

ON RAPID GENERATION OF $SL_2(\mathbb{F}_Q)$

Jeremy Chapman

Department of Mathematics, University of Missouri, Columbia, Missouri 65211 jeremy@math.missouri.edu

Alex Iosevich

Department of Mathematics, University of Missouri, Columbia, Missouri 65211 iosevich@math.missouri.edu

Received: 9/30/08, Accepted: 11/19/08

Abstract

We prove that if $A \subset \mathbb{F}_q \setminus \{0\}$ with $|A| > Cq^{\frac{5}{6}}$, then $|R(A) \cdot R(A)| \ge C'q^3$, where

$$R(A) = \left\{ \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \in SL_2(\mathbb{F}_q) : a_{11}, a_{12}, a_{21} \in A \right\}.$$

The proof relies on a result, previously established by D. Hart and the second author, which implies that if |A| is much larger than $q^{\frac{3}{4}}$ then

 $|\{(a_{11}, a_{12}, a_{21}, a_{22}) \in A \times A \times A \times A \times A : a_{11}a_{22} - a_{12}a_{21} = 1\}| = |A|^4 q^{-1}(1 + o(1)).$

1. Introduction

Let $SL_2(\mathbb{F}_q)$ denote the set of two by two matrices with determinant one over the finite field with q elements.

Definition 1. Given $A \subset \mathbb{F}_q$, let

$$R(A) = \left\{ \left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right) \in SL_2(\mathbb{F}_q) : a_{11}, a_{12}, a_{21} \in A \right\}.$$

Observe that the size of R(A) is exactly $|A|^3$. The purpose of this paper is to determine how large A needs to be to ensure that the product set

$$R(A) \cdot R(A) = \{M \cdot M' : M, M' \in R(A)\}$$

contains a positive proportion of all the elements of $SL_2(\mathbb{F}_q)$, q prime. This question is partly motivated by the following result due to Harald Helfgott ([5]). See his paper for further background on this problem and related references. See also [2] where Helfgott's result is proved for general fields.

Theorem 2. (Helfgott) Let p be a prime. Let E be a subset of $SL_2(\mathbb{Z}/p\mathbb{Z})$ not contained in any proper subgroup.

- Assume that $|E| < p^{3-\delta}$ for some fixed $\delta > 0$. Then $|E \cdot E \cdot E| > c|E|^{1+\epsilon}$, where c > 0 and $\epsilon > 0$ depend only on δ .
- Assume that |E| > p^δ for some fixed δ > 0. Then there is an integer k > 0, depending only on δ, such that every element of SL₂(ℤ/pℤ) can be expressed as a product of at most k elements of E ∪ E⁻¹.

Our main result is the following.

Theorem 3. Let $A \subset \mathbb{F}_q \setminus \{0\}$ with $|A| \geq Cq^{\frac{5}{6}}$. Then there exists C' > 0 such that $|R(A) \cdot R(A)| \geq C'|SL_2(\mathbb{F}_q)| \geq C''q^3.$ (1)

Remark 4. Observe that if $q = p^2$, then \mathbb{F}_q contains \mathbb{F}_p as a sub-field. Since $R(\mathbb{F}_p)$ is a sub-group of $SL_2(\mathbb{F}_q)$ we see that the threshold assumption on the size of A in Theorem 3 cannot be improved beyond $|A| \ge q^{\frac{1}{2}}$.

We shall make use of the following result due to D. Hart and A. Iosevich ([4]).

Theorem 5. Let $E \subset \mathbb{F}_q^d$, $d \geq 2$, and define

$$\nu(t) = |\{(x, y) \in E \times E : x \cdot y \equiv x_1 y_1 + \dots + x_d y_d = t\}|.$$

