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Abstract
In 2005, Sloane and Sellers defined a function b(n) which denotes the number of non-
squashing partitions of n into distinct parts. In their 2005 paper, Sloane and Sellers
also proved various congruence properties modulo 2 satisfied by b(n). In this note,
we extend their results by proving two infinite families of congruence properties
modulo 4 for b(n). In particular, we prove that for all k ≥ 3 and all n ≥ 0,

b(22k+1n + 22k−2) ≡ 0 (mod 4) and
b(22k+1n + 3 · 22k−2 + 1) ≡ 0 (mod 4).

1. Introduction and Statement of Results
In 2005, Sloane and Sellers [5] defined the function b(n) which counts the num-
ber of non–squashing partitions of n into distinct parts (as part of their work on
enumerating non–squashing stacks of boxes under a particular set of constraints).
More precisely, let us say that a partition of a natural number n is non-squashing
if, when the parts are arranged in nondecreasing order, say n = p1 + p2 + · · · + pk

with 1 ≤ p1 ≤ p2 ≤ · · · ≤ pk, we have

p1 + · · · + pj ≤ pj+1

for all 1 ≤ j ≤ k − 1. Then b(n) is the number of non–squashing partitions of n
into distinct parts. So, for example, b(10) = 9 with the following partitions being
allowed:
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The values of b(n) for relatively small n can be found in Sloane’s Online Encyclo-
pedia of Integer Sequences [4, A088567].

1This work was initiated while the third author was a visiting fellow at the Isaac Newton
Institute, University of Cambridge.
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In [5], Sloane and Sellers proved a number of facts related to b(n) including the
following:

Theorem 1 ([5], Theorem 2) The numbers b(n) satisfy the recurrence

b(0) = b(1) = 1,

b(2m) = b(2m− 1) + b(m)− 1 for m ≥ 1,

b(2m + 1) = b(2m) + 1 for m ≥ 1.

Theorem 2 ([5], Theorem 2) The generating function for b(n) is given by

B(q) =
∞∑

n=0

b(n)qn =
∞∏

i=0

1
1− q2i −

∞∑

i=1

q2i
(1− q2i−1

)
∏i

j=0(1− q2j )
.

Theorem 3 ([5], Corollary 4) The value of b(n) mod 2 is as follows (all congru-
ences are mod 2):

b(0) ≡ 1,
if n is odd, b(n) ≡ b(n− 1) + 1,
b(8m + 2) ≡ 1, b(8m + 6) ≡ 0,
b(16m + 4) ≡ 0, b(16m + 12) ≡ 1,
for m > 0, b(16m) ≡ b(8m), b(32m + 8) ≡ 0, b(32m + 24) ≡ 1.

At this point, several comments are in order. First, considering congruences
satisfied by b(n) was only a secondary, if not tertiary, goal in [5]. Hence, Theorem 3
is the only result in [5] which deals with congruences satisfied by b(n). In contrast,
the goal of this note is to focus attention on divisibility properties satisfied by b(n)
in arithmetic progression. This is a worthy goal given the clear relationship that
b(n) has with the unrestricted binary partition function whose generating function
is given by

∞∏

i=0

1
1− q2i .

This is easily seen to be the first term in the generating function for b(n) as noted
in Theorem 2 above. It should be noted that Rødseth, Sellers, and Courtright [3]
further solidified the relationship between b(n) and the unrestricted binary partition
function when they proved the following:

Theorem 4 For all n ≥ 0 and all r ≥ 2,

b(2r+1n) ≡ b(2r−1n) (mod 2r−2).
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As noted in [3], this family of “internal congruences” is extremely reminiscent of the
family of congruences which Churchhouse [1] observed for the unrestricted binary
partition function. (A similar family of congruences for a restricted binary partition
function was also proved by Rødseth and Sellers [2].)

With the above in mind, we can shed more direct light on our goal for this note
by first proving the following two infinite families of divisibility properties modulo
2 satisfied by b(n).

Theorem 5 For all n ≥ 0 and all k ≥ 4,

b(2kn + 2k−2) ≡ 0 (mod 2) and
b(2kn + 3 · 2k−2 + 1) ≡ 0 (mod 2).

Proof. The proof of this theorem is actually bundled up in the statement of Theorem
3 although this is not apparent at first reading. First, note that the k = 4 cases of
this theorem are

b(16n + 4) ≡ 0 (mod 2) and
b(16n + 13) ≡ 0 (mod 2).

The first of these is explicitly stated in Theorem 3. The second follows from the
fact that

b(16n + 13) = b(16n + 12) + 1 by Theorem 1
≡ 1 + 1 (mod 2) by Theorem 3
≡ 0 (mod 2).

Next, note that the k = 5 cases of this theorem are

b(32n + 8) ≡ 0 (mod 2) and
b(32n + 25) ≡ 0 (mod 2).

Again, these follow in the same manner from statements made in Theorem 3.
To complete the proof, we note that a proof by mathematical induction on the

parameter k can now be performed (using these k = 5 results as the basis). To
prove the first family of congruences in the theorem, assume

b(2kn + 2k−2) ≡ 0 (mod 2)

for all n ≥ 0 and some k ≥ 5. Then we know

b(2k+1n + 2k−1) = b(16(2k−3n + 2k−5))
≡ b(8(2k−3n + 2k−5)) (mod 2) from Theorem 3
= b(2kn + 2k−2).

