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Abstract
We prove that if A C F\{0} with |A] > Cq6, then |R(A) - R(A)| > C'¢3, where

a1 Aa22

R(A) = {< 011 412 ) c SLQ(]Fq) t a1, 12,021 € A} .

The proof relies on a result, previously established by D. Hart and the second
author, which implies that if |A| is much larger than ¢3 then

‘{(alhalg,agl,azg) EAXAXxAXA: a11a22 — A12091 = 1}| = |A‘4q_1(1 + 0(1)).

1. Introduction

Let SLy(FF,) denote the set of two by two matrices with determinant one over the
finite field with ¢ elements.

Definition 1. Given A C Fy, let

ail a2
R(A) = € SLy(Fy) : a11,a12,a01 € A 5.
={( o 22 ) e SmaF)  anamon 4}

Observe that the size of R(A) is exactly |A|*. The purpose of this paper is to
determine how large A needs to be to ensure that the product set

R(A)- R(A) = {M - M : M,M' € R(A)}

contains a positive proportion of all the elements of SLy(F), ¢ prime. This question
is partly motivated by the following result due to Harald Helfgott ([5]). See his paper
for further background on this problem and related references. See also [2] where
Helfgott’s result is proved for general fields.

Theorem 2. (Helfgott) Let p be a prime. Let E be a subset of SLo(Z/pZ) not
contained in any proper subgroup.
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e Assume that |E| < p3~° for some fivzed 6 > 0. Then |E - E - E| > c|E|'"e,
where ¢ > 0 and € > 0 depend only on 9.

e Assume that |E| > p° for some fived 5 > 0. Then there is an integer k > 0,
depending only on &, such that every element of SLo(Z/pZ) can be expressed
as a product of at most k elements of E\U E~!.

Our main result is the following.

Theorem 3. Let A C F,\{0} with |A| > Cq5. Then there exists C' > 0 such that
|R(A) - R(A)| = C'|SLy(Fy)| = C"¢°. (1)
Remark 4. Observe that if ¢ = p?, then F, contains F,, as a sub-field. Since R(F))

is a sub-group of SLa(F,) we see that the threshold assumption on the size of A in
Theorem 8 cannot be improved beyond |A| > qz.

We shall make use of the following result due to D. Hart and A. Tosevich ([4]).

Theorem 5. Let E C IFZ, d > 2, and define
v(t)={(z,y) EEXE:x-y=my1 + -+ Taya = t}].
Then v(t) = |E|*q~* + D(t), where for every t > 0, |D(t)| < |E|q% In particular,
if |E| > q“= | then v(t) >0 and as E grows beyond this threshold,
v(t) = [’ (1 + o(1)).

Remark 6. The proof of Theorem 5 goes through unchanged if x -y is replaced by
any non-degenerate bi-linear form B(x,y). In particular, we can replace x1y1 + T2y
by x1y1 — x2y2 in the case d = 2 and this is what we actually use in this paper.
More precisely, we shall use the fact that if E = A X A and the size of A is much
greater than q%, then

{(a,b,c,d) € Ax Ax Ax A:ad—be=1} =|A*¢ (1 +0(1)). (2)

1.1. Structure of the Proof of Estimate (1)

The basic idea behind the argument below is the following. Let T' € SLy(F,) and
define

v(T) = |{(S,8") € R(A) x R(A): S-S =T}.
We prove below that /var(v) < C |A|3q_%, where variance is defined in the usual
way as E ((1/ — ]E(V))Q) , with the expectation defined, also in the usual way, as

E(v) = |SLa(Fy)[ ™" > () = JA°ISLa(Fy)| ™" = |Ag*(1 + o(1)).
TeSLa(Fq)
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One can then check by a direct computation that /var(v) is much smaller than
E(v) if |A| > Cq¢¢, with C sufficiently large, and we conclude that in this regime,
v(T) is concentrated around its expected value E(v) = |A[°¢3(1 + o(1)).

1.2. Fourier Analysis Used in This Paper

We shall make use of the following basic formulas of Fourier analysis on F g. Let
f: IFZ — C and let x denote a non-trivial additive character on F,. Define

Fm)=q 43" x(—z-m)f(x).

zeFd

It is not difficult to check that

(m) (Inversion)

=
&
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=
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2
=)

and

ST Fm =0 S @) (Plancherel)

merd z€Fd
2. Proof of Theorem 3 (Estimate 1)
We are looking to solve the equation
ann a2 (b ba1 [t o«
a1 1+z(11112;a21 bio 1+Zﬁb2l - B 1+taﬁ >
which leads to the equations
aj1biy +apbio =1, —t+-— =aq,
Let D, denote the characteristic function of the set