Then $\nu(t) = |E|^2 q^{-1} + \mathcal{D}(t)$, where for every t > 0, $|\mathcal{D}(t)| < |E|q^{\frac{d-1}{2}}$. In particular, if $|E| > q^{\frac{d+1}{2}}$, then $\nu(t) > 0$ and as E grows beyond this threshold,

$$\nu(t) = |E|^2 q^{-1} (1 + o(1)).$$

Remark 6. The proof of Theorem 5 goes through unchanged if $x \cdot y$ is replaced by any non-degenerate bi-linear form B(x, y). In particular, we can replace $x_1y_1 + x_2y_2$ by $x_1y_1 - x_2y_2$ in the case d = 2 and this is what we actually use in this paper. More precisely, we shall use the fact that if $E = A \times A$ and the size of A is much greater than $q^{\frac{3}{4}}$, then

$$|\{(a, b, c, d) \in A \times A \times A \times A : ad - bc = 1\}| = |A|^4 q^{-1} (1 + o(1)).$$
(2)

1.1. Structure of the Proof of Estimate (1)

The basic idea behind the argument below is the following. Let $T \in SL_2(\mathbb{F}_q)$ and define

$$\nu(T) = |\{(S, S') \in R(A) \times R(A) : S \cdot S' = T\}.$$

We prove below that $\sqrt{\operatorname{var}(\nu)} \leq C|A|^3 q^{-\frac{1}{2}}$, where variance is defined in the usual way as $\mathbb{E}\left((\nu - \mathbb{E}(\nu))^2\right)$, with the expectation defined, also in the usual way, as

$$\mathbb{E}(\nu) = |SL_2(\mathbb{F}_q)|^{-1} \sum_{T \in SL_2(\mathbb{F}_q)} \nu(T) = |A|^6 |SL_2(\mathbb{F}_q)|^{-1} = |A|^6 q^{-3} (1 + o(1)).$$

One can then check by a direct computation that $\sqrt{\operatorname{var}(\nu)}$ is much smaller than $\mathbb{E}(\nu)$ if $|A| \geq Cq^{\frac{5}{6}}$, with C sufficiently large, and we conclude that in this regime, $\nu(T)$ is concentrated around its expected value $\mathbb{E}(\nu) = |A|^6 q^{-3} (1 + o(1))$.

1.2. Fourier Analysis Used in This Paper

We shall make use of the following basic formulas of Fourier analysis on \mathbb{F}_q^d . Let $f: \mathbb{F}_q^d \to \mathbb{C}$ and let χ denote a non-trivial additive character on \mathbb{F}_q . Define

$$\widehat{f}(m) = q^{-d} \sum_{x \in \mathbb{F}_q^d} \chi(-x \cdot m) f(x).$$

It is not difficult to check that

$$f(x) = \sum_{m \in \mathbb{F}_q^d} \chi(x \cdot m) \widehat{f}(m)$$
 (Inversion)

and

$$\sum_{m \in \mathbb{F}_q^d} \left| \widehat{f}(m) \right|^2 = q^{-d} \sum_{x \in \mathbb{F}_q^d} |f(x)|^2.$$
 (Plancherel)

2. Proof of Theorem 3 (Estimate 1)

We are looking to solve the equation

$$\left(\begin{array}{cc}a_{11}&a_{12}\\a_{21}&\frac{1+a_{12}a_{21}}{a_{11}}\end{array}\right)\cdot\left(\begin{array}{cc}b_{11}&b_{21}\\b_{12}&\frac{1+b_{12}b_{21}}{b_{11}}\end{array}\right)=\left(\begin{array}{cc}t&\alpha\\\beta&\frac{1+\alpha\beta}{t}\end{array}\right),$$

which leads to the equations

$$a_{11}b_{11} + a_{12}b_{12} = t$$
, $\frac{b_{21}}{b_{11}}t + \frac{a_{12}}{b_{11}} = \alpha$, and $\frac{a_{21}}{a_{11}}t + \frac{b_{12}}{a_{11}} = \beta$. (3)

