|G|+\mathrm{D}(G)-1=n^{2}+2 n-2$. If n has Property B then

$$
N_{g}^{|G|}(S)=0 \text { or } N_{g}^{|G|}(S) \geq n
$$

for every $g \in G \backslash\{\mathbf{0}\}$.
Corollary 4 Let $n=2^{\lambda} m$ with $m \in\{2,3,5,7,11\}$, and let $G=C_{n} \oplus C_{n}$. If $S \in \mathcal{F}(G)$ is a sequence of length $|S|=|G|+\mathrm{D}(G)-1=n^{2}+2 n-2$, then

$$
N_{g}^{|G|}(S)=0 \text { or } N_{g}^{|G|}(S) \geq n
$$

for every $g \in G \backslash\{\mathbf{0}\}$.
Theorem 5 Let $G=C_{n} \oplus C_{n}$ with $n \geq 526$, and let $S \in \mathcal{F}(G)$ be a sequence of length $|S|=|G|+\mathrm{D}(G)-1=n^{2}+2 n-2$. If n has Property B then

$$
N_{0}^{|G|}(S)=1 \text { or } N_{\mathbf{0}}^{|G|}(S) \geq n^{2}+1
$$

Corollary 6 Let $n=2^{\lambda} m \geq 526$ with $m \in\{2,3,5,7,11\}$, and let $G=C_{n} \oplus C_{n}$. If $S \in \mathcal{F}(G)$ is a sequence of length $|S|=|G|+\mathrm{D}(G)-1=n^{2}+2 n-2$, then

$$
N_{0}^{|G|}(S)=1 \text { or } N_{\mathbf{0}}^{|G|}(S) \geq n^{2}+1
$$

Now let us give some examples concerning the above results.
Example 7 If $G=C_{n} \oplus C_{n}, S=\mathbf{0}^{n^{2}+2 n-2}$, then $\mathbf{N}_{g}^{|G|}(S)=0$, for every $g \in G \backslash\{\mathbf{0}\}$.
Example 8 If $G=C_{n} \oplus C_{n}, S=\mathbf{0}^{n^{2}-1} \mathbf{e}_{\mathbf{1}}{ }^{n} \mathbf{e}_{\mathbf{2}}{ }^{n-1}$, then $\mathrm{N}_{\mathbf{e}_{\mathbf{1}}}^{|G|}(S)=n$.
Example 9 If $G=C_{n} \oplus C_{n}, n \geq 3, S=\mathbf{0}^{n^{2}} \mathbf{e}_{\mathbf{1}}{ }^{n-1} \mathbf{e}_{\mathbf{2}}{ }^{n-1}$, then $\mathrm{N}_{\mathbf{0}}^{|G|}(S)=1$.
Example 10 If $G=C_{n} \oplus C_{n}, n \geq 3, S=\mathbf{0}^{n^{2}+1} \mathbf{e}_{\mathbf{1}}{ }^{n-2} \mathbf{e}_{\mathbf{2}}{ }^{n-1}$, then $\mathrm{N}_{\mathbf{0}}^{|G|}(S)=n^{2}+1$.
Example 11 If $G=C_{2} \oplus C_{2}, S=\left(\mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}\right)^{2} \mathbf{e}_{\mathbf{1}}{ }^{2} \mathbf{e}_{\mathbf{2}}{ }^{2}$, then $\mathrm{N}_{\mathbf{0}}^{|G|}(S)=3$.
Remark 12 Example 7 and Example 8 show that the bounds in Theorem 3 are sharp. Example 9 and Example 10 show that the inequalities in Theorem 5 cannot be improved. Example 11 shows that the conclusion of Theorem 5 is not true for $G=C_{2} \oplus C_{2}$. Perhaps this is the only exceptional case (see Conjecture 24 in Section 5). We believe that the conclusion of Theorem 5 is true for all $n \geq 3$, and we have checked it for all $n \leq 10$. It would be interesting to prove Theorem 5 for all $n \in[11,525]$.

2. Preliminaries

To prove Theorem 3 and Theorem 5 we need some preliminaries, beginning with the following well-known result due to Olson [22].

Lemma $13 D\left(C_{n} \oplus C_{n}\right)=2 n-1$.
Lemma 14 ([15], Theorem 5.8.3) Every sequence S in $C_{n} \oplus C_{n}$ with $|S|=3 n-2$ contains a short zero-sum subsequence.

Lemma 15 ([15], Theorem 5.8.7) Let $G=C_{n} \oplus C_{n}$ with $n \geq 2$, and let $S \in \mathcal{F}(G)$ be a zero-sumfree sequence of length $|S|=2 n-2$. If n has Property B then there $i s$ an automorphism ϕ over G such that $\phi(S)=\mathbf{e}_{\mathbf{2}}{ }^{n-1} \prod_{i=1}^{n-1}\left(\mathbf{e}_{\mathbf{1}}+a_{i} \mathbf{e}_{\mathbf{2}}\right)$, or $\phi(S)=$ $\mathbf{e}_{\mathbf{2}}{ }^{n-2} \prod_{i=1}^{n}\left(\mathbf{e}_{\mathbf{1}}+a_{i} \mathbf{e}_{\mathbf{2}}\right)$ with $\sum_{i=1}^{n} a_{i} \equiv 1(\bmod n)$ and $h(S)=n-2$.

Lemma 16 Let $n \geq 3$ have Property B, and let $G=C_{n} \oplus C_{n}$. Let $S_{1}, S_{2} \in \mathcal{F}(G)$ with $\left|S_{1}\right|=\left|S_{2}\right|=2 n-2$. If $h\left(S_{1}\right) \leq 2 n-3$ and $h\left(S_{2}\right) \leq 2 n-3$, then there exist $T_{1} \mid S_{1}$ and $T_{2} \mid S_{2}$ such that $\sigma\left(T_{1}\right)=\sigma\left(T_{2}\right)$ and $\left|T_{1}\right|=\left|T_{2}\right| \in[1,2 n-2]$.

Proof. It is easy to check the lemma for $n=3$. So, we assume that $n \geq 4$. Let

$$
S_{1}=\prod_{i=1}^{2 n-2}\left(a_{i} \mathbf{e}_{\mathbf{1}}+b_{i} \mathbf{e}_{\mathbf{2}}\right)
$$

and

$$
S_{2}=\prod_{i=1}^{2 n-2}\left(c_{i} \mathbf{e}_{\mathbf{1}}+d_{i} \mathbf{e}_{\mathbf{2}}\right)
$$

Let $P_{2 n-2}$ denote the symmetric group on $[1,2 n-2]$. Clearly, it suffices to prove that $S_{1}-\delta\left(S_{2}\right)$ is not zero-sumfree for some $\delta \in P_{2 n-2}$, where $\delta\left(S_{2}\right)=$ $\prod_{i=1}^{2 n-2}\left(c_{\delta(i)} \mathbf{e}_{\mathbf{1}}+d_{\delta(i)} \mathbf{e}_{\mathbf{2}}\right)$.

Assume to the contrary that $S_{1}-\delta\left(S_{2}\right)$ is zero-sumfree for every $\delta \in P_{2 n-2}$. By Lemma $15, \mathrm{~h}\left(S_{1}-\delta\left(S_{2}\right)\right)=n-1$ or $n-2$ holds for every $\delta \in P_{2 n-2}$.
Case 1: $\mathrm{h}\left(S_{1}-\delta\left(S_{2}\right)\right)=n-2$ holds for every $\delta \in P_{2 n-2}$.
Especially, $\mathrm{h}\left(S_{1}-S_{2}\right)=n-2$. Again by Lemma 15 , there exists an automorphism ϕ over G such that

$$
\phi\left(S_{1}-S_{2}\right)=\mathbf{e}_{\mathbf{2}}{ }^{n-2} \prod_{i=1}^{n}\left(\mathbf{e}_{\mathbf{1}}+z_{i} \mathbf{e}_{\mathbf{2}}\right)
$$

Without loss of generality, we may assume that $\phi=\mathrm{id}$. Furthermore, by rearranging the subscripts, if necessary, we assume that

$$
\left(a_{1}-c_{1}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{1}-d_{1}\right) \mathbf{e}_{\mathbf{2}}=\cdots=\left(a_{n-2}-c_{n-2}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{n-2}-d_{n-2}\right) \mathbf{e}_{\mathbf{2}}=\mathbf{e}_{\mathbf{2}}
$$

and

$$
\left(a_{j}-c_{j}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{j}-d_{j}\right) \mathbf{e}_{\mathbf{2}}=\mathbf{e}_{\mathbf{1}}+z_{j-n+2} \mathbf{e}_{\mathbf{2}}
$$

for every $j \in[n-1,2 n-2]$.
Since $\mathrm{h}\left(S_{1}-S_{2}\right)=n-2$, we may assume that

$$
z_{1} \neq z_{2}
$$

Claim 1. $a_{i}-c_{j} \in\{1,2\}$ holds for any $i, j \in[n+1,2 n-2]$ with $i \neq j$.
Let $i, j \in[n+1,2 n-2]$ with $i \neq j$, and let τ be the transposition $(i, j) \in P_{2 n-2}$. Then

$$
\begin{aligned}
S_{1}-\tau\left(S_{2}\right)=\mathbf{e}_{\mathbf{2}}{ }^{n-2}\left(\left(a_{i}-c_{j}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{i}-d_{j}\right) \mathbf{e}_{\mathbf{2}}\right) & \left(\left(a_{j}-c_{i}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{j}-d_{i}\right) \mathbf{e}_{\mathbf{2}}\right) \\
& \times \prod_{k \neq i-n+2, j-n+2}\left(\mathbf{e}_{\mathbf{1}}+z_{k} \mathbf{e}_{\mathbf{2}}\right) .
\end{aligned}
$$

