ON RAPID GENERATION OF $S L_{2}\left(\mathbb{F}_{Q}\right)$

Jeremy Chapman

Department of Mathematics, University of Missouri, Columbia, Missouri 65211
jeremy@math.missouri.edu

Alex Iosevich
Department of Mathematics, University of Missouri, Columbia, Missouri 65211
iosevich@math.missouri.edu

Received: 9/30/08, Accepted: 11/19/08

Abstract

We prove that if $A \subset \mathbb{F}_{q} \backslash\{0\}$ with $|A|>C q^{\frac{5}{6}}$, then $|R(A) \cdot R(A)| \geq C^{\prime} q^{3}$, where $$
R(A)=\left\{\left(\begin{array}{ll} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right) \in S L_{2}\left(\mathbb{F}_{q}\right): a_{11}, a_{12}, a_{21} \in A\right\}
$$

The proof relies on a result, previously established by D. Hart and the second author, which implies that if $|A|$ is much larger than $q^{\frac{3}{4}}$ then $$
\left|\left\{\left(a_{11}, a_{12}, a_{21}, a_{22}\right) \in A \times A \times A \times A: a_{11} a_{22}-a_{12} a_{21}=1\right\}\right|=|A|^{4} q^{-1}(1+o(1))
$$

1. Introduction

Let $S L_{2}\left(\mathbb{F}_{q}\right)$ denote the set of two by two matrices with determinant one over the finite field with q elements.

Definition 1. Given $A \subset \mathbb{F}_{q}$, let

$$
R(A)=\left\{\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \in S L_{2}\left(\mathbb{F}_{q}\right): a_{11}, a_{12}, a_{21} \in A\right\}
$$

Observe that the size of $R(A)$ is exactly $|A|^{3}$. The purpose of this paper is to determine how large A needs to be to ensure that the product set

$$
R(A) \cdot R(A)=\left\{M \cdot M^{\prime}: M, M^{\prime} \in R(A)\right\}
$$

contains a positive proportion of all the elements of $S L_{2}\left(\mathbb{F}_{q}\right), q$ prime. This question is partly motivated by the following result due to Harald Helfgott ([5]). See his paper for further background on this problem and related references. See also [2] where Helfgott's result is proved for general fields.

Theorem 2. (Helfgott) Let p be a prime. Let E be a subset of $S L_{2}(\mathbb{Z} / p \mathbb{Z})$ not contained in any proper subgroup.

- Assume that $|E|<p^{3-\delta}$ for some fixed $\delta>0$. Then $|E \cdot E \cdot E|>c|E|^{1+\epsilon}$, where $c>0$ and $\epsilon>0$ depend only on δ.
- Assume that $|E|>p^{\delta}$ for some fixed $\delta>0$. Then there is an integer $k>0$, depending only on δ, such that every element of $S L_{2}(\mathbb{Z} / p \mathbb{Z})$ can be expressed as a product of at most k elements of $E \cup E^{-1}$.

Our main result is the following.
Theorem 3. Let $A \subset \mathbb{F}_{q} \backslash\{0\}$ with $|A| \geq C q^{\frac{5}{6}}$. Then there exists $C^{\prime}>0$ such that

$$
\begin{equation*}
|R(A) \cdot R(A)| \geq C^{\prime}\left|S L_{2}\left(\mathbb{F}_{q}\right)\right| \geq C^{\prime \prime} q^{3} \tag{1}
\end{equation*}
$$

Remark 4. Observe that if $q=p^{2}$, then \mathbb{F}_{q} contains \mathbb{F}_{p} as a sub-field. Since $R\left(\mathbb{F}_{p}\right)$ is a sub-group of $S L_{2}\left(\mathbb{F}_{q}\right)$ we see that the threshold assumption on the size of A in Theorem 3 cannot be improved beyond $|A| \geq q^{\frac{1}{2}}$.

We shall make use of the following result due to D. Hart and A. Iosevich ([4]).
Theorem 5. Let $E \subset \mathbb{F}_{q}^{d}, d \geq 2$, and define

$$
\nu(t)=\left|\left\{(x, y) \in E \times E: x \cdot y \equiv x_{1} y_{1}+\cdots+x_{d} y_{d}=t\right\}\right|
$$

