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Abstract
In this paper we study some combinatorial properties of the antichains of a garland,
or double fence. Specifically, we encode the order ideals and the antichains in terms
of words of a regular language, we obtain several enumerative properties (such as
generating series, recurrences and explicit formulae), we consider some statistics
leading to Riordan matrices, we study the relations between the lattice of ideals
and the semilattice of antichains, and finally we give a combinatorial interpretation
of the antichains as lattice paths with no peaks and no valleys.

1. Introduction

Fences (or zigzag posets), crowns, garlands (or double fences) and several of their
generalizations are posets that are very well-known in combinatorics [1, 6, 7, 8, 9,
11, 14, 15, 19, 20, 21, 26] and in the theory of Ockham algebras [2, 3, 4]. Here we
are interested in garlands, which can be considered as an extension of fences of even
order and of crowns. More precisely, the garland of order n is the partially ordered
set Gn defined as follows: G0 is the empty poset, G1 is the chain of length 1 and, for
any other n ≥ 2, Gn is the poset on 2n elements x1, . . . , xn, y1, . . . , yn with cover
relations x1 < y1, x1 < y2, xi < yi−1, xi < yi, xi < yi+1 for i = 2, . . . , n − 1 and
xn < yn−1, xn < yn. See Figure 1 for an example.
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Figure 1: The garland G5.

In [19] we studied some enumerative properties of the order ideals of a garland.
In particular, we proved that the numbers gn of all ideals of Gn satisfy the recur-
rence gn+2 = 2gn+1 + gn with the initial values g0 = 1 and g1 = 3. These numbers
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appears in [25] as sequence A078057 (essentially the same as A001333) and admit
several combinatorial interpretations. For instance, as proved in [26], they enu-
merate all n-step self-avoiding paths starting from (0, 0) with steps of type (1, 0),
(−1, 0) and (0, 1).

As is well-known, the maximal elements of an ideal of a poset P is an antichain,
and this establishes a bijective correspondence between all ideals of P and all an-
tichains of P . However, ideals and antichains have several different properties either
from an enumerative point of view or from an order theoretical point of view. In this
paper we will study some combinatorial properties of the antichains of a garland.
Specifically, the paper is organized as follows.

• First we define an encoding for ideals and antichains by means of words of a
same regular language. Using such an encoding we obtain several enumerative
properties (such as generating series, recurrences and explicit formulas) for
the numbers of antichains and for the antichain polynomials. In particular,
we show that the antichain polynomials can be expressed in terms of the
Chebyshev polynomials.

• We also consider the square matrix and the cubical matrix generated by cer-
tain natural statistics on antichains and we show that from such matrices it
is possible to extract some Riordan matrices [24, 18]. In particular, we enu-
merate all antichains equidistributed on the two levels of the garland, proving
that they are equinumerous as the central ideals (i.e., ideals whose size is half
the size of the garland).

• Then we study the meet-semilattice obtained by the set of all antichains of
a garland ordered by inclusion. We show that there exists a simple but non-
standard bijection between antichains and ideals (that can also be defined in
terms of our previous encoding). Then, using such a bijection, we give an
explicit correspondence between equidistributed antichains and central ide-
als, and we prove that the simple graph underling the Hasse diagram of the
antichain semilattice is isomorphic to the simple graph underling the Hasse
diagram of the distributive lattice of order ideals, extending a similar result
for fences [20] and crowns [29]. Finally we show that these semilattices are
rank unimodal and rank log-concave.

• Finally, we show an interpretation of the antichains of a garland as trinomial
paths with no peaks and no valleys. In particular, we interpret the equidis-
tributed antichains as those paths of this kind ending on the x-axis.

2. An Encoding for Ideals and Antichains

The ideals and the antichains of a garland can be represented as words of a regular
language. Let J (Gn) be the set of all ideals of Gn, W be the language on the alphabet
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Σ = {a, b, c} formed of all words in which ac and ca never appear as factors and
Wn the subset of W formed of all words of length n. Then let ψ1 : J (Gn) → Wn

be the map defined, for every ideal I of Gn, by setting ψ1(I) = w1 · · ·wn, where

wk =






a if xk $∈ I and yk $∈ I,

b if xk ∈ I and yk $∈ I,

c if xk ∈ I and yk ∈ I,

(1 ≤ k ≤ n).

