# A SHORT PROOF OF A SERIES EVALUATION IN TERMS OF HARMONIC NUMBERS ${ }^{1}$ 

Alois Panholzer<br>Institut für Diskrete Mathematik und Geometrie, Technische Universität Wien, 1040 Wien, Austria<br>Alois.Panholzer@tuwien.ac.at

## Helmut Prodinger

Department of Mathematics, University of Stellenbosch, South Africa
hproding@sun.ac.za

Received: 5/21/08, Revised: 2/12/09, Accepted: 3/14/09, Published: 9/30/09

Abstract
We give another short and simple proof of
$\sum_{n \geq 1} \frac{1}{2^{2 n-1}(2 n-1)} \sum_{k}\binom{2 n-1}{k} \frac{1}{k-j-n+\frac{1}{2}}=-\frac{2}{j} \sum_{k=1}^{j} \frac{1}{2 k-1}$.

## 1. The Main Result

For positive integers $j$, consider

$$
S(j)=\sum_{n \geq 1} \frac{1}{2^{2 n-1}(2 n-1)} \sum_{k}\binom{2 n-1}{k} \frac{1}{k-j-n+\frac{1}{2}}
$$

This quantity arose in [4] and was subsequently evaluated in [3]. Further proofs of the final formula

$$
S(j)=-\frac{2}{j} \sum_{k=1}^{j} \frac{1}{2 k-1}
$$

were given in $[2,1]$. Here, we give another short and simple proof.
For our analysis, it is better to consider

$$
T(j)=\sum_{n \geq 1} \frac{1}{2^{2 n-1}(2 n-1)} \sum_{k}\binom{2 n-1}{k} \frac{1}{k+j-n+\frac{1}{2}},
$$

[^0]so that
\[

$$
\begin{aligned}
S(j) & =\sum_{n \geq 1} \frac{1}{2^{2 n-1}(2 n-1)} \sum_{k}\binom{2 n-1}{2 n-1-k} \frac{1}{k-j-n+\frac{1}{2}} \\
& =\sum_{n \geq 1} \frac{1}{2^{2 n-1}(2 n-1)} \sum_{k}\binom{2 n-1}{k} \frac{1}{(2 n-1-k)-j-n+\frac{1}{2}} \\
& =\sum_{n \geq 1} \frac{1}{2^{2 n-1}(2 n-1)} \sum_{k}\binom{2 n-1}{k} \frac{1}{n-k-j-\frac{1}{2}} \\
& =-T(j) .
\end{aligned}
$$
\]

It will be advantageous to treat the sum

$$
\begin{aligned}
\widetilde{T}_{j}:= & \sum_{n \geq 1} \frac{1}{2^{2 n-1}(2 n-1)}\left[\frac{1}{2} \sum_{k=0}^{2 n-1}\binom{2 n-1}{k} \frac{1}{k+j-n+\frac{1}{2}}\right. \\
& \left.-\frac{1}{2} \sum_{k=0}^{2 n-1}\binom{2 n-1}{k} \frac{1}{k-j-n+\frac{1}{2}}\right] \\
= & \frac{1}{2}(T(j)-S(j))=T(j) .
\end{aligned}
$$

First we will give a representation of the $\operatorname{sum} \sum_{k=0}^{2 n-1}\binom{2 n-1}{k} \frac{1}{k+m+\frac{1}{2}}$, with $m \in \mathbb{Z}$, as a curve integral in the complex plane.

Lemma 1 We have

$$
\sum_{k=0}^{2 n-1}\binom{2 n-1}{k} \frac{1}{k+m+\frac{1}{2}}=\int_{\Gamma} u^{2 m}\left(1+u^{2}\right)^{2 n-1} d u
$$

where the curve $\Gamma$ is the upper half of the unit circle in the complex plane starting from -1 and ending at 1 , i.e., $\Gamma=\{\cos (\pi-t)+i \sin (\pi-t): t \in[0, \pi]\}$.

