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Abstract

Qualified residue difference sets of power n are known to exist for n =
2, 4, 6, as do similar sets that include the zero element, while both classes of
set are known to be nonexistent for n = 8 and n = 10. Both classes of set are
proved nonexistent for n = 12.
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1. Introduction

Qualified residue difference sets are a class of combinatorial configuration, first
introduced by Jennings and Byard [6]. These sets are defined as follows.

Definition 1 Let R = {r1, r2, r3, . . . , rk} be the k-element set of non-zero nth
power residues of an odd prime p = nk + 1. We call R a qualified residue difference
set (QRDS) if there exists some non-zero integer m /∈ R which is such that if we
form all the non-zero differences

ri −mrj (mod p), 1 ≤ i, j ≤ k,

we obtain every positive integer ≤ p − 1 exactly λ times. We call m a qualifier of
multiplicity λ for the set R.

If zero is counted as a residue we can obtain further qualified residue difference
sets. These were also discussed by Jennings and Byard but in a separate paper [7].
These sets are called modified qualified residue difference sets, (MQRDS) by virtue
of the modification introduced by the inclusion of the zero element. MQRDS are
defined as follows.

Definition 2 Let R∗ = {r0, r1, r2, . . . , rk} be the (k + 1)-element set of nth power
residues of an odd prime p = nk + 1, where r0 = 0. We call R∗ a modified qualified
residue difference set (MQRDS) if there exists some non-zero integer m /∈ R∗ which
is such that if we form all the differences

ri −mrj (mod p), 0 ≤ i, j ≤ k,

we obtain every positive integer ≤ p− 1 exactly λ times and zero exactly once. We
call m a qualifier of multiplicity λ for the set R∗.
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Note in the case of a MQRDS that the integer k is the number of non-zero elements
of R∗.

QRDS and MQRDS are related to the normal residue difference sets and modi-
fied residue difference sets that were first discussed in detail by Lehmer [9]. All four
classes of sets possess similarly attractive properties that suggest potential applica-
tions in areas such as image formation [1, 4, 11] signal processing [10] and aperture
synthesis [8].

QRDS and MQRDS exist for the cases n = 2, 4, 6 [6, 7, 2], while both classes of
set are nonexistent for n = 8 [2] and n = 10 [3]. The purpose of this report is to
extend this analysis to n = 12 and prove the following theorem:

Theorem 3 Qualified residue difference sets and modified qualified residue differ-
ence sets do not exist for 12th powers.

2. Preliminary Discussion

In order to study QRDS and MQRDS efficiently, cyclotomy provides a very useful
tool. We therefore give a brief outline of the main points of cyclotomy and its link
with QRDS and MQRDS.

Let p = nk + 1 be a prime and g a primitive root of p. An integer N is said to
be in residue class i if the following congruence holds for some integer a:

N ≡ gan+i (mod p)

and the cyclotomic constant (i, j) denotes the number of solutions to the congruence

gan+i + 1 ≡ gbn+j (mod p)

where 0 ≤ i, j ≤ n − 1 and 0 ≤ a, b ≤ k − 1. See Dickson [5] for an in-depth
study of the properties of cyclotomic constants. For both QRDS and MQRDS, the
integer k must be even [2, Lemma 3.1], and so for these configurations the following
condition, also due to Dickson, always applies [5, p. 394]:

(i, j) = (j, i) if k is even. (1)

Let σ %= 0 be an integer. We call σ a definer if the qualifier m of a QRDS or
MQRDS is in residue class n − σ [6, 7]. The author has shown that if n − σ is
a definer, then σ is also a definer [2, Theorem 3.3]. Therefore a qualifier, m, will
also belong to residue class σ. Jennings and Byard have also proved the following
two existence conditions. Firstly a necessary and sufficient condition for a QRDS
to exist is

(s,σ) = λ (s = 0, 1, . . . , n− 1) (2)
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[6, Theorem 3]. Secondly, a necessary and sufficient condition for a MQRDS to
exist is

1 + (0,σ) = 1 + (σ,σ) = (s,σ) = λ (s = 1, 2, . . . , n− 1, s %= σ) (3)

[7, Theorem 3].

