INFINITE FAMILIES OF DIVISIBILITY PROPERTIES MODULO 4 FOR NON-SQUASHING PARTITIONS INTO DISTINCT PARTS

Michael D. Hirschhorn
School of Mathematics and Statistics, UNSW, Sydney 2052, Australia
m.hirschhorn@unsw.edu.au
Øystein J. Rødseth
Dept. of Mathematics, University of Bergen,Bergen, Norway
rodseth@math.uib.no
James A. Sellers ${ }^{1}$
Dept. of Mathematics, The Pennsylvania State University, University Park, PA
sellersj@math.psu.edu

Received: 12/15/08, Accepted: 5/2/09

Abstract

In 2005, Sloane and Sellers defined a function $b(n)$ which denotes the number of nonsquashing partitions of n into distinct parts. In their 2005 paper, Sloane and Sellers also proved various congruence properties modulo 2 satisfied by $b(n)$. In this note, we extend their results by proving two infinite families of congruence properties modulo 4 for $b(n)$. In particular, we prove that for all $k \geq 3$ and all $n \geq 0$, $$
\begin{aligned} b\left(2^{2 k+1} n+2^{2 k-2}\right) & \equiv 0 \quad(\bmod 4) \quad \text { and } \\ b\left(2^{2 k+1} n+3 \cdot 2^{2 k-2}+1\right) & \equiv 0 \quad(\bmod 4) \end{aligned}
$$

1. Introduction and Statement of Results

In 2005, Sloane and Sellers [5] defined the function $b(n)$ which counts the number of non-squashing partitions of n into distinct parts (as part of their work on enumerating non-squashing stacks of boxes under a particular set of constraints). More precisely, let us say that a partition of a natural number n is non-squashing if, when the parts are arranged in nondecreasing order, say $n=p_{1}+p_{2}+\cdots+p_{k}$ with $1 \leq p_{1} \leq p_{2} \leq \cdots \leq p_{k}$, we have

$$
p_{1}+\cdots+p_{j} \leq p_{j+1}
$$

for all $1 \leq j \leq k-1$. Then $b(n)$ is the number of non-squashing partitions of n into distinct parts. So, for example, $b(10)=9$ with the following partitions being allowed:

The values of $b(n)$ for relatively small n can be found in Sloane's Online Encyclopedia of Integer Sequences [4, A088567].

[^0]In [5], Sloane and Sellers proved a number of facts related to $b(n)$ including the following:

Theorem 1 ([5], Theorem 2) The numbers b(n) satisfy the recurrence

$$
\begin{aligned}
b(0) & =b(1)=1, \\
b(2 m) & =b(2 m-1)+b(m)-1 \quad \text { for } m \geq 1, \\
b(2 m+1) & =b(2 m)+1 \quad \text { for } m \geq 1 .
\end{aligned}
$$

Theorem 2 ([5], Theorem 2) The generating function for $b(n)$ is given by

$$
B(q)=\sum_{n=0}^{\infty} b(n) q^{n}=\prod_{i=0}^{\infty} \frac{1}{1-q^{2^{i}}}-\sum_{i=1}^{\infty} \frac{q^{2^{i}}\left(1-q^{2^{i-1}}\right)}{\prod_{j=0}^{i}\left(1-q^{2^{j}}\right)} .
$$

Theorem 3 ([5], Corollary 4) The value of $b(n) \bmod 2$ is as follows (all congruences are $\bmod 2)$:

$$
\begin{aligned}
& b(0) \equiv 1, \\
& \text { if } n \text { is odd }, b(n) \equiv b(n-1)+1 \\
& b(8 m+2) \equiv 1, b(8 m+6) \equiv 0 \\
& b(16 m+4) \equiv 0, b(16 m+12) \equiv 1, \\
& \text { for } m>0, b(16 m) \equiv b(8 m), b(32 m+8) \equiv 0, b(32 m+24) \equiv 1 .
\end{aligned}
$$