For instance, the ideal I = {x2, x3, x4, x5, x6, y3, y4} of G6 corresponds to the word
ψ1(I) = abccbb (see Figure 2). It is easy to see that the map ψ1 is a bijection. Notice
that such an encoding is essentially the same used in [19] for the n-step self-avoiding
paths starting from (0, 0) with steps of type (1, 0), (−1, 0) and (0, 1).
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Figure 2: Encoding of an ideal (given by the circled points in the first picture) and
of the corresponding antichain (given by the circled points in the second picture) of
the garland G6.

Now, let A(Gn) be the set of all antichains of Gn. Then let ψ2 : A(Gn)→Wn be
the map defined, for every antichain A of Gn, by setting ψ2(A) = w′

1 · · ·w′
n, where

w′
k =






a if xk ∈ A,

b if xk, yk $∈ A,

c if yk ∈ A,

(1 ≤ k ≤ n).

For instance, the antichain A = {y3, y4, x6} of G6 corresponds to the word ψ2(A) =
bbccba (see Figure 2). Also this time, it is easy to see that ψ2 is a bijection.

The order relation in J(Gn), given by set-inclusion, can be easily recovered from
the words in W. Indeed, from the meaning of the letters a, b and c in the encoding of
the ideals of garlands it is natural to define a total order relation ≤ on the alphabet
Σ by setting a < b < c, and then to extend it to a partial order relation ≤ on all
words of Wn by setting w1 · · ·wn ≤ w′

1 · · ·w′
n if and only if w1 ≤ w′

1, . . . , wn ≤ w′
n.

With this definition ψ1 is an order-preserving bijection; that is, for every ideals I
and J of Gn we have I ⊆ J if and only if ψ1(I) ≤ ψ1(J). Moreover the rank of the
lattice J (Gn), which is given by r(I) = |I|, in terms of the words in W becomes
r(w) = ωb(w) + 2ωc(w), where ωx(w) denotes the number of occurrences of the
letter x in the word w.
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Figure 3: Automaton recognizing the language W.

Similarly, if we define the partial order relation ≤ on the alphabet Σ by setting
b < a and b < c, and then we extend it to Wn, we have that also ψ2 is an order-
preserving bijection. This time the rank is given by r(w) = ωa(w) + ωc(w).

So we have that the words of W encode, in different ways, either the ideals or
the antichains of garlands. Now, the regular language W can be described in terms
of the deterministic automaton [12] in which the set of states is S = {A,B,C},
the alphabet is Σ, every state is both initial and final, and the transition function
is defined according to the characterization of W: in a word, the symbol y ∈ Σ
determines a transition from a state X to a state Y if and only if xy $= ac and
xy $= ca (see Figure 3). It is easy to prove that such an automaton recognizes all
and only the words in W and that the language W is defined by the unambiguous
regular expression:

W = (ε + a+ + c+)
(
b+(a+ + c+)

)∗
b∗ (1)

where ε is the empty word. Moreover, it is easy to see that every word in W can be
univocally written as the product of the following factors: akb (k ≥ 1), b and ckb
(k ≥ 1). This implies that W is also defined by the expression:

W = (a+b + b + c+b)∗(ε + a+ + c+). (2)

From the regular expressions (1) and (2), using the symbolic method [23], it
follows that the generating series of the language W is

f(x, y, z) =
1− xz

1− x− y − z + xz + xyz
(3)

where x, y and z mark the occurrences of a, b and c, respectively. In particular,
from (3) we re-obtain the generating series

g(x, t) = f(t, xt, x2t) =
1− x2t2

1− (1 + x + x2)t + x2t2 + x3t3
(4)

for the rank polynomials gn(x) =
∑

k≥0 gnkxk of the lattices J (Gn), already ob-
tained in [19] in a different way. Moreover, again from (3), we can obtain the gener-
ating series

a(x, y, t) =
∑

n,i,j≥0

an,i,jx
iyjtn = f(xt, t, yt)