3. Cyclotomy When n = 12

To prove Theorem 3 we require the cyclotomic constants for n = 12. Following work
by Dickson [5], Whiteman has calculated a complete solution for these cyclotomic
constants, which he presents in a set of tables in his article [12, p. 69-73]. There are
various equalities between the cyclotomic constants of order 12, which Whiteman
also lists [12, p.69, Table III], and in particular the condition (i, j) = (j, i) when k
is even, as is always the case for QRDS and MQRDS [2, Lemma 3.1].

The tables give results depending on the parity of k, the values of ind 3 (mod 4)
and ind 2 (mod 6) with respect to the primitive root g and prime p (where ind a
is defined by g ind a ≡ a (mod p)), and a variable c which is equal to the ratio of
Jacobi sums: c = ψ(β3,β)/ψ(β5,β) where β = exp(2πi/12) is a primitive 12th root
of unity [12, p. 64] and ψ(βγ ,βδ) =

∑
a+b≡1 (mod p) β(γ ind a +δ ind b). Whiteman

demonstrated that for n = 12, c is actually a fourth root of unity and can thus take
on values of 1, −1 or β3. Because for all QRDS and MQRDS k is even, we require
from Whiteman tables 1,3,4,7,9 and 10. The parameters ind 2, ind 3 and c for each
of Whiteman’s tables required in the current analysis are summarised in Table 1.

Table number from Whiteman [12] ind 3 (mod 4) ind 2 (mod 6) c
1 2 2 β3

3 0 2 1
4 0 2 -1
7 2 0 β3

9 0 0 1
10 0 0 -1

Table 1: Parameters for Whiteman’s tables of cyclotomic constants for even k

4. Proof of Theorem 3

The existence of either a QRDS or a MQRDS depends upon the existence of a
definer σ (%= 0) for the set that satisfies equation (2) or (3) respectively. If no values
of σ satisfy these equations for a given n then nth power QRDS and MQRDS are
nonexistent. Here we prove Theorem 3 by demonstrating that no value of σ exists
to satisfy equation (2) or (3) for n = 12.
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The author has shown that if σ is a definer then −σ ≡ n − σ (mod n) is also
a definer [2, Theorem 3.3]. Therefore for n = 12, it is only necessary to test for
σ = 1, 2, 3, 4, 5, 6. For each of these values of σ a condition is determined from each
of Whiteman’s tables. We then apply the resulting condition to the following further
condition, stipulated by Dickson [5, Theorem 12], that for n = 12 the cyclotomic
constants depend on the following quadratic partitions:

p = x2 + 4y2 and p = A2 + 3B2 x ≡ 1 (mod 4), A ≡ 1 (mod 6) (4)

where x, y,A,B are all integers.
In the analysis which follows the results y = 0 or B = 0 or x = ±A occur

frequently. In such cases, the following two lemmas apply.

Lemma 4 If y = 0 or B = 0 then QRDS and MQRDS are nonexistent.

Proof. If y = 0 or B = 0, then by equation 4 we have p = x2 or p = A2 respectively,
both of which are contradictions, since p must be prime. Therefore if y = 0 or
B = 0 there exist no QRDS or MQRDS. !

Lemma 5 If x = ±A then QRDS and MQRDS are nonexistent.

Proof. If x = ±A then x2 = A2 and by equation 4 we have 4y2 = 3B2, giving
y = B

√
3/2. Now, because

√
3 is irrational, the only integer solution of this last

equation is y = B = 0, which by Lemma 4 gives a nonexistence condition for QRDS
and MQRDS. !

The following subsections present an analysis for each value of σ using each of
Whiteman’s tables given in Table 1, to establish the nonexistence of QRDS and
MQRDS. To simplify the analysis, cyclotomic constants are chosen which can be
conveniently applied to both equations (2) and (3) and hence which test for QRDS
and MQRDS simultaneously. This is achieved by ensuring that only cyclotomic
constants (i, j) that meet the criteria i %= 0, j %= 0 and i %= j are used in the
analysis.

4.1. σ = 1

(a) Table 1 from Whiteman [12, p.70]. For either equation (2) or (3) to be satisfied
(and hence for the existence of QRDS or MQRDS respectively to be possible), a
necessary condition is that the cyclotomic constants (3, 1) = (6, 1) (which for even
k, is the same as setting (1, 3) = (1, 6)). Therefore, using Whiteman’s results, we
get p + 1 + 2A − 24B + 8y = p + 1 + 2A + 12B + 8y. Therefore B = 0 and, by
Lemma 4, a nonexistence condition results for both QRDS and MQRDS.