At this point, several comments are in order. First, considering congruences satisfied by $b(n)$ was only a secondary, if not tertiary, goal in [5]. Hence, Theorem 3 is the only result in [5] which deals with congruences satisfied by $b(n)$. In contrast, the goal of this note is to focus attention on divisibility properties satisfied by $b(n)$ in arithmetic progression. This is a worthy goal given the clear relationship that $b(n)$ has with the unrestricted binary partition function whose generating function is given by

$$
\prod_{i=0}^{\infty} \frac{1}{1-q^{2^{i}}}
$$

This is easily seen to be the first term in the generating function for $b(n)$ as noted in Theorem 2 above. It should be noted that Rødseth, Sellers, and Courtright [3] further solidified the relationship between $b(n)$ and the unrestricted binary partition function when they proved the following:

Theorem 4 For all $n \geq 0$ and all $r \geq 2$,

$$
b\left(2^{r+1} n\right) \equiv b\left(2^{r-1} n\right) \quad\left(\bmod 2^{r-2}\right)
$$

As noted in [3], this family of "internal congruences" is extremely reminiscent of the family of congruences which Churchhouse [1] observed for the unrestricted binary partition function. (A similar family of congruences for a restricted binary partition function was also proved by Rødseth and Sellers [2].)

With the above in mind, we can shed more direct light on our goal for this note by first proving the following two infinite families of divisibility properties modulo 2 satisfied by $b(n)$.

Theorem 5 For all $n \geq 0$ and all $k \geq 4$,

$$
\begin{aligned}
b\left(2^{k} n+2^{k-2}\right) & \equiv 0 \quad(\bmod 2) \quad \text { and } \\
b\left(2^{k} n+3 \cdot 2^{k-2}+1\right) & \equiv 0 \quad(\bmod 2)
\end{aligned}
$$

Proof. The proof of this theorem is actually bundled up in the statement of Theorem 3 although this is not apparent at first reading. First, note that the $k=4$ cases of this theorem are

$$
\begin{aligned}
b(16 n+4) & \equiv 0 \quad(\bmod 2) \quad \text { and } \\
b(16 n+13) & \equiv 0 \quad(\bmod 2) .
\end{aligned}
$$

The first of these is explicitly stated in Theorem 3. The second follows from the fact that

$$
\begin{aligned}
b(16 n+13) & =b(16 n+12)+1 \quad \text { by Theorem } 1 \\
& \equiv 1+1 \quad(\bmod 2) \quad \text { by Theorem } 3 \\
& \equiv 0 \quad(\bmod 2) .
\end{aligned}
$$

Next, note that the $k=5$ cases of this theorem are

$$
\begin{aligned}
b(32 n+8) & \equiv 0 \quad(\bmod 2) \quad \text { and } \\
b(32 n+25) & \equiv 0 \quad(\bmod 2)
\end{aligned}
$$

Again, these follow in the same manner from statements made in Theorem 3.
To complete the proof, we note that a proof by mathematical induction on the parameter k can now be performed (using these $k=5$ results as the basis). To prove the first family of congruences in the theorem, assume

$$
b\left(2^{k} n+2^{k-2}\right) \equiv 0 \quad(\bmod 2)
$$

for all $n \geq 0$ and some $k \geq 5$. Then we know

$$
\begin{aligned}
b\left(2^{k+1} n+2^{k-1}\right) & =b\left(16\left(2^{k-3} n+2^{k-5}\right)\right) \\
& \equiv b\left(8\left(2^{k-3} n+2^{k-5}\right)\right) \quad(\bmod 2) \quad \text { from Theorem } 3 \\
& =b\left(2^{k} n+2^{k-2}\right) .
\end{aligned}
$$

The other family of congruences in this theorem follows in similar fashion.

Our main goal in this work is to prove the following two theorems which provide divisibility properties of $b(n)$ modulo 4 . (Note the striking resemblance between Theorems 5 and 7.)