If $a_{i}-c_{j}=0$ then $\left(a_{i}-c_{j}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{i}-d_{j}\right) \mathbf{e}_{\mathbf{2}}=\left(b_{i}-d_{j}\right) \mathbf{e}_{\mathbf{2}} \neq \mathbf{e}_{\mathbf{2}}$ follows from $\mathrm{h}\left(S_{1}-\tau\left(S_{2}\right)\right)=n-2$. Therefore, $\mathbf{0} \in \sum\left(\mathbf{e}_{\mathbf{2}}{ }^{n-2}\left(\left(a_{i}-c_{j}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{i}-d_{j}\right) \mathbf{e}_{\mathbf{2}}\right)\right) \subseteq$ $\sum\left(S_{1}-\tau\left(S_{2}\right)\right)$, a contradiction.

Now we assume that $a_{i}-c_{j} \in[3, n-1]$. Let $I \subseteq[1, n] \backslash\{1,2, i-n-2, j-n-2\}$ be a subset with $|I|=n-\left(a_{i}-c_{j}\right)-1 \in[0, n-4]$. Then $a_{i}-c_{j}+1+\sum_{k \in I} 1=0$. Therefore

$$
\begin{aligned}
& \left\{\left(b_{i}-d_{j}+z_{1}+\sum_{k \in I} z_{k}\right) \mathbf{e}_{\mathbf{2}},\left(b_{i}-d_{j}+z_{2}+\sum_{k \in I} z_{k}\right) \mathbf{e}_{\mathbf{2}}\right\} \\
& \subseteq \sum\left(\left(\left(a_{i}-c_{j}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{i}-d_{j}\right) \mathbf{e}_{\mathbf{2}}\right) \prod_{k \neq i-n+2, j-n+2}\left(\mathbf{e}_{\mathbf{1}}+z_{k} \mathbf{e}_{\mathbf{2}}\right)\right) .
\end{aligned}
$$

Since $z_{1} \neq z_{2}$, we have that $b_{i}-d_{j}+z_{1}+\sum_{k \in I} z_{k} \neq b_{i}-d_{j}+z_{2}+\sum_{k \in I} z_{k}$. Therefore

$$
\begin{aligned}
& \mathbf{0} \in \sum\left(\mathbf{e}_{\mathbf{2}}{ }^{n-2}\left(b_{i}-d_{j}+z_{1}+\sum_{k \in I} z_{k}\right) \mathbf{e}_{\mathbf{2}}\right) \\
& \bigcup \sum\left(\mathbf{e}_{\mathbf{2}}{ }^{n-2}\left(b_{i}-d_{j}+z_{2}+\sum_{k \in I} z_{k}\right) \mathbf{e}_{\mathbf{2}}\right) \\
& \subseteq \sum\left(\mathbf{e}_{\mathbf{2}}{ }^{n-2}\left(\left(a_{i}-c_{j}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{i}-d_{j}\right) \mathbf{e}_{\mathbf{2}}\right) \prod_{k \neq i-n+2, j-n+2}\left(\mathbf{e}_{\mathbf{1}}+z_{k} \mathbf{e}_{\mathbf{2}}\right)\right) \\
& \subseteq \sum\left(S_{1}-\tau\left(S_{2}\right)\right)
\end{aligned}
$$

a contradiction. This proves Claim 1.
Note that $a_{i}-c_{j}+a_{j}-c_{i}=\left(a_{i}-c_{i}\right)+\left(a_{j}-c_{j}\right)=2$. This forces $a_{i}-c_{j}=1$ for any pair $i, j \in[n+1,2 n-2]$ with $i \neq j$. Therefore

$$
\begin{aligned}
& a_{n+1}=a_{n+2}=\cdots=a_{2 n-2}=a(\text { say }) \\
& c_{n+1}=c_{n+2}=\cdots=c_{2 n-2}=a-1
\end{aligned}
$$

Since $\mathrm{h}\left(S_{1}-S_{2}\right)=n-2$, we have that $z_{k-n+2} \neq z_{1}$ holds for some $k \in[n+$ $1,2 n-2]$. Let $j \in[n+1,2 n-2] \backslash\{k\}$, and let $i=n$. Then repeating the proof above we obtain that

$$
\begin{aligned}
& a_{n}=a_{n+1}=\cdots=a_{2 n-2}=a \\
& c_{n}=c_{n+1}=\cdots=c_{2 n-2}=a-1
\end{aligned}
$$

Similarly, we obtain that

$$
\begin{aligned}
& a_{n-1}=a_{n+1}=\cdots=a_{2 n-2}=a \\
& c_{n-1}=c_{n+1}=\cdots=c_{2 n-2}=a-1
\end{aligned}
$$

Hence

$$
\begin{equation*}
a_{n-1}=a_{n}=\cdots=a_{2 n-2}=c_{n-1}+1=c_{n}+1=\cdots=c_{2 n-2}+1=a \tag{1}
\end{equation*}
$$

Claim 2. $a_{i}-c_{j} \in\{0,1\}$ holds for every $i \in[1, n-2]$ and every $j \in[n+1,2 n-2]$.
Let $i \in[1, n-2], j \in[n+1,2 n-2]$, and let θ be the transposition $(i, j) \in P_{2 n-2}$. Then

$$
\begin{array}{r}
S_{1}-\theta\left(S_{2}\right)=\mathbf{e}_{\mathbf{2}}{ }^{n-3}\left(\left(a_{i}-c_{j}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{i}-d_{j}\right) \mathbf{e}_{\mathbf{2}}\right)\left(\left(a_{j}-c_{i}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{j}-d_{i}\right) \mathbf{e}_{\mathbf{2}}\right) \\
\times \prod_{k \neq j-n+2}\left(\mathbf{e}_{\mathbf{1}}+z_{k} \mathbf{e}_{\mathbf{2}}\right)
\end{array}
$$

Assume to the contrary that $a_{i}-c_{j} \in[2, n-1]$. Let $I \subseteq[1, n] \backslash\{j-n+2\}$ be any subset with $|I|=n-\left(a_{i}-c_{j}\right)$. Let $J=[1, n] \backslash\{\{j-n+2\} \cup I\}$. Then $a_{i}-c_{j}+\sum_{k \in I} 1=0$ and $a_{j}-c_{i}+\sum_{k \in J} 1=0$. Therefore

$$
\sigma\left(\left(\left(a_{i}-c_{j}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{i}-d_{j}\right) \mathbf{e}_{\mathbf{2}}\right) \prod_{k \in I}\left(\mathbf{e}_{\mathbf{1}}+z_{k} \mathbf{e}_{\mathbf{2}}\right)\right)=\left(b_{i}-d_{j}+\sum_{k \in I} z_{k}\right) \mathbf{e}_{\mathbf{2}}
$$

and

$$
\sigma\left(\left(\left(a_{j}-c_{i}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{j}-d_{i}\right) \mathbf{e}_{\mathbf{2}}\right) \prod_{k \in J}\left(\mathbf{e}_{\mathbf{1}}+z_{k} \mathbf{e}_{\mathbf{2}}\right)\right)=\left(b_{j}-d_{i}+\sum_{k \in J} z_{k}\right) \mathbf{e}_{\mathbf{2}}
$$

Since $\mathbf{0} \notin \sum\left(\mathbf{e}_{\mathbf{2}}{ }^{n-3}\left(\left(b_{i}-d_{j}+\sum_{k \in I} z_{k}\right) \mathbf{e}_{\mathbf{2}}\right)\right)$, we infer that

$$
b_{i}-d_{j}+\sum_{k \in I} z_{k} \in\{1,2\}
$$

Similarly

$$
b_{j}-d_{i}+\sum_{k \in J} z_{k} \in\{1,2\}
$$

Note that $a_{i}-c_{j}+a_{j}-c_{i}+(n-1)=0$. Similarly to above we have

$$
b_{i}-d_{j}+b_{j}-d_{i}+\sum_{k \in I} z_{k}+\sum_{k \in J} z_{k} \in\{1,2\} .
$$

These conditions force that $b_{i}-d_{j}+\sum_{k \in I} z_{k}=b_{j}-d_{i}+\sum_{k \in J} z_{k}=1$ holds for every $I \subseteq[1, n] \backslash\{j-n+2\}$ with $|I|=n-\left(a_{i}-c_{j}\right)$, which implies $z_{1}=z_{2}$, a contradiction. This proves Claim 2.