(b) Table 3. Setting (3, 1) = (6, 1) (i.e. (1, 3) = (1, 6)) gives p + 1 − 6A + 4x =
p + 1 + 6A− 8x, giving x = A and hence by Lemma 5 a nonexistence condition.
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(c) Table 4. (5, 1) = (10, 1) gives p+1+4A+12B− 6x− 24y = p+1+4A+12B−
6x + 24y, giving y = 0 and by Lemma 4, a nonexistence condition.

(d) Table 7. (3, 1) = (6, 1) gives p + 1 + 2A− 24B + 8y = p + 1 + 2A + 12B + 8y,
giving B = 0 and by Lemma 4, a nonexistence condition.

(e) Table 9. (2, 1) = (3, 1) gives p + 1 + 6A− 8x = p + 1− 6A + 4x, giving x = A
and by Lemma 5, a nonexistence condition.

(f) Table 10. (3, 1) = (4, 1) gives p +1− 2A− 12B− 24y = p +1− 2A− 12B +24y,
giving y = 0 and by Lemma 4, a nonexistence condition.

As the nonexistence of 12th power QRDS and MQRDS has been established for
each of the relevant tables from Whiteman’s paper, then σ cannot equal 1.

4.2. σ = 2

(a) Table 1. (4, 2) = (9, 2) gives p+1+8A−12B+6x+8y = p+1+8A+24B+6x+8y,
giving B = 0 and, by Lemma 4, a nonexistence condition.

(b) Table 3. Setting (4, 2) = (6, 2) gives p+1+4A−12B−6x = p+1−8A−12B+6x,
giving x = A and hence by Lemma 5 a nonexistence condition.

(c) Table 4. Whiteman proved that when k is even and ind 3 ≡ 0 (mod 4) then
the cyclotomic constant (i, j) can be replaced by (7i, 7j) except that y is replaced
by −y [12, p.71]. We denote this new cyclotomic constant by (7i, 7j)−y. Therefore
we have here (5, 2) = (2, 5) = (14, 35)−y which taken modulo 12 equals (2, 11)−y

which in turn by Whiteman [12, Table III] equals (1, 3)−y. Also (11, 2) = (1, 3).
Setting (5, 2) = (11, 2) is therefore the same as setting (1, 3)−y = (1, 3). Therefore
p + 1− 2A− 12B + 24y = p + 1− 2A− 12B − 24y, giving y = 0 and by Lemma 4,
a nonexistence condition.

(d) Table 7. (1, 2) = (6, 2) gives p + 1 + 2A + 8y = p + 1 + 2A + 12B + 8y, giving
B = 0 and by Lemma 4, a nonexistence condition.

(e) Table 9. (1, 2) = (4, 2) gives p + 1 + 6A− 8x = p + 1− 2A, giving x = A and by
Lemma 5, a nonexistence condition.

(f) Table 10. (4, 2) = (6, 2) gives p + 1 + 6A + 8x = p + 1 + 6A + 24B + 8x, giving
B = 0 and by Lemma 4, a nonexistence condition.

Therefore σ cannot equal 2.

4.3. σ = 3

(a) Table 1. (1, 3) = (6, 3) gives p + 1 + 2A− 24B + 8y = p + 1 + 2A− 16y, giving

y = B (5)
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and (2, 3) = (10, 3), which from Whiteman [12] is the same as (1, 10) = (2, 5) gives
p + 1− 4A− 12B − 6x− 16y = p + 1− 10A + 12B − 12x− 16y, giving

A + x = 4B. (6)

Also, (5, 3) = (11, 3), which from Whiteman is the same as (2, 9) = (1, 4) gives
p + 1 + 8A + 24B + 6x + 8y = p + 1− 4A + 12B − 6x + 32y, giving

A + x + B = 2y. (7)

Combining equations (5), (6) and (7) gives the result B = 0 and hence, by Lemma
4, a nonexistence condition.

(b) Table 3. (1, 3) = (2, 3) (i.e. (1, 3) = (1, 10)) gives p + 1− 6A + 4x = p + 1− 2x,
giving x = A and hence by Lemma 5 a nonexistence condition.