Theorem 6 For all $n \geq 0$,

$$
\begin{aligned}
& b(32 n+20) \equiv 0 \quad(\bmod 4) \quad \text { and } \\
& b(32 n+29) \equiv 0 \quad(\bmod 4)
\end{aligned}
$$

Theorem 7 For all $n \geq 0$ and all $k \geq 3$,

$$
\begin{aligned}
b\left(2^{2 k+1} n+2^{2 k-2}\right) & \equiv 0 \quad(\bmod 4) \quad \text { and } \\
b\left(2^{2 k+1} n+3 \cdot 2^{2 k-2}+1\right) & \equiv 0 \quad(\bmod 4)
\end{aligned}
$$

The proofs of these two theorems that we provide below are elementary, relying heavily on generating function manipulations as well as the $r=4$ case of Theorem 4 above (which is the key ingredient in the induction step of the proof below as Theorem 3 was in the induction proof of Theorem 5.)

2. Infinite Families of Divisibility Properties Modulo 4

We begin this section by proving Theorem 6.
Proof of Theorem 6. Our proof begins by an elementary rewriting of the generating function in Theorem 2 in the following form:

$$
\begin{aligned}
\sum_{n=0}^{\infty} b(n) q^{n}= & \prod_{i=0}^{\infty} \frac{1}{1-q^{2^{i}}}-\sum_{i=1}^{\infty} \frac{q^{2^{i}}\left(1-q^{2^{i-1}}\right)}{\prod_{j=0}^{i}\left(1-q^{2^{j}}\right)} \\
= & \left(\frac{\left(1-q^{32}\right)^{5}}{\prod_{i=0}^{4}\left(1-q^{2^{i}}\right)}\right) \frac{1}{\left(1-q^{32}\right)^{5}} \prod_{i=5}^{\infty} \frac{1}{1-q^{2^{i}}} \\
& -\left(\sum_{i=1}^{5} \frac{q^{2^{i}}\left(1-q^{2^{i-1}}\right)\left(1-q^{32}\right)^{6}}{\prod_{j=0}^{i}\left(1-q^{2 j}\right)}\right) \frac{1}{\left(1-q^{32}\right)^{6}} \\
& -\sum_{i=6}^{\infty} \frac{q^{2^{i}}\left(1-q^{2^{i-1}}\right)}{\prod_{j=0}^{i}\left(1-q^{2^{j}}\right)}
\end{aligned}
$$

Both of the quantities in parentheses are actually polynomials in q as is easily checked, while the denominators of the remaining portions of this representation of the generating function are clearly functions of q^{32}. These two facts are all that is needed now to dissect the generating function for $b(n)$ in order to obtain the generating functions
for $b(32 n+20)$ and $b(32 n+29)$. Indeed, after expanding the polynomials above in MAPLE, extracting the relevant terms, dividing by the appropriate power of q (q^{20} respectively q^{29}), replacing q^{32} by q throughout, and simplifying we find

$$
\begin{aligned}
& \sum_{n=0}^{\infty} b(32 n+20) q^{n} \\
& \quad=4\left(\frac{15+135 q+101 q^{2}+5 q^{3}}{(1-q)^{5}}\right) \prod_{i=0}^{\infty} \frac{1}{1-q^{2^{i}}}-4\left(\frac{5+47 q+67 q^{2}+9 q^{3}}{(1-q)^{5}}\right) \\
& \quad \equiv 0 \quad(\bmod 4)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{n=0}^{\infty} b(32 n+29) q^{n} \\
& \quad=4\left(\frac{35+155 q+65 q^{2}+q^{3}}{(1-q)^{5}}\right) \prod_{i=0}^{\infty} \frac{1}{1-q^{2^{i}}}-4\left(\frac{11+61 q+53 q^{2}+3 q^{3}}{(1-q)^{5}}\right) \\
& \quad \equiv 0 \quad(\bmod 4)
\end{aligned}
$$