Since $a_{i}-c_{j}+a_{j}-c_{i}=1$, we have $a_{j}-c_{i} \in\{0,1\}$. Therefore

$$
\begin{equation*}
a_{i}-c_{j}=0, a_{j}-c_{i}=1 \text { or } a_{i}-c_{j}=1, a_{j}-c_{i}=0 \tag{2}
\end{equation*}
$$

holds for every pair of i, j with $i \in[1, n-2]$ and $j \in[n+1,2 n-2]$.

If $a_{j}-c_{i}=0$ then $a_{j}=a_{i}$ follows from $a_{i}-c_{i}=0$. By (1), $a_{i}=a_{n-1}=a_{n}=$ $\cdots=a_{2 n-2}$. Let $t \in[n-1,2 n-2]$. Let γ be the transposition $(i, t) \in P_{2 n-2}$. Then

$$
\begin{array}{r}
S_{1}-\gamma\left(S_{2}\right)=\mathbf{e}_{\mathbf{2}}{ }^{n-3}\left(\left(a_{i}-c_{t}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{i}-d_{t}\right) \mathbf{e}_{\mathbf{2}}\right)\left(\left(a_{t}-c_{i}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{t}-d_{i}\right) \mathbf{e}_{\mathbf{2}}\right) \\
\times \prod_{k \neq t-n+2}\left(\mathbf{e}_{\mathbf{1}}+z_{k} \mathbf{e}_{\mathbf{2}}\right)
\end{array}
$$

By (1) we have $a_{i}-c_{t}=1, a_{t}-c_{i}=0$. Therefore
$\sigma\left(\left(\left(a_{i}-c_{t}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{i}-d_{t}\right) \mathbf{e}_{\mathbf{2}}\right) \prod_{k \neq t-n+2}\left(\mathbf{e}_{\mathbf{1}}+z_{k} \mathbf{e}_{\mathbf{2}}\right)\right)=\left(b_{i}-d_{t}+\left(\sum_{k=1}^{n} z_{k}\right)-z_{t-n+2}\right) \mathbf{e}_{\mathbf{2}}$,
and

$$
\left(a_{t}-c_{i}\right) \mathbf{e}_{\mathbf{1}}+\left(b_{t}-d_{i}\right) \mathbf{e}_{\mathbf{2}}=\left(b_{t}-d_{i}\right) \mathbf{e}_{\mathbf{2}}
$$

Hence

$$
\begin{aligned}
\mathbf{0} & \notin \sum\left(\mathbf{e}_{2}^{n-3}\left(\left(b_{t}-d_{i}\right) \mathbf{e}_{2}\right)\left(\left(b_{i}-d_{t}+\left(\sum_{k=1}^{n} z_{k}\right)-z_{t-n+2}\right) \mathbf{e}_{2}\right)\right) \\
& \subseteq \sum\left(S_{1}-\gamma\left(S_{2}\right)\right) .
\end{aligned}
$$

This forces that

$$
b_{t}-d_{i}=b_{i}-d_{t}+\left(\sum_{k=1}^{n} z_{k}\right)-z_{t-n+2}=1
$$

Since $b_{i}-d_{i}=1$ we have $b_{i}=b_{t}$. Therefore, $a_{i} \mathbf{e}_{\mathbf{1}}+b_{i} \mathbf{e}_{\mathbf{2}}=a_{t} \mathbf{e}_{\mathbf{1}}+b_{t} \mathbf{e}_{\mathbf{2}}$ for every $t \in[n-1,2 n-2]$.

Now we have proved that if $a_{j}-c_{i}=0$ for some $i \in[1, n-2]$ and $j \in[n+1,2 n-2]$, then

$$
\begin{equation*}
a_{i} \mathbf{e}_{\mathbf{1}}+b_{i} \mathbf{e}_{\mathbf{2}}=a_{n-1} \mathbf{e}_{\mathbf{1}}+b_{n-1} \mathbf{e}_{\mathbf{2}}=\cdots=a_{2 n-2} \mathbf{e}_{\mathbf{1}}+b_{2 n-2} \mathbf{e}_{\mathbf{2}} \tag{3}
\end{equation*}
$$

Similarly, if $a_{i}-c_{j}=0$ for some $i \in[1, n-2]$ and some $j \in[n+1,2 n-2]$, then

$$
\begin{equation*}
c_{i} \mathbf{e}_{\mathbf{1}}+d_{i} \mathbf{e}_{\mathbf{2}}=c_{n-1} \mathbf{e}_{\mathbf{1}}+d_{n-1} \mathbf{e}_{\mathbf{2}}=\cdots=c_{2 n-2} \mathbf{e}_{\mathbf{1}}+d_{2 n-2} \mathbf{e}_{\mathbf{2}} \tag{4}
\end{equation*}
$$

From (2), (3) and (4) we infer that there are three possibilities:
(i) $a_{1}=a_{2}=\cdots=a_{2 n-2}=a$, which implies

$$
a_{1} \mathbf{e}_{\mathbf{1}}+b_{1} \mathbf{e}_{\mathbf{2}}=a_{2} \mathbf{e}_{\mathbf{1}}+b_{2} \mathbf{e}_{\mathbf{2}}=\cdots=a_{2 n-2} \mathbf{e}_{\mathbf{1}}+b_{2 n-2} \mathbf{e}_{\mathbf{2}}
$$

(ii) $c_{1}=c_{2}=\cdots=c_{2 n-2}=a-1$, which implies

$$
c_{1} \mathbf{e}_{\mathbf{1}}+d_{1} \mathbf{e}_{\mathbf{2}}=c_{2} \mathbf{e}_{\mathbf{1}}+d_{2} \mathbf{e}_{\mathbf{2}}=\cdots=c_{2 n-2} \mathbf{e}_{\mathbf{1}}+d_{2 n-2} \mathbf{e}_{\mathbf{2}} .
$$

(iii) $a_{i}=a_{n-1}=\cdots=a_{2 n-2}=a$ and $c_{j}=c_{n-1}=\cdots=c_{2 n-2}=a-1$ for some $i, j \in[1, n-2]$ with $i \neq j$, which implies

$$
a_{i} \mathbf{e}_{\mathbf{1}}+b_{i} \mathbf{e}_{\mathbf{2}}=a_{n-1} \mathbf{e}_{\mathbf{1}}+b_{n-1} \mathbf{e}_{\mathbf{2}}=\cdots=a_{2 n-2} \mathbf{e}_{\mathbf{1}}+b_{2 n-2} \mathbf{e}_{\mathbf{2}}
$$

and

$$
c_{j} \mathbf{e}_{\mathbf{1}}+d_{j} \mathbf{e}_{\mathbf{2}}=c_{n-1} \mathbf{e}_{\mathbf{1}}+d_{n-1} \mathbf{e}_{\mathbf{2}}=\cdots=c_{2 n-2} \mathbf{e}_{\mathbf{1}}+d_{2 n-2} \mathbf{e}_{\mathbf{2}}
$$

But we always get a contradiction. This completes the proof of Case 1.
Case 2: $\mathrm{h}\left(S_{1}-\delta\left(S_{2}\right)\right)=n-1$ holds for some $\delta \in P_{2 n-2}$. Since the proof is similar to and much easier than Case 1, we omit it here.

Lemma 17 Let $n \geq 3$ have Property B, and let $G=C_{n} \oplus C_{n}$. Let $S \in \mathcal{F}(G)$ be a zero-sumfree sequence of length $|S|=2 n-2$. Then for any $g \in G \backslash\{\mathbf{0}\}$, either $\mathrm{v}_{g}(S)=n-1$ or there exists a subsequence T of S such that $|T| \geq 2$ and $g=\sigma(T)$.

Proof. By Lemma 13 , for any $g \in G \backslash\{\mathbf{0}\},(-g) S$ contains a nonempty zero-sum subsequence S_{1}. Since S is zero-sumfree, we have $(-g) \mid S_{1}$. Let $S_{2}=S_{1}(-g)^{-1}$. Then $g=\sigma\left(S_{2}\right)$. If g is not a term of S then $\left|S_{2}\right| \geq 2$. Let $T=S_{2}$ and we are done. So we may assume that g is a term of S. Clearly, it suffices to prove that either $\mathrm{v}_{g}(S)=n-1$, or there is a subsequence W of S such that g is not a term of W and $g \in \sum(W)$.