{(a11,b117@12,b12) €EAXAXAXA:a11bi1 + a2bio = t}

and let E = A x A. Then the number of six-tuplets satisfying the equations (3)
above equals

u,v a11,bi1,a12 X (u(b21t + a12 — abi1))x(v(az21t + bz — Baiy)

b12,a21,b21

v(t,a, B) P Z > (Dt(an,bn,a12,b12)E(a217521) )

=q ?DiJ|El+¢* > Di(Bv,au, —u, —v)E(tv, tu)
Fa\{(0,0)}
= VO(ta aaﬂ) + Vmain(t,()é,ﬂ).
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By (2), vo(t, o, 8) = q_3|A|6(1 + 0(1)), which implies that

>Rt o B) = P |AP(1+ 0(1)).
t,a,

We now estimate Y-, , 5 Vqi,(t, @, 3). By Cauchy-Schwarz and Plancherel,

~ 2 ~ 2
V’I’%’Lain(t7 Oé, ﬂ) S q8 Zu,v ‘Dt (6'[}, au’ _U, _U)‘ ! Zu,v ‘E(t'l), tu)|

~ 2
< |E|q6 Zu,v |Dt(ﬁv7 au, —u, _U)‘ :

Now,

~ 2
Elg® 57 57 1De(Bo, au, —u, —o)[” = |Elgg*|Al*q~ (1 + o(1))

o, u,v

as long as |E| is much larger than ¢2. It follows that Z V2 it 3) < A%

t#0,a,3
Hence,
> VAt a,B) < C(IA] g7 + 141°¢%). (4)
t,o,
In view of (4), we have
2 2
AL =S "v(0,0,8) | = D vt,a,B)

Y 10,03
< Clsupport(v)| - (|A|"q72 + |A°¢%).

If we can show that )
> v(0.a.8) < 5|Af, (5)
a,B
then it would follow that

. Al
|support(v)| 2 C min {q?’, %} .

This expression is not less than C|SLy(F,)| = ¢*(1 4+ 0(1)) if |A| > Cq?, as desired.

We are left to establish (5). Observe that if ¢+ = 0, then 8 = —a~!. Plugging
this into (3) we see that this forces a;; = —abi2 and a12 = aby1, which implies
that v(0,,8) = v(0,a, —a~1) < ¢*. This, in turn, implies that Yapv(0,a,8) =
> v(0,a,—a™t) < ¢°. Now, since ¢° < %\A|G if |A| > Cq8, the proof is complete.
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3. Proof of Theorem 5

To prove Theorem 5, we start out by observing that (¢ Z -1 Z (z-y—1t))
z,yeE sely,

where ¥ is a non-trivial additive character on F,. Tt follows that v(t) = |E|*¢~' +D,

D= > q¢'> x(s(z-y—1t).

z,yelE s#0

where

Viewing D as a sum in x, applying the Cauchy-Schwarz inequality, and dominating
the sum over x € E by the sum over z € Fg, we see that

D*<|EIY g2 ). > X(sw-y—sz-y)x(t(s —s)). (6)

z€Fd 5,8'#0y,y' €L

Orthogonality in the x variable yields that the right-hand side of (3.1) equals

Elq*™? Y x(t(s' = $)E@)E®W).

Sy:S/y/
5,5"#0

If s # s’ we may set a = s/s’,b = s’ and obtain

[E[g"% Y x(th(1—a))E(W)E(Y) = —|El¢"> Y E(y)E(ay),
y#y' y#y',a#l

ay=y’
a#1,b

and the absolute value of this quantity is at most

B¢ [ENT,| <|Bl*q*,
yeE
since |E N{,| < ¢ by the virtue of the fact that each line contains exactly ¢ points.
If s = s, then we get |E|qd_2z E(y) = |E]’¢"!. Tt follows that v(t) =
|E’q~! + D(t), where D2(t) < —Q(¢ ) + |E|?¢%!, with Q(¢) > 0. This gives us
D2(t) < |E[*¢*, so that
d—1
D) < |Elg = . (7)

We conclude that v(t) = |E|*¢~! + D(t) with |D(t)| bounded as in (7). This
quantity is strictly positive if |E| > ¢"F with a sufficiently large constant C' > 0.
This completes the proof of Theorem 5.
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4.

Remarks and Questions

It has been recently pointed out to us by O. Dinai that the conclusion of our
main result can be obtained using the methods in [1].

The Fourier analysis used in the proof of both the first and second assertions
of Theorem 3 is almost entirely formal as no hard estimates are used, even on
the level of Gauss sums. This suggests that the result should be generalizable
to a much wider setting.

A natural analog of the second part of Theorem 3 is proved in [4] in all
dimensions. Thus in principle there is a launching mechanism to attack the
second part, though it is certainly more difficult technically.

One of the consequences of the main result of this paper is to give a quanti-
tative version of Helfgott’s result (Theorem 2) for a class of relatively large
subsets of SLy(F,). In analogy with the results in [3] it should be possible to
address the question of obtaining explicit exponents for relatively small sets
as well.
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