Proof. We have

$$
\begin{aligned}
\int_{\Gamma} u^{2 m}\left(1+u^{2}\right)^{2 n-1} d u & =\int_{\Gamma} \sum_{k=0}^{2 n-1}\binom{2 n-1}{k} u^{2 k+2 m} d u \\
& =\left.\sum_{k=0}^{2 n-1}\binom{2 n-1}{k} \frac{u^{2 k+2 m+1}}{2 k+2 m+1}\right|_{-1} ^{1} \\
& =2 \sum_{k=0}^{2 n-1}\binom{2 n-1}{k} \frac{1}{2 k+2 m+1}
\end{aligned}
$$

Thus we get

$$
\begin{gathered}
\frac{1}{2} \sum_{k=0}^{2 n-1}\binom{2 n-1}{k} \frac{1}{k+j-n+\frac{1}{2}}-\frac{1}{2} \sum_{k=0}^{2 n-1}\binom{2 n-1}{k} \frac{1}{k-j-n+\frac{1}{2}} \\
\quad=\frac{1}{2} \int_{\Gamma}\left(u^{2 j-2 n}-u^{-2 j-2 n}\right)\left(1+u^{2}\right)^{2 n-1} d u \\
\quad=\frac{1}{2} \int_{\Gamma}\left(u^{2 j-1}-u^{-2 j-1}\right)\left(\frac{1+u^{2}}{u}\right)^{2 n-1} d u
\end{gathered}
$$

and further

$$
\begin{align*}
\widetilde{T}(j) & =\sum_{n \geq 1} \frac{1}{2^{2 n-1}(2 n-1)} \frac{1}{2} \int_{\Gamma}\left(u^{2 j-1}-u^{-2 j-1}\right)\left(\frac{1+u^{2}}{u}\right)^{2 n-1} d u \\
& =\sum_{n \geq 1} \int_{\Gamma} \frac{1}{2(2 n-1)}\left(u^{2 j-1}-u^{-2 j-1}\right)\left(\frac{1+u^{2}}{2 u}\right)^{2 n-1} d u \tag{1}
\end{align*}
$$

Next we consider, for $j \in \mathbb{N}$ and $u \in \Gamma$, the series

$$
Q_{j}(u):=\sum_{n \geq 1} \frac{1}{2(2 n-1)}\left(u^{2 j-1}-u^{-2 j-1}\right)\left(\frac{1+u^{2}}{2 u}\right)^{2 n-1}
$$

Lemma 2 The series $\widetilde{Q}_{j}(\varphi):=Q_{j}\left(e^{i \varphi}\right)$ converges uniformly for $\varphi \in[0, \pi]$, i.e.,

$$
\begin{equation*}
\widetilde{Q}_{j}(\varphi)=i e^{-i \varphi} \sin (2 j \varphi) \frac{1}{2} \log \frac{1+\cos \varphi}{1-\cos \varphi} \tag{2}
\end{equation*}
$$

Proof. Substituting $u=e^{i \varphi}$, with $\varphi \in[0, \pi]$, we can write

$$
\begin{aligned}
\widetilde{Q}_{j}(\varphi) & =Q_{j}\left(e^{i \varphi}\right)=i e^{-i \varphi} \sum_{n \geq 1} \frac{1}{2 n-1} \frac{e^{2 j i \varphi}-e^{-2 j i \varphi}}{2 i}\left(\frac{e^{i \varphi}+e^{-i \varphi}}{2}\right)^{2 n-1} \\
& =i e^{-i \varphi} \sum_{n \geq 1} \frac{1}{2 n-1} \sin (2 j \varphi)(\cos \varphi)^{2 n-1}
\end{aligned}
$$

Since we have

$$
\begin{equation*}
\sum_{n \geq 1} \frac{z^{2 n-1}}{2 n-1}=\frac{1}{2} \log \frac{1+z}{1-z}, \quad \text { for }|z|<1 \tag{3}
\end{equation*}
$$

we obtain the pointwise convergence of the series $\widetilde{Q}_{j}(\varphi)$, for $\varphi \in(0, \pi)$, to the function given in (2).