By Lemma 15 there is an automorphism ϕ over G such that

$$
\phi(S)=\mathbf{e}_{\mathbf{2}} \prod_{i=1}^{2 n-2-r}\left(\mathbf{e}_{\mathbf{1}}+a_{i} \mathbf{e}_{\mathbf{2}}\right)
$$

where $r=\mathrm{h}(S)=n-1$ or $n-2$. Without loss of generality let $\phi=\mathrm{id}$.
Case 1: $S=\mathbf{e}_{\mathbf{2}}{ }^{n-1} \prod_{i=1}^{n-1}\left(\mathbf{e}_{\mathbf{1}}+a_{i} \mathbf{e}_{\mathbf{2}}\right)$.
Subcase 1.1: $a_{1}=a_{2}=\cdots=a_{n-1}$. Since g is a term of $S, g=\mathbf{e}_{\mathbf{2}}$ or $\mathbf{e}_{\mathbf{1}}+a_{1} \mathbf{e}_{\mathbf{2}}$. Therefore, $\mathrm{v}_{g}(S)=n-1$.

Subcase 1.2: $a_{1}=a_{2}=\cdots=a_{n-1}$ does not hold. Without loss of generality let $a_{1} \neq a_{2}$. If $g=\mathbf{e}_{\mathbf{2}}$ then $\mathrm{v}_{g}(S)=n-1$. Now assume $g=\mathbf{e}_{\mathbf{1}}+a_{i} \mathbf{e}_{\mathbf{2}}$ for some $i \in[1, n-$ 1]. Note that either $a_{i} \neq a_{1}$ and we have $g=\mathbf{e}_{\mathbf{1}}+a_{i} \mathbf{e}_{\mathbf{2}} \in \sum\left(\mathbf{e}_{\mathbf{2}}{ }^{n-1}\left(\mathbf{e}_{\mathbf{1}}+a_{1} \mathbf{e}_{\mathbf{2}}\right)\right)$, or $a_{i} \neq a_{2}$ and we have $g=\mathbf{e}_{\mathbf{1}}+a_{i} \mathbf{e}_{\mathbf{2}} \in \sum\left(\mathbf{e}_{\mathbf{2}}{ }^{n-1}\left(\mathbf{e}_{\mathbf{1}}+a_{2} \mathbf{e}_{\mathbf{2}}\right)\right)$.

Case 2: $\quad S=\mathbf{e}_{\mathbf{2}}{ }^{n-2} \prod_{i=1}^{n}\left(\mathbf{e}_{\mathbf{1}}+a_{i} \mathbf{e}_{\mathbf{2}}\right)$ and $\mathrm{h}(S)=n-2$. By rearranging the subscripts, if necessary, we can assume that $a_{1} \neq a_{2}$. By Lemma 15, we have $\mathbf{e}_{\mathbf{2}}=\sigma\left(\prod_{i=1}^{n}\left(\mathbf{e}_{\mathbf{1}}+a_{i} \mathbf{e}_{\mathbf{2}}\right)\right)$. So it remains to check the case that $g=\mathbf{e}_{\mathbf{1}}+a_{i} \mathbf{e}_{\mathbf{2}}$ for some $i \in[1, n]$.

Subcase 2.1: There are three distinct elements among of a_{1}, \ldots, a_{n}. Then there are two indices $j, k \in[1, n] \backslash\{i\}$ such that a_{i}, a_{j}, a_{k} are pairwise distinct. Since $\left[a_{j}, a_{j}+n-2\right] \cup\left[a_{k}, a_{k}+n-2\right]=[0, n-1] \backslash\left\{a_{j}+n-1\right\} \cup[0, n-1] \backslash\left\{a_{k}+n-1\right\}=$ $[0, n-1]$, we infer that $\left\{\mathbf{e}_{\mathbf{1}}, \mathbf{e}_{\mathbf{1}}+\mathbf{e}_{\mathbf{2}}, \ldots, \mathbf{e}_{\mathbf{1}}+(n-1) \mathbf{e}_{\mathbf{2}}\right\} \subseteq \sum\left(\mathbf{e}_{\mathbf{2}}{ }^{n-2}\left(\mathbf{e}_{\mathbf{1}}+a_{j} \mathbf{e}_{\mathbf{2}}\right)\right) \cup$ $\sum\left(\mathbf{e}_{\mathbf{2}}{ }^{n-2}\left(\mathbf{e}_{\mathbf{1}}+a_{k} \mathbf{e}_{\mathbf{2}}\right)\right)$. Hence

$$
g=\mathbf{e}_{\mathbf{1}}+a_{i} \mathbf{e}_{\mathbf{2}} \in \sum\left(\mathbf{e}_{\mathbf{2}}{ }^{n-2}\left(\mathbf{e}_{\mathbf{1}}+a_{j} \mathbf{e}_{\mathbf{2}}\right)\right) \cup \sum\left(\mathbf{e}_{\mathbf{2}}^{n-2}\left(\mathbf{e}_{\mathbf{1}}+a_{k} \mathbf{e}_{\mathbf{2}}\right)\right)
$$

Subcase 2.2: There are exactly two distinct elements among a_{1}, \ldots, a_{n}. Let $j \in[1, n]$ with $a_{j} \neq a_{i}$. If $a_{i} \neq a_{j}+n-1$ then $g=\mathbf{e}_{\mathbf{1}}+a_{1} \mathbf{e}_{\mathbf{2}} \in \sum\left(\mathbf{e}_{\mathbf{2}}{ }^{n-2}\left(\mathbf{e}_{\mathbf{1}}+a_{j} \mathbf{e}_{\mathbf{2}}\right)\right)$. Otherwise $a_{i}=a_{j}+n-1$. Let r be the number of $k \in\{1, \ldots, n\}$ such that $a_{k}=a_{i}$. By Lemma 15, $a_{1}+a_{2}+\cdots+a_{n} \equiv 1(\bmod n)$, that is, $r a_{i}+(n-r)\left(a_{i}+1\right) \equiv 1$ $(\bmod n)$. Hence, $r=n-1$ contradicting $\mathrm{h}(S)=n-2$.

Lemma 18 Let $n \geq 3$ have Property B, and let $G=C_{n} \oplus C_{n}$. Let $S \in \mathcal{F}(G)$ be a zero-sumfree sequence of length $|S|=2 n-3$, and let $W \in \mathcal{F}(G)$ be a nonempty zero-sum sequence. If W contains no $\mathbf{0}$ then there exist $W_{1} \mid W$ and $S_{1} \mid S$ such that $\sigma\left(W_{1}\right)=\sigma\left(S_{1}\right)$ and $1 \leq\left|W_{1}\right| \leq\left|S_{1}\right|$.

Proof. It is easy to check the lemma for $n \in\{3,4\}$.
Let $n \geq 5$. We may assume that W is a minimal zero-sum sequence. Let

$$
W=g_{1} \cdot \ldots \cdot g_{w}, \text { where } w=|W| \geq 2
$$

If $\left(-g_{i}\right) S$ contains a nonempty zero-sum subsequence S_{1}^{\prime} (say) for some $i \in[1, w]$, then $-g_{i} \mid S_{1}^{\prime}$ follows from S is zero-sumfree. Let $S_{1}=S_{1}^{\prime}\left(-g_{i}\right)^{-1}$ and $W_{1}=g_{i} \in$ $\mathcal{F}(G)$. Then $S_{1} \mid S, g_{i}=\sigma\left(S_{1}\right)$ and we are done.

Now we may assume that, for any $i \in[1, w],\left(-g_{i}\right) S$ is zero-sumfree. By Lemma 15 , there exists an automorphism ϕ over G such that

$$
\phi\left(\left(-g_{1}\right) S\right)=\mathbf{e}_{\mathbf{2}}^{r} \prod_{i=1}^{2 n-2-r}\left(\mathbf{e}_{\mathbf{1}}+z_{i} \mathbf{e}_{\mathbf{2}}\right)
$$

where $\mathrm{h}\left(\phi\left(\left(-g_{1}\right) S\right)\right)=r=n-1$ or $n-2$. Without loss of generality let $\phi=\mathrm{id}$. Then

$$
\left(-g_{1}\right) S=\mathbf{e}_{\mathbf{2}}^{r} \prod_{i=1}^{2 n-2-r}\left(\mathbf{e}_{\mathbf{1}}+z_{i} \mathbf{e}_{\mathbf{2}}\right)
$$

where $\mathrm{h}\left(\left(-g_{1}\right) S\right)=r=n-1$ or $n-2$. By rearranging the subscripts, if necessary, we may assume that

$$
-g_{1}=\mathbf{e}_{\mathbf{2}}, \text { or }-g_{1}=\mathbf{e}_{\mathbf{1}}+z_{1} \mathbf{e}_{\mathbf{2}} .
$$

Case 1: $w=2$. Then $g_{1}+g_{2}=\mathbf{0}$.
Subcase 1.1: $-g_{1}=\mathbf{e}_{\mathbf{1}}+z_{1} \mathbf{e}_{\mathbf{2}}$. Then $g_{2}=-g_{1}=\mathbf{e}_{\mathbf{1}}+z_{1} \mathbf{e}_{\mathbf{2}}$. If $r=n-1$, it is easy to see that $g_{2} \in \sum\left(\left(\mathbf{e}_{\mathbf{1}}+z_{2} \mathbf{e}_{\mathbf{2}}\right) \mathbf{e}_{\mathbf{2}}{ }^{n-1}\right) \subseteq \sum(S)$ and we are done. If $r=n-2$ then $\mathrm{h}\left(z_{2} z_{3} \cdot \ldots \cdot z_{n}\right) \leq n-2$. By rearranging the subscripts, if necessary, we assume that $z_{2} \neq z_{3}$. Furthermore, we may assume that $z_{1} \neq z_{2}+(n-1)$. Thus $g_{2} \in \sum\left(\left(\mathbf{e}_{\mathbf{1}}+z_{2} \mathbf{e}_{\mathbf{2}}\right) \mathbf{e}_{\mathbf{2}}{ }^{n-2}\right) \subseteq \sum(S)$ and we are done.