(c) Table 4. (6, 3) = (11, 3) (i.e. (3, 6) = (1, 4)) gives p + 1 + 10A − 12x =
p + 1− 8A + 6x, giving x = A and hence by Lemma 5 a nonexistence condition.

(d) Table 7. Whiteman proved that when ind 2 ≡ 0 (mod 6) then the cyclotomic
constant (i, j) can be replaced by (5i, 5j) except that B is replaced by −B [12,
p.71-73]. We denote this new cyclotomic constant by (5i, 5j)−B. Therefore we have
here (7, 3) = (35, 15)−B which taken modulo 12 equals (11, 3)−B which in turn by
Whiteman [12, Table III] equals (1, 4)−B. Setting (1, 3) = (7, 3) is therefore the
same as setting (1, 3) = (1, 4)−B. Therefore p+1+2A−24B+8y = p+1+2A+8y,
giving B = 0 and by Lemma 4, a nonexistence condition.

(e) Table 9. (1, 3) = (6, 3) gives p + 1− 6A + 4x = p + 1− 2x, giving x = A and by
Lemma 5, a nonexistence condition.

(f) Table 10. Setting (1, 3) = (11, 3) is, from Whiteman [12, Table III], the same as
setting (1, 3) = (1, 4), or (3, 1) = (4, 1), as for the case σ = 1, which was proved to
give a nonexistence condition.

Therefore σ cannot equal 3.

4.4. σ = 4

(a) Table 1. (5, 4) = (11, 4) (i.e. (1, 8) = (1, 5)) gives p+1+8A+12B +6x−16y =
p + 1− 8A + 12B + 6x giving

y = A (8)

and (5, 4) = (6, 4) (i.e. (1, 8) = (2, 8)) gives p + 1 + 8A + 12B + 6x − 16y =
p + 1 + 2A + 12B + 8y, giving

A + x = 4y. (9)
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Also, (6, 4) = (8, 4) (i.e. (2, 8) = (4, 8)) gives p+1+2A+12B +8y = p+1+16A+
12B − 18x− 24y, giving

9x + 16y = 7A. (10)

Combining equations (8), (9) and (10) gives the result y = 0 and hence, by Lemma
4, a nonexistence condition.

(b) Table 3. (2, 4) = (10, 4) is, from Whiteman, the same as setting (2, 4) = (2, 6),
or (4, 2) = (6, 2), as for the case σ = 2, which was proved to give a nonexistence
condition.

(c) Table 4. (8, 4) = (10, 4) (i.e. (4, 8) = (2, 6)) gives p + 1 + 4A + 12B − 6x =
p + 1 + 12B + 14x, giving

A = 5x (11)

and (1, 4) = (2, 4) gives p + 1− 8A + 6x = p + 1 + 12A− 12B + 2x giving

3B + x = 5A. (12)

Also note from Whiteman [12, Table III] that (5, 4) is equivalent to (1, 8) which
becomes (7, 56)−y = (7, 8)−y = (1, 5)−y, and that (9, 4) is equivalent to (3, 7) which
becomes (21, 49)−y, or (9, 1)−y. Therefore, setting (5, 4) = (9, 4) is the same as
setting (1, 5)−y = (1, 9)−y which gives p + 1 + 4A + 12B − 6x + 24y = p + 1− 2A−
12B + 24y, giving

A + 4B = x. (13)

Combining equations (11), (12) and (13) gives the result B = 0 and hence, by
Lemma 4, a nonexistence condition.

(d) Table 7. Note from Whiteman [12, Table III] that (6, 4) is equivalent to (2, 8)
which becomes (10, 40)−B = (10, 4)−B = (2, 6)−B, and that (10, 4) is equivalent to
(2, 6). Therefore, setting (6, 4) = (10, 4) is the same as setting (2, 6)−B = (2, 6)
which gives p+1+2A−12B +8y = p+1+2A+12B +8y, giving B = 0 and hence
by Lemma 4, a nonexistence condition.

(e) Table 9. (1, 4) = (2, 4) gives p + 1 + 2A− 4x = p + 1− 2A, giving x = A and by
Lemma 5, a nonexistence condition.