We move next to the proof of Theorem 7.
Proof of Theorem 7. As above, we rewrite the generating function for $b(n)$ in an advantageous form:

$$
\begin{aligned}
\sum_{n=0}^{\infty} b(n) q^{n}= & \prod_{i=0}^{\infty} \frac{1}{1-q^{2^{i}}}-\sum_{i=1}^{\infty} \frac{q^{2^{i}}\left(1-q^{2^{i-1}}\right)}{\prod_{j=0}^{i}\left(1-q^{2^{j}}\right)} \\
= & \left(\frac{\left(1-q^{128}\right)^{7}}{\prod_{i=0}^{6}\left(1-q^{2^{i}}\right)}\right) \frac{1}{\left(1-q^{128}\right)^{7}} \prod_{i=7}^{\infty} \frac{1}{1-q^{2^{i}}} \\
& -\left(\sum_{i=1}^{7} \frac{q^{2^{i}}\left(1-q^{2^{i-1}}\right)\left(1-q^{128}\right)^{8}}{\prod_{j=0}^{i}\left(1-q^{2 j}\right)}\right) \frac{1}{\left(1-q^{128}\right)^{8}} \\
& -\sum_{i=8}^{\infty} \frac{q^{2^{i}}\left(1-q^{2^{i-1}}\right)}{\prod_{j=0}^{i}\left(1-q^{2^{j}}\right)}
\end{aligned}
$$

Again, the quantities in parentheses are polynomials in q while the denominators of the remaining portions of this representation of the generating function are functions of q^{128}. These two facts are all that is needed now to dissect the generating function for $b(n)$ in order to obtain the generating functions for $b(128 n+16)$ and
$b(128 n+49)$. After expanding the polynomials above in MAPLE, extracting the relevant terms, dividing by the appropriate power of q (q^{16} respectively q^{49}), replacing q^{128} by q throughout, and simplifying we find

$$
\begin{aligned}
& \sum_{n=0}^{\infty} b(128 n+16) q^{n} \\
& =4\left(\frac{9+11319 q+144618 q^{2}+270494 q^{3}+93949 q^{4}+3899 q^{5}}{(1-q)^{7}}\right) \prod_{i=0}^{\infty} \frac{1}{1-q^{2^{i}}} \\
& \\
& \quad-4\left(\frac{3+3592 q+49505 q^{2}+126048 q^{3}+76445 q^{4}+6632 q^{5}-81 q^{6}}{(1-q)^{7}}\right) \\
& \equiv 0 \quad(\bmod 4)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{n=0}^{\infty} b(128 n+49) q^{n} \\
& = \\
& \\
& \quad 4\left(\frac{173+26803 q+198354 q^{2}+244118 q^{3}+53809 q^{4}+1031 q^{5}}{(1-q)^{7}}\right) \prod_{i=0}^{\infty} \frac{1}{1-q^{2^{i}}} \\
& \\
& \quad-4\left(\frac{55+8530 q+71571 q^{2}+127940 q^{3}+52053 q^{4}+2010 q^{5}-15 q^{6}}{(1-q)^{7}}\right) \\
& \equiv 0 \quad(\bmod 4) .
\end{aligned}
$$

The proof is completed by induction using the case $r=4$ of Theorem 4 .

3. Closing Thoughts

The authors have not found an arithmetic progression $2^{t} n+r$ such that, for all $n \geq 0$, $b\left(2^{t} n+r\right) \equiv 0(\bmod 8)$. This is reminiscent of the behavior of the unrestricted binary partition function [1]. We doubt that such a progression exists.

Acknowledgements. Sellers gratefully acknowledges the Department of Mathematics, University of Bergen, Norway for generous support which allowed Rødseth and Sellers to effectively collaborate during a one-week visit to Bergen in March 2008.

References

[1] R. F. Churchhouse, Congruence properties of the binary partition function, Proc. Camb. Phil. Soc. 66 (1969), 371-376
[2] Ø. Rødseth and J. A. Sellers, Binary Partitions Revisited, Journal of Combinatorial Theory, Series A 98 (2002), 33-45
[3] \varnothing. Rødseth, J. A. Sellers, and K. M. Courtright, Arithmetic Properties of Non-Squashing Partitions into Distinct Parts, Annals of Combinatorics 8, no. 3 (2004), 347-353
[4] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, published electronically at www.research.att.com $/ \sim$ njas/sequences.
[5] N. J. A. Sloane and J. A. Sellers, On non-squashing partitions, Discrete Math. 294 (2005), 259-274

[^0]: ${ }^{1}$ This work was initiated while the third author was a visiting fellow at the Isaac Newton Institute, University of Cambridge.