Subcase 1.2: $-g_{1}=\mathbf{e}_{\mathbf{2}}$. Then $g_{2}=-g_{1}=\mathbf{e}_{\mathbf{2}}$. Letting $S_{1}=\mathbf{e}_{2} \in \mathcal{F}(G)$ and $W_{1}=g_{2} \in \mathcal{F}(G)$ verify the lemma.
Case 2: $w \geq 3$. Let $i, j \in[1, w]$ be an arbitrary pair with $i \neq j$. By Lemma $13,\left(-g_{i}\right)\left(-g_{j}\right) S$ contains a nonempty zero-sum subsequence S_{2}^{\prime} (say). Since both sequences $\left(-g_{i}\right) S$ and $\left(-g_{j}\right) S$ are zero-sumfree, we have $\left(-g_{i}\right)\left(-g_{j}\right) \mid S_{2}^{\prime}$. Let $S_{2}=$ $S_{2}^{\prime}\left(-g_{i}\right)^{-1}\left(-g_{j}\right)^{-1}$. Then $S_{2} \mid S$ and $\left|S_{2}\right| \geq 1$. If $\left|S_{2}\right| \geq 2$, setting $S_{1}=S_{2}$ and $W_{1}=g_{i} g_{j}$ verifies the lemma. So, we may assume that $\left|S_{2}\right|=1$. Therefore, for any $i, j \in[1, w]$ with $i \neq j$,

$$
g_{i}+g_{j}
$$

is a term of S.
Subcase 2.1: $-g_{1}=\mathbf{e}_{\mathbf{1}}+z_{1} \mathbf{e}_{\mathbf{2}}$. Then $g_{1}=(n-1) \mathbf{e}_{\mathbf{1}}+\left(n-z_{1}\right) \mathbf{e}_{\mathbf{2}}$. For any $2 \leq i \leq w$, since $g_{1}+g_{i}$ is a term of S, we infer that $g_{i}=\mathbf{e}_{\mathbf{1}}+z \mathbf{e}_{\mathbf{2}}$ or $2 \mathbf{e}_{\mathbf{1}}+z \mathbf{e}_{\mathbf{2}}$ for some $z \in C_{n}$. Therefore, for any $i, j \in[2, w]$ with $i \neq j$ we have $g_{i}+g_{j}=a \mathbf{e}_{\mathbf{1}}+b \mathbf{e}_{\mathbf{2}}$ for some $a \in\{2,3,4\}$, a contradiction of $g_{i}+g_{j}$ is a term of S.

Subcase 2.2: $-g_{1}=\mathbf{e}_{2}$. Then $g_{1}=(n-1) \mathbf{e}_{2}$. For any $2 \leq i \leq w$, since $g_{1}+g_{i}$ is a term of S, we infer that $g_{i}=2 \mathbf{e}_{\mathbf{2}}$ or $\mathbf{e}_{\mathbf{1}}+z \mathbf{e}_{\mathbf{2}}$ for some $z \in C_{n}$. If $g_{i}=2 \mathbf{e}_{2}$, letting $W_{1}=g_{i}$ and $S_{1}=\mathbf{e}_{2}{ }^{2}$ verify the lemma. So we may assume that $g_{i}=\mathbf{e}_{\mathbf{1}}+z \mathbf{e}_{\mathbf{2}}$ for every $2 \leq i \leq w$. Therefore, for any $i, j \in[2, w]$ with $i \neq j$ we have $g_{i}+g_{j}=2 \mathbf{e}_{\mathbf{1}}+z^{\prime} \mathbf{e}_{\mathbf{2}}$, it is not a term of S, a contradiction. This completes the proof.

Lemma 19 ([7], Theorem 1) Let G be a finite abelian group, and let $S \in \mathcal{F}(G)$. If $|S|=|G|+\mathrm{D}(G)-1$ then $N_{0}^{|G|}(S) \geq 1$.

We also need the following technical results.
Lemma 20 Let $n \geq 3, k, p_{1}, \ldots, p_{k}$ be positive integers. If $p_{1}+p_{2}+\cdots+p_{k} \geq 3 n-2$ and $2 \leq p_{i} \leq 2 n-3$ for every $i \in[1, k]$, then $p_{1} p_{2} \cdots p_{k} \geq n^{2}+1$.

Proof. Since $2 \leq p_{i} \leq 2 n-3$ for every $i \in[1, k]$, we have

$$
p_{1} p_{2} \cdots p_{k} \geq p_{1}\left(p_{2}+\cdots+p_{k}\right) \geq p_{1}\left(3 n-2-p_{1}\right) \geq(2 n-3)(n+1) \geq n^{2}+1
$$

Lemma 21 Let A_{1}, \ldots, A_{l} be subsets of $[1, k]$ with $\left|A_{1}\right|=\cdots=\left|A_{l}\right|=2$. If $l \leq k$ then there exist a subset $A \subseteq[1, k]$ such that $|A| \leq \frac{k}{2}+\frac{l}{4}$ and $A \cap A_{i} \neq \emptyset$ holds for every $i \in[1, l]$.

Proof. By rearranging the subscripts, if necessary, we may assume that $A_{1} \cap A_{2} \neq$ $\emptyset, A_{3} \cap A_{4} \neq \emptyset, \ldots, A_{2 t-1} \cap A_{2 t} \neq \emptyset$, and $A_{2 t+1}, \ldots, A_{l}$ are pairwise disjoint. Put $r=l-2 t$. Clearly, $0 \leq t \leq \frac{l}{2}$ and $r \leq \frac{k}{2}$. Now take one element x_{i} from $A_{2 i-1} \cap A_{2 i}$ for every $i \in[1, t]$ (note that x_{1}, \ldots, x_{t} are not necessarily distinct), and take one element $x_{2 t+j}$ from $A_{2 t+j}$ for every $j \in[1, r]$. Let

$$
A=\left\{x_{1}, \ldots, x_{t}, x_{2 t+1}, \ldots, x_{l}\right\}
$$

Then, $A \cap A_{i} \neq \emptyset$ for every $i \in[1, l]$.
It remains to show that $|A| \leq t+r \leq \frac{k}{2}+\frac{l}{4}$. Note that

$$
2 t+r=l \text { and } r \leq \frac{k}{2}
$$

If $r \leq k-\frac{l}{2}$ then $|A| \leq t+r=r+\frac{l-r}{2}=\frac{l+r}{2} \leq \frac{k}{2}+\frac{l}{4}$. Now assume that $r>k-\frac{l}{2}$. Then, $t=\frac{l-r}{2}<\frac{l-k+\frac{l}{2}}{2} \leq \frac{l}{4}$. Therefore, $|A| \leq r+t \leq \frac{k}{2}+\frac{l}{4}$. This completes the proof.

3. Proof of Theorem 3

Let $n \geq 3$. Note that $\mathrm{N}_{g}^{|G|}(S)=\mathrm{N}_{g}^{|G|}(-x+S)$ holds for every $g \in G$, we may assume that $\mathrm{v}_{\mathbf{0}}(S)=\mathrm{h}(S)$. Let $g \in G \backslash\{\mathbf{0}\}$. Suppose $\mathrm{N}_{g}^{|G|}(S) \geq 1$, we need to show that $\mathrm{N}_{g}^{|G|}(S) \geq n$.