Then $\nu(t)=|E|^{2} q^{-1}+\mathcal{D}(t)$, where for every $t>0,|\mathcal{D}(t)|<|E| q^{\frac{d-1}{2}}$. In particular, if $|E|>q^{\frac{d+1}{2}}$, then $\nu(t)>0$ and as E grows beyond this threshold,

$$
\nu(t)=|E|^{2} q^{-1}(1+o(1))
$$

Remark 6. The proof of Theorem 5 goes through unchanged if $x \cdot y$ is replaced by any non-degenerate bi-linear form $B(x, y)$. In particular, we can replace $x_{1} y_{1}+x_{2} y_{2}$ by $x_{1} y_{1}-x_{2} y_{2}$ in the case $d=2$ and this is what we actually use in this paper. More precisely, we shall use the fact that if $E=A \times A$ and the size of A is much greater than $q^{\frac{3}{4}}$, then

$$
\begin{equation*}
|\{(a, b, c, d) \in A \times A \times A \times A: a d-b c=1\}|=|A|^{4} q^{-1}(1+o(1)) \tag{2}
\end{equation*}
$$

1.1. Structure of the Proof of Estimate (1)

The basic idea behind the argument below is the following. Let $T \in S L_{2}\left(\mathbb{F}_{q}\right)$ and define

$$
\nu(T)=\mid\left\{\left(S, S^{\prime}\right) \in R(A) \times R(A): S \cdot S^{\prime}=T\right\}
$$

We prove below that $\sqrt{\operatorname{var}(\nu)} \leq C|A|^{3} q^{-\frac{1}{2}}$, where variance is defined in the usual way as $\mathbb{E}\left((\nu-\mathbb{E}(\nu))^{2}\right)$, with the expectation defined, also in the usual way, as

$$
\mathbb{E}(\nu)=\left|S L_{2}\left(\mathbb{F}_{q}\right)\right|^{-1} \sum_{T \in S L_{2}\left(\mathbb{F}_{q}\right)} \nu(T)=|A|^{6}\left|S L_{2}\left(\mathbb{F}_{q}\right)\right|^{-1}=|A|^{6} q^{-3}(1+o(1))
$$

One can then check by a direct computation that $\sqrt{\operatorname{var}(\nu)}$ is much smaller than $\mathbb{E}(\nu)$ if $|A| \geq C q^{\frac{5}{6}}$, with C sufficiently large, and we conclude that in this regime, $\nu(T)$ is concentrated around its expected value $\mathbb{E}(\nu)=|A|^{6} q^{-3}(1+o(1))$.

1.2. Fourier Analysis Used in This Paper

We shall make use of the following basic formulas of Fourier analysis on \mathbb{F}_{q}^{d}. Let $f: \mathbb{F}_{q}^{d} \rightarrow \mathbb{C}$ and let χ denote a non-trivial additive character on \mathbb{F}_{q}. Define

$$
\widehat{f}(m)=q^{-d} \sum_{x \in \mathbb{F}_{q}^{d}} \chi(-x \cdot m) f(x)
$$

It is not difficult to check that

$$
f(x)=\sum_{m \in \mathbb{F}_{q}^{d}} \chi(x \cdot m) \widehat{f}(m)
$$

(Inversion)
and

$$
\begin{equation*}
\sum_{m \in \mathbb{F}_{q}^{d}}|\widehat{f}(m)|^{2}=q^{-d} \sum_{x \in \mathbb{F}_{q}^{d}}|f(x)|^{2} \tag{Plancherel}
\end{equation*}
$$

2. Proof of Theorem 3 (Estimate 1)

We are looking to solve the equation

$$
\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & \frac{1+a_{12} a_{21}}{a_{11}}
\end{array}\right) \cdot\left(\begin{array}{cc}
b_{11} & b_{21} \\
b_{12} & \frac{1+b_{12} b_{21}}{b_{11}}
\end{array}\right)=\left(\begin{array}{cc}
t & \alpha \\
\beta & \frac{1+\alpha \beta}{t}
\end{array}\right)
$$

which leads to the equations

$$
\begin{equation*}
a_{11} b_{11}+a_{12} b_{12}=t, \quad \frac{b_{21}}{b_{11}} t+\frac{a_{12}}{b_{11}}=\alpha, \quad \text { and } \quad \frac{a_{21}}{a_{11}} t+\frac{b_{12}}{a_{11}}=\beta \tag{3}
\end{equation*}
$$