(f) Table 10. (2, 4) = (8, 4) gives p+1+6A+8x = p+1−26A−24x, giving x = −A
and by Lemma 5, a nonexistence condition.

Therefore σ cannot equal 4.
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4.5. σ = 5

(a) Table 1. (3, 5) = (6, 5) (i.e. (2, 9) = (1, 7)) gives p + 1 + 8A + 24B + 6x + 8y =
p + 1 + 8A− 12B + 6x + 8y giving B = 0 and hence, by Lemma 4, a nonexistence
condition.

(b) Table 3. (6, 5) = (11, 5) (i.e. (1, 7) = (1, 6)) gives p + 1 + 12A − 14x =
p + 1 + 6A− 8x giving x = A and hence, by Lemma 5, a nonexistence condition.

(c) Table 4. Note that (4, 5) is equal to (1, 8) = (7, 56)−y = (7, 8)−y = (1, 5)−y.
Therefore, setting (1, 5) = (4, 5) is the same as setting (1, 5) = (1, 5)−y. Therefore
p+1+4A+12B−6x−24y = p+1+4A+12B−6x+24y, giving y = 0 and hence,
by Lemma 4, a nonexistence condition.

(d) Table 7. (4, 5) = (11, 5) (i.e. (1, 8) = (1, 6)) gives p + 1 + 2A + 8y = p + 1 +
2A + 12B + 8y, giving B = 0 and hence by Lemma 4, a nonexistence condition.

(e) Table 9. (1, 5) = (11, 5) (i.e. (1, 5) = (1, 6)) gives p+1−10A+8x = p+1+6A−8x,
giving x = A and by Lemma 5, a nonexistence condition.

(f) Table 10. (1, 5) = (11, 5) (i.e. (1, 5) = (1, 6)) gives p+1−2A = p+1−2A+24B,
giving B = 0 and by Lemma 4, a nonexistence condition.

Therefore σ cannot equal 5.

4.6. σ = 6

(a) Table 1. (4, 6) = (5, 6) (i.e. (2, 8) = (1, 7)) gives p + 1 + 2A + 12B + 8y =
p + 1 + 8A− 12B + 6x + 8y giving

4B = x + A. (14)

Also (2, 6) = (1, 6) gives p + 1− 4A− 6x + 8y = p + 1 + 2A + 12B + 8y, giving

2B + A + x = 0. (15)

Combining equations (14) and (15) gives B = 0 and hence, by Lemma 4, a nonex-
istence condition.

(b) Table 3. (1, 6) = (3, 6) gives p + 1 + 6A− 8x = p + 1− 6A + 4x, giving x = A
and hence by Lemma 5, a nonexistence condition.

(c) Table 4. (3, 6) = (4, 6) (i.e. (3, 6) = (2, 8)) gives p+1+10A−12x = p+1+6A+8x
giving

A = 5x (16)

and (1, 6) = (5, 6) (i.e. (1, 6) = (1, 7)) gives p+1−2A+24B = p+1+4A−24B−6x
giving

8B + x = A. (17)
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Also, (2, 6) = (1, 6) gives p + 1 + 12B + 14x = p + 1− 2A + 24B giving

7x + A = 6B. (18)

Combining equations (16), (17) and (18) gives B = 0 and hence, by Lemma 4, a
nonexistence condition.

(d) Table 7. Note that (5, 6) is equal to (1, 7) = (5, 35)−B = (5, 11)−B = (1, 6)−B.
Therefore, setting (1, 6) = (5, 6) is the same as setting (1, 6) = (1, 6)−B. Therefore
p+1+2A+12B +8y = p+1+2A−12B +8y, giving B = 0 and hence, by Lemma
4, a nonexistence condition.

(e) Table 9. (1, 6) = (2, 6) gives p + 1 + 6A− 8x = p + 1− 2A, giving x = A and by
Lemma 5, a nonexistence condition.

(f) Table 10. (1, 6) = (2, 6) gives p + 1− 2A + 24B = p + 1 + 6A + 24B + 8x, giving
x = −A and by Lemma 5, a nonexistence condition.

Therefore σ cannot equal 6.
As σ %= 1, 2, 3, 4, 5 or 6 the non-existence of QRDS and MQRDS for 12th powers

is established and so Theorem 3 is proved. !
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