By rearranging the subscripts we may assume that

$$
S=S_{1} S_{2}
$$

where

$$
\begin{aligned}
S_{1} & =a_{1} a_{2} \cdot \ldots \cdot a_{n^{2}-r} \mathbf{0}^{r}, \\
S_{2} & =b_{1} b_{2} \cdot \ldots \cdot b_{2 n-2-\mathrm{h}(S)+r} \boldsymbol{0}^{\mathbf{h}(S)-r}, \\
g & =\sigma\left(S_{1}\right)=a_{1}+a_{2}+\cdots+a_{n^{2}-r} .
\end{aligned}
$$

We first assume that $\mathrm{h}(S) \leq 2 n-3$. By Lemma 16 there exist $T_{1} \mid a_{1} a_{2} \cdot \ldots \cdot a_{2 n-2}$ and $T_{1}^{\prime} \mid S_{2}$ such that $\sigma\left(T_{1}\right)=\sigma\left(T_{1}^{\prime}\right)$ and $\left|T_{1}\right|=\left|T_{1}^{\prime}\right| \geq 1$. By rearranging the subscripts of S_{1} we may assume that $a_{1} \mid T_{1}$. Again by Lemma 16 there exist $T_{2} \mid a_{2} a_{3}$. $\ldots a_{2 n-1}$ and $T_{2}^{\prime} \mid S_{2}$ such that $\sigma\left(T_{2}\right)=\sigma\left(T_{2}^{\prime}\right)$ and $\left|T_{2}\right|=\left|T_{2}^{\prime}\right| \geq 1$. Clearly, T_{1} and T_{2} are different. Similarly, we can obtain subsequences T_{3}, \ldots, T_{n} of S_{1} and subsequences $T_{3}^{\prime}, \ldots, T_{n}^{\prime}$ of S_{2} satisfying $\left|T_{i}\right|=\left|T_{i}^{\prime}\right|, \sigma\left(T_{i}\right)=\sigma\left(T_{i}^{\prime}\right)$ for any $i \in[1, n]$, and $T_{1}, T_{2}, \ldots, T_{n}$ are pairwise different. Therefore, $S_{1} T_{1}^{-1} T_{1}^{\prime}, S_{1} T_{2}^{-1} T_{2}^{\prime}, \ldots, S_{1} T_{n}^{-1} T_{n}^{\prime}$ are pairwise different subsequences of S with sum g and length n^{2}. So we have $\mathrm{N}_{g}^{|G|}(S) \geq n$.

Now suppose that $\mathrm{h}(S) \geq 2 n-2$. We distinguish four cases.
Case 1: $1 \leq r \leq \mathrm{h}(S)-1$. Then $\mathrm{N}_{g}^{|G|}(S) \geq\binom{\mathrm{h}(S)}{r} \geq\binom{\mathrm{h}(S)}{1}=\mathrm{h}(S)>n$.
Case 2: $r=0$. Then $\mathrm{h}(S)=2 n-2$. Since $\left|S_{1}\right|=n^{2} \geq 3 n-2$, by Lemma 14, there is a short zero-sum subsequence T of S_{1}. So $S_{1} T^{-1} \mathbf{0}^{|T|}$ is a sequence with sum g and length n^{2}. Replace S_{1} by $S_{1} T^{-1} \mathbf{0}^{|T|}$ and it reduces to Case 1.
Case 3: $r=\mathrm{h}(S)$ and S_{2} is not zero-sumfree. Assume that $T \mid S_{2}$ and $\sigma(T)=\mathbf{0}$. Replace S_{1} by $S_{1} \mathbf{0}^{-|T|} T$ and it reduces to Case 1 or Case 2.
Case 4: $r=\mathrm{h}(S)$ and S_{2} is zero-sumfree. Since $g \neq \mathbf{0}$, there is at least one term of S_{1} is not zero. Let $g^{\prime} \mid S_{1}$ and $g^{\prime} \neq \mathbf{0}$. By Lemma 17 we have that either $\mathrm{v}_{g^{\prime}}\left(S_{2}\right)=n-1$ or there exists a subsequence T of S_{2} such that $|T| \geq 2$ and $g^{\prime}=\sigma(T)$. If $\mathrm{v}_{g^{\prime}}\left(S_{2}\right)=n-1$ then $\mathrm{N}_{g}^{|G|}(S) \geq\binom{\mathrm{v}_{g^{\prime}}\left(S_{1}\right)+\mathrm{v}_{g^{\prime}}\left(S_{2}\right)}{1} \geq\binom{ n}{1}=n$. Now assume that $g^{\prime}=\sigma(T)$ for some $T \mid S_{2}$ with $|T| \geq 2$. Replace S_{1} by $S_{1} g^{\prime-1} \mathbf{0}^{-|T|+1} T$ and it reduces to Case 1 or Case 2.

It is easy to check the case $n=2$ directly and we omit it here. Now the proof is completed.

4. Proof of Theorem 5

Let $n \geq 526$. Without loss of generality let $\mathrm{h}(S)=\mathrm{v}_{\mathbf{0}}(S)$. From Lemma 19 and Lemma 13 we know that $\mathrm{N}_{0}^{|G|}(S) \geq 1$. Assume that $\mathrm{N}_{0}^{|G|}(S) \geq 2$. We have to show $\mathrm{N}_{0}^{|G|}(S) \geq n^{2}+1$.

By rearranging the subscripts we may assume that

$$
S=S_{1} S_{2}
$$

where

$$
\begin{aligned}
S_{1} & =a_{1} a_{2} \cdot \ldots \cdot a_{n^{2}-r} \mathbf{0}^{r}, \\
S_{2} & =b_{1} b_{2} \cdot \ldots \cdot b_{2 n-2-\mathrm{h}(S)+r} \mathbf{0}^{\mathrm{h}(S)-r}, \\
\mathbf{0} & =\sigma\left(S_{1}\right)=a_{1}+a_{2}+\cdots+a_{n^{2}-r} .
\end{aligned}
$$

We distinguish between the values taken by $\mathrm{h}(S)$.
Case 1. $\mathrm{h}(S) \geq n^{2}+1$. Since $1 \leq r \leq n^{2}, \mathrm{~N}_{0}^{|G|}(S) \geq\binom{\mathrm{h}(S)}{r} \geq\binom{ n^{2}+1}{1} \geq n^{2}+1$.
Case 2. $\mathrm{h}(S)=n^{2}$. We have $n^{2}-2 n+2 \leq r \leq n^{2}-2$ or $r=n^{2}$. If $n^{2}-2 n+2 \leq r \leq$ $n^{2}-2$ then $\mathrm{N}_{0}^{|G|}(S) \geq\binom{ n^{2}}{r} \geq\binom{ n^{2}}{2} \geq n^{2}+1$. So we may assume that $r=n^{2}$. If S_{2} is zero-sumfree then $\mathrm{N}_{0}^{|G|}(S)=1$, a contradiction. If S_{2} has a zero-sum subsequence T of length at least 2 then $T \mathbf{0}^{n^{2}-|T|}$ is a zero-sum sequence of length n^{2}. Therefore, $\mathrm{N}_{\mathbf{0}}^{|G|}(S) \geq\binom{ n^{2}}{n^{2}-|T|} \geq\binom{ n^{2}}{2} \geq n^{2}+1$.

Case 3. $2 n-2 \leq \mathrm{h}(S) \leq n^{2}-1$. We distinguish four subcases according to the value taken by r.

Subcase 3.1: $2 \leq r \leq \mathrm{h}(S)-2$. Then $\mathrm{N}_{\mathbf{0}}^{|G|}(S) \geq\binom{\mathrm{h}(S)}{r} \geq\binom{ 2 n-2}{2} \geq n^{2}+1$.
Subcase 3.2: $0 \leq r \leq 1$. Then $h(S)-r \geq n+2$. Since $n^{2}-r \geq n^{2}-1 \geq 3 n-2$, by Lemma 14 , there is a zero-sum subsequence T of $a_{1} a_{2} \cdot \ldots \cdot a_{n^{2}-r}$ with $2 \leq|T| \leq n$. Now replace S_{1} by $S_{1} T^{-1} \mathbf{0}^{|T|}$ and it reduces to Subcase 3.1.

Subcase 3.3: $r=\mathrm{h}(S)-1$. Let $S_{1}^{\prime}=S_{1} \mathbf{0}^{-\mathrm{h}(S)+1}$ and $S_{2}^{\prime}=S_{2} \mathbf{0}^{-1}$. If S_{2}^{\prime} contains a nonempty zero-sum subsequence T, then replace S_{1} by $S_{1} T \mathbf{0}^{-|T|}$ and it reduces to Subcase 3.1 or Subcase 3.2. So we assume that S_{2}^{\prime} is zero-sumfree.

If there exist $T \mid S_{1}$ and $U \mid S_{2}^{\prime}$ such that $|T|<|U|$ and $\sigma(T)=\sigma(U)$ then replace S_{1} by $S_{1} U T^{-1} \mathbf{0}^{|T|-|U|}$. Note that $|U| \leq 2 n-3$ and it reduces to Subcase 3.1 or Subcase 3.2. So we may assume that $T\left|S_{1}^{\prime}, U\right| S_{2}^{\prime}$ and $\sigma(T)=\sigma(U)$ imply

$$
\begin{equation*}
|T| \geq|U| \tag{5}
\end{equation*}
$$

If $\mathrm{h}(S) \geq \frac{n^{2}+1}{2}$, then by Lemma 18 and (5) there exist $T \mid S_{1}^{\prime}$ and $U \mid S_{2}^{\prime}$ such that $|T|=|U|$ and $\sigma(T)=\sigma(U)$. Therefore, $\mathrm{N}_{0}^{|G|}(S) \geq 2\binom{\mathrm{~h}(S)}{1} \geq n^{2}+1$.

