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Abstract
We give another short and simple proof of
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1. The Main Result

For positive integers j, consider

S(j) =
∑

n≥1

1
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This quantity arose in [4] and was subsequently evaluated in [3]. Further proofs
of the final formula

S(j) = −2
j

j∑

k=1

1
2k − 1

were given in [2, 1]. Here, we give another short and simple proof.
For our analysis, it is better to consider

T (j) =
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so that
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It will be advantageous to treat the sum

T̃j :=
∑

n≥1

1
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[
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First we will give a representation of the sum
∑2n−1

k=0

(2n−1
k

)
1

k+m+ 1
2
, with m ∈ Z,

as a curve integral in the complex plane.

Lemma 1 We have
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k + m + 1
2

=
∫

Γ
u2m(1 + u2)2n−1du,

where the curve Γ is the upper half of the unit circle in the complex plane starting
from −1 and ending at 1, i.e., Γ = {cos(π − t) + i sin(π − t) : t ∈ [0,π]}.

Proof. We have
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Thus we get
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u
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and further

T̃ (j) =
∑

n≥1

1
22n−1(2n− 1)

1
2

∫
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(
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)(1 + u2

u
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1
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(
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)(1 + u2
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du. (1)

Next we consider, for j ∈ N and u ∈ Γ, the series

Qj(u) :=
∑

n≥1

1
2(2n− 1)

(
u2j−1 − u−2j−1

)(1 + u2

2u

)2n−1
.

Lemma 2 The series Q̃j(ϕ) := Qj(eiϕ) converges uniformly for ϕ ∈ [0,π], i.e.,

Q̃j(ϕ) = ie−iϕ sin(2jϕ)
1
2

log
1 + cosϕ

1− cosϕ
. (2)

Proof. Substituting u = eiϕ, with ϕ ∈ [0,π], we can write

Q̃j(ϕ) = Qj(eiϕ) = ie−iϕ
∑

n≥1

1
2n− 1

e2jiϕ − e−2jiϕ

2i

(eiϕ + e−iϕ

2

)2n−1

= ie−iϕ
∑

n≥1

1
2n− 1

sin(2jϕ)(cosϕ)2n−1.

Since we have ∑

n≥1

z2n−1

2n− 1
=

1
2

log
1 + z

1− z
, for |z| < 1, (3)

we obtain the pointwise convergence of the series Q̃j(ϕ), for ϕ ∈ (0,π), to the
function given in (2).

Obviously we also have Q̃j(0) = Q̃j(π) = 0, which shows convergence of Q̃j(ϕ),
for all ϕ ∈ [0,π]. Since (3) converges uniformly for all z, with |z| ≤ q < 1,
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we obtain immediately that Q̃j(ϕ) converges uniformly for all ϕ ∈ [δ,π − δ], for
arbitrary 0 < δ < π

2 . But since for all j ∈ N

lim
ϕ→0

sin(2jϕ) log
1 + cosϕ

1− cosϕ
= 0,

which can easily be shown, we obtain that for all ε > 0 there exists a δ > 0, such
that

∣∣∣ie−iϕ
∑

n≥N

1
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sin(2jϕ)(cosϕ)2n−1
∣∣∣ =

∑

n≥N

1
2n− 1

sin(2jϕ)(cosϕ)2n−1

≤
∑

n≥1

1
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sin(2jϕ)(cosϕ)2n−1 < ε,

for all 0 ≤ ϕ < δ and for all N ∈ N. This, together with the obvious relation
Q̃j(π − ϕ) = −Q̃j(ϕ), shows that Q̃j(ϕ) converges even uniformly for all ϕ ∈
[0,π]. !

After back-substitution, we obtain that the series Qj(u) converges uniformly for
all u ∈ Γ to the function

(
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)1
4

log
(1 + 1+u2

2u

1− 1+u2

2u

)
.

Thus in equation (1) we can interchange summation and integration and obtain the
integral representation

T̃j =
∫

Γ

∑

n≥1

1
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log
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Remark Using the substitution u = eiϕ one obtains the following representation
of the sum T̃j as a real integral:

T̃j =
1
2

∫ π

0
sin(2jϕ) log

1 + cosϕ

1− cosϕ
dϕ,

but it seems more involved to evaluate this integral.

We use now that, for u ∈ Γ:

1
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)
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(
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)
,
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and the correct determination of the (multi-valued) logarithm function is obtained
when considering the real analogue of this equation:

1
2

log
1 + cosϕ

1− cosϕ
= log

cos ϕ
2

sin ϕ
2

, for ϕ ∈ (0,π).

Then equation (4) gives

T̃j =
1
2
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since obviously the first integral vanishes.
In order to proceed we consider, for j ∈ N and u ∈ Γ, the series

Rj(u) :=
∑

n≥1

(
u2j−1 − u−2j−1

) u2n−1

2n− 1
.

Lemma 3 There is uniform convergence of the series Rj(u), for u ∈ Γ, to the
function

fj(u) =
(
u2j−1 − u−2j−1

)1
2

log
(1 + u

1− u

)
. (6)

Proof. It is well-known that equation (3) even holds, with the exception of z = 1
and z = −1, for all complex z with |z| = 1, which proves pointwise convergence of
Rj(u) to fj(u) for u ∈ Γ \ {−1, 1}.

Obviously we also have Rj(−1) = Rj(1) = 0, which shows convergence of Rj(u),
for all u ∈ Γ. Furthermore, since

Rj(u) = −
j∑

m=−j+1

u2m−2

2(m + j)− 1
+

∑

m≥j+1

4j
(2(m− j)− 1)(2(m + j)− 1)

u2m−2,

as can be shown easily, we obtain by simple majorization arguments that Rj(u)
converges even uniformly for all u ∈ Γ to the function fj(u). !

Thus in equation (5) we can replace fj(u) by the series Rj(u) and interchange
summation and integration and get

T̃j =
∑

n≥1

∫

Γ

(
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) u2n−1

2n− 1
du,
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which can be evaluated easily:
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∑
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