Let D_t denote the characteristic function of the set

$$\{(a_{11}, b_{11}, a_{12}, b_{12}) \in A \times A \times A \times A \times A : a_{11}b_{11} + a_{12}b_{12} = t\}$$

and let $E = A \times A$. Then the number of six-tuplets satisfying the equations (3) above equals

$$\begin{split} \nu(t,\alpha,\beta) &= \frac{1}{q^2} \sum_{u,v} \sum_{\substack{a_{11},b_{11},a_{12}\\b_{12},a_{21},b_{21}}} \begin{pmatrix} D_t(a_{11},b_{11},a_{12},b_{12})E(a_{21},b_{21})\\\chi(u(b_{21}t+a_{12}-\alpha b_{11}))\chi(v(a_{21}t+b_{12}-\beta a_{11})) \end{pmatrix}\\ &= q^{-2}|D_t||E| + q^4 \sum_{\mathbb{F}_q^2 \setminus \{(0,0)\}} \widehat{D}_t(\beta v,\alpha u,-u,-v)\widehat{E}(tv,tu)\\ &= \nu_0(t,\alpha,\beta) + \nu_{main}(t,\alpha,\beta). \end{split}$$

By (2), $\nu_0(t, \alpha, \beta) = q^{-3} |A|^6 (1 + o(1))$, which implies that

$$\sum_{t,\alpha,\beta} \nu_0^2(t,\alpha,\beta) = q^{-3} |A|^{12} (1+o(1)).$$

We now estimate $\sum_{t,\alpha,\beta} \nu_{main}^2(t,\alpha,\beta)$. By Cauchy–Schwarz and Plancherel,

$$\begin{split} \nu_{main}^2(t,\alpha,\beta) &\leq q^8 \sum_{u,v} \left| \widehat{D}_t(\beta v,\alpha u,-u,-v) \right|^2 \cdot \sum_{u,v} \left| \widehat{E}(tv,tu) \right|^2 \\ &\leq \left| E \right| q^6 \sum_{u,v} \left| \widehat{D}_t(\beta v,\alpha u,-u,-v) \right|^2. \end{split}$$

Now,

$$|E|q^{6}\sum_{\alpha,\beta}\sum_{u,v}|\hat{D}_{t}(\beta v,\alpha u,-u,-v)|^{2} = |E|q^{6}q^{-4}|A|^{4}q^{-1}(1+o(1))$$

as long as |E| is much larger than $q^{\frac{3}{2}}$. It follows that $\sum_{t \neq 0, \alpha, \beta} \nu_{main}^2(t, \alpha, \beta) \leq |A|^6 q^2$. Hence,

$$\sum_{t,\alpha,\beta} \nu^2(t,\alpha,\beta) \le C(|A|^{12}q^{-3} + |A|^6q^2).$$
(4)

In view of (4), we have

$$\left(|A|^6 - \sum_{\alpha,\beta} \nu(0,\alpha,\beta) \right)^2 = \left(\sum_{t \neq 0,\alpha,\beta} \nu(t,\alpha,\beta) \right)^2$$

$$\leq C |\mathrm{support}(\nu)| \cdot (|A|^{12}q^{-3} + |A|^6q^2).$$

If we can show that

$$\sum_{\alpha,\beta} \nu(0,\alpha,\beta) \le \frac{1}{2} |A|^6, \tag{5}$$

then it would follow that

$$|\mathrm{support}(\nu)| \gtrsim C \min\left\{q^3, \frac{|A|^6}{q^2}\right\}.$$

This expression is not less than $C|SL_2(\mathbb{F}_q)| = q^3(1+o(1))$ if $|A| \ge Cq^{\frac{5}{6}}$, as desired.

We are left to establish (5). Observe that if t = 0, then $\beta = -\alpha^{-1}$. Plugging this into (3) we see that this forces $a_{11} = -\alpha b_{12}$ and $a_{12} = \alpha b_{11}$, which implies that $\nu(0, \alpha, \beta) = \nu(0, \alpha, -\alpha^{-1}) \leq q^4$. This, in turn, implies that $\sum_{\alpha,\beta} \nu(0, \alpha, \beta) = \sum_{\alpha} \nu(0, \alpha, -\alpha^{-1}) \leq q^5$. Now, since $q^5 \leq \frac{1}{2} |A|^6$ if $|A| \geq Cq^{\frac{5}{6}}$, the proof is complete.