Now we may assume that $\frac{n^{2}+1}{2} \geq \mathrm{h}(S) \geq 2 n-2$. Since $\left|S_{1}^{\prime}\right|=n^{2}-\mathrm{h}(S)+1 \geq$ $2 n-1$, by Lemma 18 and (5), there exist $T_{1} \mid S_{1}^{\prime}$ and $U_{1} \mid S_{2}^{\prime}$ such that $\sigma\left(T_{1}\right)=\sigma\left(U_{1}\right)$ and $\left|T_{1}\right|=\left|U_{1}\right|$. Without loss of generality let $a_{1} \mid T_{1}$. Since $\left|S_{1}^{\prime} a_{1}^{-1}\right| \geq n^{2}-\mathrm{h}(S)+$ $1-1 \geq 2 n-1$, by Lemma 13, there is a zero-sum subsequence of $S_{1}^{\prime} a_{1}^{-1}$. Now by Lemma 18 and (5), there exist $T_{1} \mid S_{1}^{\prime} a_{1}^{-1}$ and $U_{1} \mid S_{2}^{\prime}$ such that $\left|T_{2}\right|=\left|U_{2}\right|$ and $\sigma\left(T_{2}\right)=\sigma\left(U_{2}\right)$. Clearly, T_{1} and T_{2} are different. Assume that $a_{2} \mid T_{2}$. Similarly we can obtain subsequences T_{3}, \ldots, T_{n} of S_{1}^{\prime} and subsequences U_{3}, \ldots, U_{n} of S_{2}^{\prime} satisfying $\left|T_{i}\right|=\left|U_{i}\right|$ and $\sigma\left(T_{i}\right)=\sigma\left(U_{i}\right)$ for for every $i \in[1, n]$, and T_{1}, \ldots, T_{n} are pairwise different. Note that for every $i \in[1, n], S_{1}^{\prime} U_{i} T_{i}^{-1} 0^{\mathrm{h}}(S)-1$ has sum zero and length n^{2}; we infer that $\mathrm{N}_{0}^{|G|}(S) \geq n\binom{\mathrm{~h}(S)}{1} \geq n \times(2 n-2) \geq n^{2}+1$.

Subcase 3.4: $r=\mathrm{h}(S)$. If S_{2} has a zero-sum subsequence T with $|T| \geq 2$, then replace S_{1} by $S_{1} T \mathbf{0}^{-|T|}$ and it reduces to Subcase 3.1 or Subcase 3.2.

Now we assume that S_{2} is zero-sumfree. Suppose $S_{1}=g_{1}^{\mathrm{v}_{g_{1}}\left(S_{1}\right)} \cdots g_{k}^{\mathrm{v}_{g_{k}}\left(S_{1}\right)} \mathbf{0}^{\mathrm{h}(S)}$, where $g_{1}, \ldots, g_{k}, \mathbf{0}$ are distinct elements in G. If there exists a subsequence T of S_{2} such that $|T| \geq 2$ and $g_{i}=\sigma(T)$ for some i, then replace S_{1} by $S_{1} g_{i}^{-1} \mathbf{0}^{-|T|+1} T$ and it reduces to Subcase 3.1 or Subcase 3.2 or Subcase 3.3. So by Lemma 17 we may suppose that $\mathrm{v}_{g_{i}}\left(S_{2}\right)=n-1$ holds for any $i \in[1, k]$. Since $\left|S_{2}\right|=2 n-2$, we have $k \leq 2$.

If $k=1$ then $\mathrm{v}_{g_{1}}\left(S_{1}\right) \geq n$. Therefore, $\mathrm{N}_{0}^{|G|}(S) \geq\binom{\mathrm{v}_{g_{1}}\left(S_{1}\right)+\mathrm{v}_{g_{1}}\left(S_{2}\right)}{\mathrm{v}_{g_{1}}\left(S_{2}\right)} \geq\binom{ n+n-1}{n-1} \geq$ $n^{2}+1$.

If $k=2$ then $g_{1}+g_{2} \neq \mathbf{0}$ follows from S_{2} is zero-sumfree. Therefore we have $\max \left\{\mathrm{v}_{g_{1}}\left(S_{1}\right), \mathrm{v}_{g_{2}}\left(S_{1}\right)\right\} \geq 2$. Thus, $\mathrm{N}_{\mathbf{0}}^{|G|}(S) \geq\binom{\mathrm{v}_{g_{1}}\left(S_{1}\right)+\mathrm{v}_{g_{1}}\left(S_{2}\right)}{\mathrm{v}_{g_{1}}\left(S_{1}\right)}\binom{\mathrm{v}_{g_{2}}\left(S_{1}\right)+\mathrm{v}_{g_{2}}\left(S_{2}\right)}{\mathrm{v}_{g_{2}}\left(S_{1}\right)} \geq$ $\binom{1+n-1}{1}\binom{2+n-1}{2} \geq n \cdot(n+1)>n^{2}+1$.

Case 4. $\mathrm{h}(S) \leq 2 n-3$. Now rewrite S_{1} and S_{2} in the form

$$
\left.\begin{array}{l}
S_{1}=g_{1}^{\mathrm{v}_{g_{1}}}\left(S_{1}\right) \cdots g_{r_{1}}^{\mathrm{v}_{g_{r_{1}}}\left(S_{1}\right)} g_{r_{1}+1}^{\mathrm{v}_{g_{1}+1}}\left(S_{1}\right)
\end{array} \cdots g_{r_{1}+r_{2}}^{\mathrm{v}_{g_{1}+r_{2}}}, S_{1}\right), ~\left(S_{1}\right)
$$

where $g_{1}, \ldots, g_{r_{1}+r_{2}+r_{3}}$ are distinct elements in G.
Let

$$
S_{3}=g_{r_{1}+1}^{\mathrm{v}_{g_{r_{1}+1}}\left(S_{1}\right)} \cdots g_{r_{1}+r_{2}}^{\mathrm{v}_{g_{r_{1}}+r_{2}}\left(S_{1}\right)}=S_{1}\left(g_{1}^{\mathrm{v}_{g_{1}}\left(S_{1}\right)} \cdots g_{r_{1}}^{\mathrm{v}_{g_{r_{1}}}\left(S_{1}\right)}\right)^{-1}
$$

If $\mathrm{v}_{g_{1}}\left(S_{1}\right)+\cdots+\mathrm{v}_{g_{r_{1}}}\left(S_{1}\right) \geq 3 n-3$, then

$$
\left(\mathrm{v}_{g_{1}}\left(S_{1}\right)+\mathrm{v}_{g_{1}}\left(S_{2}\right)\right)+\cdots+\left(\mathrm{v}_{g_{r_{1}}}\left(S_{1}\right)+\mathrm{v}_{g_{r_{1}}}\left(S_{2}\right)\right) \geq 3 n-2 .
$$

By Lemma 20, we have

$$
\begin{aligned}
\mathrm{N}_{0}^{|G|}(S) & \geq\binom{\mathrm{v}_{g_{1}}\left(S_{1}\right)+\mathrm{v}_{g_{1}}\left(S_{2}\right)}{\mathrm{v}_{g_{1}}\left(S_{1}\right)} \cdots\binom{\mathrm{v}_{g_{r_{1}}}\left(S_{1}\right)+\mathrm{v}_{g_{r_{1}}}\left(S_{2}\right)}{\mathrm{v}_{g_{r_{1}}}\left(S_{1}\right)} \\
& \geq\left(\mathrm{v}_{g_{1}}\left(S_{1}\right)+\mathrm{v}_{g_{1}}\left(S_{2}\right)\right) \cdots\left(\mathrm{v}_{g_{r_{1}}}\left(S_{1}\right)+\mathrm{v}_{g_{r_{1}}}\left(S_{2}\right)\right) \\
& \geq n^{2}+1 .
\end{aligned}
$$

So we may assume that $\mathrm{v}_{g_{1}}\left(S_{1}\right)+\cdots+\mathrm{v}_{g_{r_{1}}}\left(S_{1}\right) \leq 3 n-4$.
Let $N_{1}=\binom{\mathrm{v}_{g_{1}}\left(S_{1}\right)+\mathrm{v}_{g_{1}}\left(S_{2}\right)}{\mathrm{v}_{g_{1}}\left(S_{1}\right)} \cdots\binom{{ }^{\mathrm{v}_{r_{1}}}\left(S_{1}\right)+\mathrm{v}_{g_{r_{1}}}\left(S_{2}\right)}{\mathrm{v}_{g_{r_{1}}}\left(S_{1}\right)}$. Let N_{2} denote the number of subsequences T_{1} of S_{3} satisfying
(I) $\left|T_{1}\right|=2$, and
(II) there is a subsequence T_{2} of S_{2} such that $\left|T_{2}\right|=2$ and $\sigma\left(T_{1}\right)=\sigma\left(T_{2}\right)$.