Obviously we also have $\widetilde{Q}_{j}(0)=\widetilde{Q}_{j}(\pi)=0$, which shows convergence of $\widetilde{Q}_{j}(\varphi)$, for all $\varphi \in[0, \pi]$. Since (3) converges uniformly for all $z$, with $|z| \leq q<1$,
we obtain immediately that $\widetilde{Q}_{j}(\varphi)$ converges uniformly for all $\varphi \in[\delta, \pi-\delta]$, for arbitrary $0<\delta<\frac{\pi}{2}$. But since for all $j \in \mathbb{N}$

$$
\lim _{\varphi \rightarrow 0} \sin (2 j \varphi) \log \frac{1+\cos \varphi}{1-\cos \varphi}=0
$$

which can easily be shown, we obtain that for all $\epsilon>0$ there exists a $\delta>0$, such that

$$
\begin{aligned}
& \left|i e^{-i \varphi} \sum_{n \geq N} \frac{1}{2 n-1} \sin (2 j \varphi)(\cos \varphi)^{2 n-1}\right|=\sum_{n \geq N} \frac{1}{2 n-1} \sin (2 j \varphi)(\cos \varphi)^{2 n-1} \\
& \quad \leq \sum_{n \geq 1} \frac{1}{2 n-1} \sin (2 j \varphi)(\cos \varphi)^{2 n-1}<\epsilon
\end{aligned}
$$

for all $0 \leq \varphi<\delta$ and for all $N \in \mathbb{N}$. This, together with the obvious relation $\widetilde{Q}_{j}(\pi-\varphi)=-\widetilde{Q}_{j}(\varphi)$, shows that $\widetilde{Q}_{j}(\varphi)$ converges even uniformly for all $\varphi \in$ $[0, \pi]$.

After back-substitution, we obtain that the series $Q_{j}(u)$ converges uniformly for all $u \in \Gamma$ to the function

$$
\left(u^{2 j-1}-u^{-2 j-1}\right) \frac{1}{4} \log \left(\frac{1+\frac{1+u^{2}}{2 u}}{1-\frac{1+u^{2}}{2 u}}\right) .
$$

Thus in equation (1) we can interchange summation and integration and obtain the integral representation

$$
\begin{align*}
\widetilde{T}_{j} & =\int_{\Gamma} \sum_{n \geq 1} \frac{1}{2(2 n-1)}\left(u^{2 j-1}-u^{-2 j-1}\right)\left(\frac{1+u^{2}}{2 u}\right)^{2 n-1} d u \\
& =\frac{1}{2} \int_{\Gamma}\left(u^{2 j-1}-u^{-2 j-1}\right) \frac{1}{2} \log \left(\frac{1+\frac{1+u^{2}}{2 u}}{1-\frac{1+u^{2}}{2 u}}\right) d u \\
& =\frac{1}{2} \int_{\Gamma}\left(u^{2 j-1}-u^{-2 j-1}\right) \frac{1}{2} \log \left(-\frac{(1+u)^{2}}{(1-u)^{2}}\right) d u \tag{4}
\end{align*}
$$

Remark Using the substitution $u=e^{i \varphi}$ one obtains the following representation of the sum $\widetilde{T}_{j}$ as a real integral:

$$
\widetilde{T}_{j}=\frac{1}{2} \int_{0}^{\pi} \sin (2 j \varphi) \log \frac{1+\cos \varphi}{1-\cos \varphi} d \varphi
$$

but it seems more involved to evaluate this integral.
We use now that, for $u \in \Gamma$ :

$$
\frac{1}{2} \log \left(-\frac{(1+u)^{2}}{(1-u)^{2}}\right)=\log \left((-i) \frac{1+u}{1-u}\right)
$$

and the correct determination of the (multi-valued) logarithm function is obtained when considering the real analogue of this equation:

$$
\frac{1}{2} \log \frac{1+\cos \varphi}{1-\cos \varphi}=\log \frac{\cos \frac{\varphi}{2}}{\sin \frac{\varphi}{2}}, \quad \text { for } \varphi \in(0, \pi)
$$

Then equation (4) gives

$$
\begin{align*}
\widetilde{T}_{j} & =\frac{1}{2} \int_{\Gamma}\left(u^{2 j-1}-u^{-2 j-1}\right) \log \left((-i) \frac{1+u}{1-u}\right) d u \\
& =\frac{\log (-i)}{2} \int_{\Gamma}\left(u^{2 j-1}-u^{-2 j-1}\right) d u+\int_{\Gamma}\left(u^{2 j-1}-u^{-2 j-1}\right) \frac{1}{2} \log \left(\frac{1+u}{1-u}\right) d u \\
& =\int_{\Gamma}\left(u^{2 j-1}-u^{-2 j-1}\right) \frac{1}{2} \log \left(\frac{1+u}{1-u}\right) d u \tag{5}
\end{align*}
$$

since obviously the first integral vanishes.
In order to proceed we consider, for $j \in \mathbb{N}$ and $u \in \Gamma$, the series

$$
R_{j}(u):=\sum_{n \geq 1}\left(u^{2 j-1}-u^{-2 j-1}\right) \frac{u^{2 n-1}}{2 n-1}
$$