Let D_{t} denote the characteristic function of the set

$$
\left\{\left(a_{11}, b_{11}, a_{12}, b_{12}\right) \in A \times A \times A \times A: a_{11} b_{11}+a_{12} b_{12}=t\right\}
$$

and let $E=A \times A$. Then the number of six-tuplets satisfying the equations (3) above equals

$$
\begin{aligned}
\nu(t, \alpha, \beta) & =\frac{1}{q^{2}} \sum_{u_{, v}} \sum_{\substack{a_{11}, b_{11}, a_{12} \\
b_{12}, a_{21}, b_{21}}}\binom{D_{t}\left(a_{11}, b_{11}, a_{12}, b_{12}\right) E\left(a_{21}, b_{21}\right)}{\chi\left(u\left(b_{21} t+a_{12}-\alpha b_{11}\right)\right) \chi\left(v\left(a_{21} t+b_{12}-\beta a_{11}\right)\right)} \\
& =q^{-2}\left|D_{t}\right||E|+q^{4} \sum_{\substack{\mathbb{F}_{q}^{2} \backslash\{(0,0)\}}} \widehat{D}_{t}(\beta v, \alpha u,-u,-v) \widehat{E}(t v, t u) \\
& =\nu_{0}(t, \alpha, \beta)+\nu_{\operatorname{main}}(t, \alpha, \beta) .
\end{aligned}
$$

By (2), $\nu_{0}(t, \alpha, \beta)=q^{-3}|A|^{6}(1+o(1))$, which implies that

$$
\sum_{t, \alpha, \beta} \nu_{0}^{2}(t, \alpha, \beta)=q^{-3}|A|^{12}(1+o(1))
$$

We now estimate $\sum_{t, \alpha, \beta} \nu_{\text {main }}^{2}(t, \alpha, \beta)$. By Cauchy-Schwarz and Plancherel,

$$
\begin{aligned}
\nu_{\text {main }}^{2}(t, \alpha, \beta) & \leq q^{8} \sum_{u, v}\left|\widehat{D}_{t}(\beta v, \alpha u,-u,-v)\right|^{2} \cdot \sum_{u, v}|\widehat{E}(t v, t u)|^{2} \\
& \leq|E| q^{6} \sum_{u, v}\left|\widehat{D}_{t}(\beta v, \alpha u,-u,-v)\right|^{2}
\end{aligned}
$$

Now,

$$
|E| q^{6} \sum_{\alpha, \beta} \sum_{u, v}\left|\widehat{D}_{t}(\beta v, \alpha u,-u,-v)\right|^{2}=|E| q^{6} q^{-4}|A|^{4} q^{-1}(1+o(1))
$$

as long as $|E|$ is much larger than $q^{\frac{3}{2}}$. It follows that $\sum_{t \neq 0, \alpha, \beta} \nu_{\text {main }}^{2}(t, \alpha, \beta) \leq|A|^{6} q^{2}$. Hence,

$$
\begin{equation*}
\sum_{t, \alpha, \beta} \nu^{2}(t, \alpha, \beta) \leq C\left(|A|^{12} q^{-3}+|A|^{6} q^{2}\right) \tag{4}
\end{equation*}
$$

In view of (4), we have

$$
\begin{aligned}
\left(|A|^{6}-\sum_{\alpha, \beta} \nu(0, \alpha, \beta)\right)^{2} & =\left(\sum_{t \neq 0, \alpha, \beta} \nu(t, \alpha, \beta)\right)^{2} \\
& \leq C|\operatorname{support}(\nu)| \cdot\left(|A|^{12} q^{-3}+|A|^{6} q^{2}\right)
\end{aligned}
$$

If we can show that

$$
\begin{equation*}
\sum_{\alpha, \beta} \nu(0, \alpha, \beta) \leq \frac{1}{2}|A|^{6} \tag{5}
\end{equation*}
$$

then it would follow that

$$
|\operatorname{support}(\nu)| \gtrsim C \min \left\{q^{3}, \frac{|A|^{6}}{q^{2}}\right\} .
$$

This expression is not less than $C\left|S L_{2}\left(\mathbb{F}_{q}\right)\right|=q^{3}(1+o(1))$ if $|A| \geq C q^{\frac{5}{6}}$, as desired.
We are left to establish (5). Observe that if $t=0$, then $\beta=-\alpha^{-1}$. Plugging this into (3) we see that this forces $a_{11}=-\alpha b_{12}$ and $a_{12}=\alpha b_{11}$, which implies that $\nu(0, \alpha, \beta)=\nu\left(0, \alpha,-\alpha^{-1}\right) \leq q^{4}$. This, in turn, implies that $\sum_{\alpha, \beta} \nu(0, \alpha, \beta)=$ $\sum_{\alpha} \nu\left(0, \alpha,-\alpha^{-1}\right) \leq q^{5}$. Now, since $q^{5} \leq \frac{1}{2}|A|^{6}$ if $|A| \geq C q^{\frac{5}{6}}$, the proof is complete.