Clearly, $\mathrm{N}_{0}^{|G|}(S) \geq N_{1}+N_{2}$. So we may assume that

$$
N_{2} \leq n^{2}
$$

By Lemma 21 there exists a subsequence W of S_{3} such that $S_{3} W^{-1}$ contains no subsequence satisfying both (I) and (II) and such that

$$
|W| \leq \frac{\left|S_{3}\right|}{2}+\frac{N_{2}}{4}
$$

Let \mathcal{N}_{3} denote the set of nonempty subsequences T_{1} of $S_{3} W^{-1}$ such that $\left|T_{2}\right|=$ $\left|T_{1}\right|$ and $\sigma\left(T_{1}\right)=\sigma\left(T_{2}\right)$ for some $T_{2} \mid S_{2}$. By the definition of $W \mid S_{3}$ we know that

$$
\begin{equation*}
\left|T_{1}\right| \geq 3 \tag{6}
\end{equation*}
$$

holds for every $T_{1} \in \mathcal{N}_{3}$.

Let $k=\left|S_{3} W^{-1}\right|$. Note that

$$
\begin{aligned}
\left|S_{3} W^{-1}\right| & =\left|S_{3}\right|-|W| \\
& \geq\left|S_{3}\right|-\frac{\left|S_{3}\right|}{2}-\frac{N_{2}}{4}=\frac{\left|S_{3}\right|}{2}-\frac{N_{2}}{4} \\
& \geq \frac{1}{2}\left(n^{2}-\left(\mathrm{v}_{g_{1}}\left(S_{1}\right)+\cdots+\mathrm{v}_{g_{r_{1}}}\left(S_{1}\right)\right)\right)-\frac{1}{4} n^{2} \\
& \geq \frac{1}{4} n^{2}-\frac{3}{2} n+2 .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
k \geq \frac{1}{4} n^{2}-\frac{3}{2} n+2 \tag{7}
\end{equation*}
$$

Note that every $T_{1} \in \mathcal{N}_{3}$ is contained by

$$
\binom{k-\left|T_{1}\right|}{2 n-2-\left|T_{1}\right|}=\binom{k-\left|T_{1}\right|}{k-(2 n-2)}
$$

subsequences of $S_{3} W^{-1}$ with length $2 n-2$. By Lemma 16 we have

$$
\begin{equation*}
\sum_{T_{1} \in \mathcal{N}_{3}}\binom{k-\left|T_{1}\right|}{k-(2 n-2)} \geq\binom{ k}{k-(2 n-2)} \tag{8}
\end{equation*}
$$

Let $N_{3}=\left|\mathcal{N}_{3}\right|$. Combining (6), (7) and (8) we obtain that

$$
\begin{aligned}
N_{3} & \geq \frac{\binom{k}{k-(2 n-2)}}{\binom{k-3}{k-(2 n-2)}}=\frac{\binom{k}{2 n-2}}{\binom{k-3}{2 n-5}} \\
& =\frac{k(k-1)(k-2)}{(2 n-2)(2 n-3)(2 n-4)} \\
& \geq \frac{\left(\frac{1}{4} n^{2}-\frac{3}{2} n+2\right)\left(\frac{1}{4} n^{2}-\frac{3}{2} n+1\right)\left(\frac{1}{4} n^{2}-\frac{3}{2} n\right)}{(2 n-2)(2 n-3)(2 n-4)} \\
& \geq n^{2}+1(\text { since } n \geq 526) .
\end{aligned}
$$

So $\mathrm{N}_{\mathbf{0}}^{|G|}(S) \geq N_{1}+N_{2}+N_{3} \geq n^{2}+1$. This completes the proof.

5. Remarks and Open Problems

Conjecture 1.2 and Theorem 3 suggest the following.
Conjecture 22 Let $G=C_{n_{1}} \oplus C_{n_{2}} \oplus \cdots \oplus C_{n_{r}}$ be a finite abelian group, where $n_{i} \mid n_{i+1}$ for any $i \in[1, r-1]$. Let $S \in \mathcal{F}(G)$ be a sequence of length $|S|=|G|+$ $\mathrm{D}(G)-1$. Then

$$
\mathrm{N}_{g}^{|G|}(S)=0 \text { or } \mathrm{N}_{g}^{|G|}(S) \geq n_{1}
$$

for every $g \in G \backslash\{\mathbf{0}\}$.

From the following result, it is easy to see that Conjecture 22 is true for all elementary abelian groups.

Proposition 23 Let p be a prime, and let G be a finite abelain p-group. Let $S \in$ $\mathcal{F}(G)$ with $|S|=|G|+D(G)-1$. Then $N_{g}^{|G|}(S)=0$ or $N_{g}^{|G|}(S) \geq$ p for every $g \in G \backslash\{\mathbf{0}\}$, and either $N_{\mathbf{0}}^{|G|}(S)=1$ or $N_{\mathbf{0}}^{|G|}(S) \geq p+1$.

Proof. By a result in [10] (or see [13], Theorem 8.3) we know that

$$
\mathrm{N}_{g}^{|G|}(S) \equiv\left\{\begin{array}{lll}
1 & (\bmod p), & \text { if } g=\mathbf{0} \\
0 & (\bmod p), & \text { otherwise }
\end{array}\right.
$$

Now the proposition follows.

Conjecture 24 Let G be a finite abelian group. Let $S \in \mathcal{F}(G)$ be a sequence of length $|S|=|G|+\mathrm{D}(G)-1$. If $G \neq C_{2} \oplus C_{2}$, then

$$
\mathrm{N}_{\mathbf{0}}^{|G|}(S)=0 \text { or } \mathrm{N}_{\mathbf{0}}^{|G|}(S) \geq|G|+1
$$

Acknowledgments The authors would like to thank the referee and Professor Landman for their very useful suggestions that improved the presentation of this paper. This research was supported in part by the 973 Project, the PCSIRT Project of the Ministry of Education, the Ministry of Science and Technology, the National Science Foundation of China.

References

[1] A. Bialostocki, P. Dierker, D. Grynkiewicz and M. Lotspeich, On some developments of the Erdős-Ginzburg-Ziv Theorem II, Acta Arith. 110 (2003) 173-184.
[2] A. Bialostocki and M. Lotspeich, Some developments of the Erdös-Ginzburg-Ziv Theorem I, in: Sets, Graphs and Numbers, vol. 60, Colloquia Mathematica Societatis János Bolyai , North-Holland, Amsterdam, New York (1992) 97-117.
[3] B. Bollobás and I. Leader, The number of k-sums modulo k, J. Number Theory 78 (1999) 27-35.
[4] Y. Caro, Remarks on a zero-sum theorem, J. Combin. Theory Ser. A 76 (1996) 315-322.
[5] P. Erdős, A. Ginzburg and A. Ziv, Theorem in the additive number theory, Bull. Res. Council Israel 10F (1961) 41-43.
[6] Z. Füredi and D.J. Kleitman, The number of zero sums, in: Combinatorics, Paul Erdős is Eighty, J. Bolyai Mathematical Society (1993) 159-172.
[7] W.D. Gao, A combinatorial problem on finite abelian groups, J. Number Theory 58 (1995) 100-103.
[8] W.D. Gao, Two addition theorems on groups of prime order, J. Number Theory 56 (1996) 211-213.
[9] W.D. Gao, On the number of subsequences with given sum, Discrete Math. 195 (1999) 127138.
[10] W.D. Gao, On zero-sum subsequences of restricted size II, Discrete Math. 271 (2003) 51-59.
[11] W.D. Gao and A. Geroldinger, On long minimal zero sequences in finite abelian groups, Period Math. Hungar. 38 (1999) 179-211.
[12] W.D. Gao and A. Geroldinger, On zero-sum sequences in $\mathbb{Z} / n \mathbb{Z} \oplus \mathbb{Z} / n \mathbb{Z}$, Integers 3 (2003) (Paper A08).
[13] W.D. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: A survey, Expo. Math. 24 (2006) 337-369.
[14] W.D. Gao, A. Geroldinger, Y.L. Li and H.Y. Zhang, On Property B, Preprint, 2007.
[15] A. Geroldinger and F. Halter-Koch, Non-unique factorizations, Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematixe, vol. 278, Chapman \& Hall/CRC, London, Boca Raton, $\mathrm{Fl}, 2006$.
[16] D.J. Grynkiewicz, On the number of m-term zero-sum subsequences, Acta Arith. 121 (2006) 275-298.
[17] Y.O. Hamidoune, O. Ordaz and A. Ortuño, On a combinatorial theorem of Erdős, Ginzburg and Ziv, Combin. Probab. Comput. 7 (1998) 403-412.
[18] M. Kisin, The number of zero sums modulo m in a sequence of length n, Mathematika 41 (1994) 149-163.
[19] H.B. Mann, Two addition theorems, J. Combinatorial Theory 3 (1967) 233-235.
[20] M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, Springer, 1996.
[21] J.E. Olson, A combinatorial problem on finite abelian groups I, J. Number Theory 1 (1969) 8-10.
[22] J.E. Olson, A combinatorial problem on finite abelian groups II, J. Number Theory $\mathbf{1}$ (1969) 195-199.