The other family of congruences in this theorem follows in similar fashion. !
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Our main goal in this work is to prove the following two theorems which provide
divisibility properties of b(n) modulo 4. (Note the striking resemblance between
Theorems 5 and 7.)

Theorem 6 For all n ≥ 0,

b(32n + 20) ≡ 0 (mod 4) and
b(32n + 29) ≡ 0 (mod 4).

Theorem 7 For all n ≥ 0 and all k ≥ 3,

b(22k+1n + 22k−2) ≡ 0 (mod 4) and
b(22k+1n + 3 · 22k−2 + 1) ≡ 0 (mod 4).

The proofs of these two theorems that we provide below are elementary, relying
heavily on generating function manipulations as well as the r = 4 case of Theorem
4 above (which is the key ingredient in the induction step of the proof below as
Theorem 3 was in the induction proof of Theorem 5.)

2. Infinite Families of Divisibility Properties Modulo 4
We begin this section by proving Theorem 6.

Proof of Theorem 6. Our proof begins by an elementary rewriting of the generating
function in Theorem 2 in the following form:

∞∑

n=0

b(n)qn =
∞∏

i=0

1
1− q2i −

∞∑

i=1

q2i
(1− q2i−1

)
∏i

j=0(1− q2j )

=

(
(1− q32)5

∏4
i=0(1− q2i)

)
1

(1− q32)5

∞∏

i=5

1
1− q2i

−
(

5∑

i=1

q2i
(1− q2i−1

)(1− q32)6
∏i

j=0(1− q2j )

)
1

(1− q32)6

−
∞∑

i=6

q2i
(1− q2i−1

)
∏i

j=0(1− q2j )
.

Both of the quantities in parentheses are actually polynomials in q as is easily checked,
while the denominators of the remaining portions of this representation of the gener-
ating function are clearly functions of q32. These two facts are all that is needed now
to dissect the generating function for b(n)in order to obtain the generating functions
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for b(32n + 20) and b(32n + 29). Indeed, after expanding the polynomials above in
MAPLE, extracting the relevant terms, dividing by the appropriate power of q (q20

respectively q29), replacing q32 by q throughout, and simplifying we find

∞∑

n=0

b(32n + 20)qn

= 4
(

15 + 135q + 101q2 + 5q3

(1− q)5

) ∞∏

i=0

1
1− q2i − 4

(
5 + 47q + 67q2 + 9q3

(1− q)5

)

≡ 0 (mod 4)

and

∞∑

n=0

b(32n + 29)qn

= 4
(

35 + 155q + 65q2 + q3

(1− q)5

) ∞∏

i=0

1
1− q2i − 4

(
11 + 61q + 53q2 + 3q3

(1− q)5

)

≡ 0 (mod 4).

!

We move next to the proof of Theorem 7.

Proof of Theorem 7. As above, we rewrite the generating function for b(n) in an
advantageous form:

∞∑

n=0

b(n)qn =
∞∏

i=0

1
1− q2i −

∞∑

i=1

q2i
(1− q2i−1

)
∏i

j=0(1− q2j )

=

(
(1− q128)7

∏6
i=0(1− q2i)

)
1

(1− q128)7

∞∏

i=7

1
1− q2i

−
(

7∑

i=1

q2i
(1− q2i−1

)(1− q128)8
∏i

j=0(1− q2j )

)
1

(1− q128)8

−
∞∑

i=8

q2i
(1− q2i−1

)
∏i

j=0(1− q2j )
.

Again, the quantities in parentheses are polynomials in q while the denominators
of the remaining portions of this representation of the generating function are func-
tions of q128. These two facts are all that is needed now to dissect the generating
function for b(n) in order to obtain the generating functions for b(128n + 16) and
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b(128n + 49). After expanding the polynomials above in MAPLE, extracting the rele-
vant terms, dividing by the appropriate power of q (q16 respectively q49), replacing
q128 by q throughout, and simplifying we find

∞∑

n=0

b(128n + 16)qn

= 4
(

9 + 11319q + 144618q2 + 270494q3 + 93949q4 + 3899q5

(1− q)7

) ∞∏

i=0

1
1− q2i

−4
(

3 + 3592q + 49505q2 + 126048q3 + 76445q4 + 6632q5 − 81q6

(1− q)7

)

≡ 0 (mod 4)

and

∞∑

n=0

b(128n + 49)qn

= 4
(

173 + 26803q + 198354q2 + 244118q3 + 53809q4 + 1031q5

(1− q)7

) ∞∏

i=0

1
1− q2i

−4
(

55 + 8530q + 71571q2 + 127940q3 + 52053q4 + 2010q5 − 15q6

(1− q)7

)

≡ 0 (mod 4).

The proof is completed by induction using the case r = 4 of Theorem 4. !

3. Closing Thoughts
The authors have not found an arithmetic progression 2tn+r such that, for all n ≥ 0,
b(2tn+r) ≡ 0 (mod 8). This is reminiscent of the behavior of the unrestricted binary
partition function [1]. We doubt that such a progression exists.
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