3. Proof of Theorem 5

To prove Theorem 5 , we start out by observing that $\nu(t)=\sum_{x, y \in E} q^{-1} \sum_{s \in \mathbb{F}_{q}} \chi(s(x \cdot y-t))$, where χ is a non-trivial additive character on \mathbb{F}_{q}. It follows that $\nu(t)=|E|^{2} q^{-1}+\mathcal{D}$, where

$$
\mathcal{D}=\sum_{x, y \in E} q^{-1} \sum_{s \neq 0} \chi(s(x \cdot y-t))
$$

Viewing \mathcal{D} as a sum in x, applying the Cauchy-Schwarz inequality, and dominating the sum over $x \in E$ by the sum over $x \in \mathbb{F}_{q}^{d}$, we see that

$$
\begin{equation*}
\mathcal{D}^{2} \leq|E| \sum_{x \in \mathbb{F}_{q}^{d}} q^{-2} \sum_{s, s^{\prime} \neq 0} \sum_{y, y^{\prime} \in E} \chi\left(s x \cdot y-s^{\prime} x \cdot y^{\prime}\right) \chi\left(t\left(s^{\prime}-s\right)\right) \tag{6}
\end{equation*}
$$

Orthogonality in the x variable yields that the right-hand side of (3.1) equals

$$
|E| q^{d-2} \sum_{\substack{s y=s^{\prime} y^{\prime} \\ s, s^{\prime} \neq 0}} \chi\left(t\left(s^{\prime}-s\right)\right) E(y) E\left(y^{\prime}\right)
$$

If $s \neq s^{\prime}$ we may set $a=s / s^{\prime}, b=s^{\prime}$ and obtain

$$
|E| q^{d-2} \sum_{\substack{y \neq y^{\prime} \\ a y=y^{\prime} \\ a \neq 1, b}} \chi(t b(1-a)) E(y) E\left(y^{\prime}\right)=-|E| q^{d-2} \sum_{y \neq y^{\prime}, a \neq 1} E(y) E(a y)
$$

and the absolute value of this quantity is at most

$$
|E| q^{d-2} \sum_{y \in E}\left|E \cap l_{y}\right| \leq|E|^{2} q^{d-1}
$$

since $\left|E \cap l_{y}\right| \leq q$ by the virtue of the fact that each line contains exactly q points.
If $s=s^{\prime}$, then we get $|E| q^{d-2} \sum_{s, y} E(y)=|E|^{2} q^{d-1}$. It follows that $\nu(t)=$ $|E|^{2} q^{-1}+\mathcal{D}(t)$, where $\mathcal{D}^{2}(t) \leq-Q(t)+|E|^{2} q^{d-1}$, with $Q(t) \geq 0$. This gives us $\mathcal{D}^{2}(t) \leq|E|^{2} q^{d-1}$, so that

$$
\begin{equation*}
|\mathcal{D}(t)| \leq|E| q^{\frac{d-1}{2}} \tag{7}
\end{equation*}
$$

We conclude that $\nu(t)=|E|^{2} q^{-1}+\mathcal{D}(t)$ with $|\mathcal{D}(t)|$ bounded as in (7). This quantity is strictly positive if $|E|>q^{\frac{d+1}{2}}$ with a sufficiently large constant $C>0$. This completes the proof of Theorem 5.

4. Remarks and Questions

- It has been recently pointed out to us by O. Dinai that the conclusion of our main result can be obtained using the methods in [1].
- The Fourier analysis used in the proof of both the first and second assertions of Theorem 3 is almost entirely formal as no hard estimates are used, even on the level of Gauss sums. This suggests that the result should be generalizable to a much wider setting.
- A natural analog of the second part of Theorem 3 is proved in [4] in all dimensions. Thus in principle there is a launching mechanism to attack the second part, though it is certainly more difficult technically.
- One of the consequences of the main result of this paper is to give a quantitative version of Helfgott's result (Theorem 2) for a class of relatively large subsets of $S L_{2}\left(\mathbb{F}_{q}\right)$. In analogy with the results in [3] it should be possible to address the question of obtaining explicit exponents for relatively small sets as well.

References

[1] L. Babai, N. Nikolov and L. Pyber Product Growth and Mixing in Finite Groups, Proceedings of the 19th annual ACM-SIAM symposium on discrete algorithms, 2008.
[2] O. Dinai, Ph.D. Dissertation (2008).
[3] M. Garaev, An explicit sum-product estimate in \mathbb{F}_{p}, Int. Math. Res. Notes 2007 (2007), article ID rnm035
[4] D. Hart and A. Iosevich, Sums and products in finite fields: an integral geometric viewpoint, Contemporary Math., to appear.
[5] H. A. Helfgott, Growth and generation in $S L_{2}(\mathbb{Z} / p \mathbb{Z})$, Ann. of Math. 167 (2008), 601-623.