INTEGERS: 9 (2009)

where

3. Proof of Theorem 5

To prove Theorem 5, we start out by observing that $\nu(t) = \sum_{x,y \in E} q^{-1} \sum_{s \in \mathbb{F}_q} \chi(s(x \cdot y - t)),$ where χ is a non-trivial additive character on \mathbb{F}_q . It follows that $\nu(t) = |E|^2 q^{-1} + \mathcal{D},$

$$\mathcal{D} = \sum_{x,y \in E} q^{-1} \sum_{s \neq 0} \chi(s(x \cdot y - t)).$$

Viewing \mathcal{D} as a sum in x, applying the Cauchy-Schwarz inequality, and dominating the sum over $x \in E$ by the sum over $x \in \mathbb{F}_q^d$, we see that

$$\mathcal{D}^2 \le |E| \sum_{x \in \mathbb{F}_q^d} q^{-2} \sum_{s, s' \ne 0} \sum_{y, y' \in E} \chi(sx \cdot y - s'x \cdot y') \chi(t(s'-s)).$$
(6)

Orthogonality in the x variable yields that the right-hand side of (3.1) equals

$$|E|q^{d-2} \sum_{\substack{sy=s'y'\\s,s'\neq 0}} \chi(t(s'-s))E(y)E(y').$$

If $s \neq s'$ we may set a = s/s', b = s' and obtain

$$|E|q^{d-2} \sum_{\substack{y \neq y' \\ ay = y' \\ a \neq 1, b}} \chi(tb(1-a))E(y)E(y') = -|E|q^{d-2} \sum_{y \neq y', a \neq 1} E(y)E(ay),$$

and the absolute value of this quantity is at most

$$|E|q^{d-2}\sum_{y\in E}|E\cap l_y| \le |E|^2 q^{d-1},$$

since $|E \cap l_y| \leq q$ by the virtue of the fact that each line contains exactly q points.

If s = s', then we get $|E|q^{d-2}\sum_{s,y} E(y) = |E|^2 q^{d-1}$. It follows that $\nu(t) = |E|^2 q^{-1} + \mathcal{D}(t)$, where $\mathcal{D}^2(t) \leq -Q(t) + |E|^2 q^{d-1}$, with $Q(t) \geq 0$. This gives us $\mathcal{D}^2(t) \leq |E|^2 q^{d-1}$, so that

$$|\mathcal{D}(t)| \le |E|q^{\frac{a-1}{2}}.\tag{7}$$

We conclude that $\nu(t) = |E|^2 q^{-1} + \mathcal{D}(t)$ with $|\mathcal{D}(t)|$ bounded as in (7). This quantity is strictly positive if $|E| > q^{\frac{d+1}{2}}$ with a sufficiently large constant C > 0. This completes the proof of Theorem 5.

4. Remarks and Questions

- It has been recently pointed out to us by O. Dinai that the conclusion of our main result can be obtained using the methods in [1].
- The Fourier analysis used in the proof of both the first and second assertions of Theorem 3 is almost entirely formal as no hard estimates are used, even on the level of Gauss sums. This suggests that the result should be generalizable to a much wider setting.
- A natural analog of the second part of Theorem 3 is proved in [4] in all dimensions. Thus in principle there is a launching mechanism to attack the second part, though it is certainly more difficult technically.
- One of the consequences of the main result of this paper is to give a quantitative version of Helfgott's result (Theorem 2) for a class of relatively large subsets of $SL_2(\mathbb{F}_q)$. In analogy with the results in [3] it should be possible to address the question of obtaining explicit exponents for relatively small sets as well.

References

- L. Babai, N. Nikolov and L. Pyber Product Growth and Mixing in Finite Groups, Proceedings of the 19th annual ACM-SIAM symposium on discrete algorithms, 2008.
- [2] O. Dinai, Ph.D. Dissertation (2008).
- [3] M. Garaev, An explicit sum-product estimate in $\mathbb{F}_p,$ Int. Math. Res. Notes **2007** (2007), article ID rnm035
- [4] D. Hart and A. Iosevich, Sums and products in finite fields: an integral geometric viewpoint, Contemporary Math., to appear.
- [5] H. A. Helfgott, Growth and generation in $SL_2(\mathbb{Z}/p\mathbb{Z})$, Ann. of Math. 167 (2008), 601-623.