Lemma 3 There is uniform convergence of the series $R_{j}(u)$, for $u \in \Gamma$, to the function

$$
\begin{equation*}
f_{j}(u)=\left(u^{2 j-1}-u^{-2 j-1}\right) \frac{1}{2} \log \left(\frac{1+u}{1-u}\right) \tag{6}
\end{equation*}
$$

Proof. It is well-known that equation (3) even holds, with the exception of $z=1$ and $z=-1$, for all complex $z$ with $|z|=1$, which proves pointwise convergence of $R_{j}(u)$ to $f_{j}(u)$ for $u \in \Gamma \backslash\{-1,1\}$.

Obviously we also have $R_{j}(-1)=R_{j}(1)=0$, which shows convergence of $R_{j}(u)$, for all $u \in \Gamma$. Furthermore, since

$$
R_{j}(u)=-\sum_{m=-j+1}^{j} \frac{u^{2 m-2}}{2(m+j)-1}+\sum_{m \geq j+1} \frac{4 j}{(2(m-j)-1)(2(m+j)-1)} u^{2 m-2}
$$

as can be shown easily, we obtain by simple majorization arguments that $R_{j}(u)$ converges even uniformly for all $u \in \Gamma$ to the function $f_{j}(u)$.

Thus in equation (5) we can replace $f_{j}(u)$ by the series $R_{j}(u)$ and interchange summation and integration and get

$$
\widetilde{T}_{j}=\sum_{n \geq 1} \int_{\Gamma}\left(u^{2 j-1}-u^{-2 j-1}\right) \frac{u^{2 n-1}}{2 n-1} d u
$$

which can be evaluated easily:

$$
\begin{aligned}
\widetilde{T}_{j} & =\sum_{n \geq 1} \int_{\Gamma}\left(\frac{u^{2 n+2 j-2}}{2 n-1}-\frac{u^{2 n-2 j-2}}{2 n-1}\right) d u \\
& =\left.\sum_{n \geq 1}\left(\frac{u^{2 n+2 j-1}}{(2 n-1)(2 n+2 j-1)}-\frac{u^{2 n-2 j-1}}{(2 n-1)(2 n-2 j-1)}\right)\right|_{-1} ^{1} \\
& =2 \sum_{n \geq 1}\left(\frac{1}{(2 n-1)(2 n+2 j-1)}-\frac{1}{(2 n-1)(2 n-2 j-1)}\right) \\
& =\frac{1}{j} \sum_{n \geq 1}\left(\frac{1}{2 n-1}-\frac{1}{2 n+2 j-1}\right)-\frac{1}{j} \sum_{n \geq 1}\left(\frac{1}{2 n-2 j-1}-\frac{1}{2 n-1}\right) \\
& =\frac{1}{j} \sum_{k=1}^{j} \frac{1}{2 k-1}-\frac{1}{j} \sum_{k=1}^{j} \frac{-1}{2 k-1}=\frac{2}{j} \sum_{k=1}^{j} \frac{1}{2 k-1} .
\end{aligned}
$$

Acknowledgment One referee's patience with various versions of this material is gratefully acknowledged.

## References

[1] W. Chu and L. De Donno. Transformation on infinite double series and applications to harmonic number identities. Appl. Algebra Engrg. Comm. Comput., 15:339-348, 2005.
[2] C. Krattenthaler. Hypergeometric proof of a curious identity of Lyons, Paule and Riese. South East Asian J. Math. Math. Sci., 3:63-67, 2004.
[3] R. Lyons, P. Paule, and A. Riese. A computer proof of a series evaluation in terms of harmonic numbers. Appl. Algebra Engrg. Comm. Comput., 13:327-333, 2002.
[4] R. Lyons and J. E. Steif. Stationary determinantal processes: phase multiplicity, Bernoullicity, entropy, and domination. Duke Math. J., 120:515-575, 2003.


[^0]:    ${ }^{1}$ This work was supported by the South African Science Foundation NRF, grant 2053748, and by the Austrian Science Foundation FWF, grant S9608-N23.