=
1− xyt2

1− (1 + x + y)t + xyt2 + xyt3

(5)
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where the coefficients an,i,j give the numbers of all antichains of Gn with i elements
of rank 0 and j elements of rank 1. In particular, from Series (5) we immediately
have the recurrence

an+3,i+1,j+1 = an+2,i+1,j+1 + an+2,i,j+1 + an+2,i+1,j − an+1,i,j − an,i,j . (6)

Moreover, expanding series (5) as follows

a(x, y, t) =
1− xyt2

(1− xt)(1− yt)− (1− xyt2)t
=

∑

k≥0

(1− xyt2)k+1tk

(1− xt)k+1(1− yt)k+1
,

we can obtain the identity

an,i,j =
m∑

k=0

(
n− i− j + 1

k

)(
n− i− k

j − k

)(
n− j − k

i− k

)
(−1)k (7)

where m = min(i, j, n− i, n− j).

3. An Explicit Formula for the Number of Antichains

In this section we give an explicit formula for the number gn of all antichains (or
ideals) of Gn. From (4) we have that the generating series for the numbers gn can
be written as

g(t) = g(1, t) =
1 + t

1− 2t− t2
=

1 + t

(1− at)(1− bt)
=

a + 1
a− b

1
1− at

− b + 1
a− b

1
1− bt

where a = 1 +
√

2 and b = 1−
√

2. Hence it follows that

gn =
an+1 + bn+1

2
=

(1 +
√

2)n+1 + (1−
√

2)n+1

2
(8)

and consequently, expanding the powers, we have the identity

gn =
%(n+1)/2&∑

k=0

(
n + 1
2k

)
2k. (9)

This identity can also be obtained using the following combinatorial argument
on the words of W. Every word in Wn admits a unique decomposition of the form

β1ξ1(x1b)β2ξ2(x2b) · · ·βkξk(xkb)βk+1ξk+1

where βi ∈ b∗ for every i = 1, 2, . . . , k+1, ξi ∈ x∗i for every i = 1, 2, . . . , k, ξk+1 ∈ a∗

or ξk+1 ∈ c∗ and xi = a or xi = c for every i = 1, 2, . . . , k. To generate all such
words with a given number k of blocks (xb), we consider the following two cases.
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(i) The last block is empty, i.e., ξk+1 = ε. In this case we first displace the k
blocks (xib) and then we choose the letters xi. In total we have used 2k letters
which can be chosen in 2k different ways. Now, it remains to distribute n−2k
letters in 2k + 1 places. Notice that at this point the nature of the letters is
completely determined by the block in which they are placed. Then we have((

2k+1
n−2k

))
2k different words, where

((n
k

))
= n(n + 1) · · · (n + k − 1)/k! is the

number of all multisets of order k on a set of size n, [5, 26].

(ii) The last block is non-empty, i.e., ξk+1 $= ε. In this case we first displace
the k blocks (xib) and a letter xk+1 in the last block ξk+1 which has to be
non-empty. Then we choose the letters xi, in all 2k+1 possible ways. Now, it
remains to distribuite n−2k−1 letters in 2k +2 places. So this time we have((

2k+2
n−2k−1

))
2k+1 different words.

Hence we obtain the identity

gn =
∑

k≥0

((
2k + 1
n− 2k

))
2k +

∑

k≥0

((
2k + 2

n− 2k − 1

))
2k+1

which is essentially the same as (9). Indeed,

gn =
∑

k≥0

(
n

2k

)
2k +

∑

k≥0

(
n

2k + 1

)
2k+1

=
∑

k≥0

(
n

2k

)
2k +

∑

k≥1

(
n

2k − 1

)
2k =

∑

k≥0

(
n + 1
2k

)
2k.

4. Antichain Polynomials

In this section we will study the antichain polynomials

an(x) =
n∑

k=0

ankxk

where the coefficients ank give the number of all antichains of size k in the garland
Gn. Since the largest size of an antichain in Gnis n, an(x) has degree n. From (5) we
have that the generating series

a(x, t) =
∑

n≥0

an(x)tn =
∑

n,k≥0

ankxktn

is given by

a(x, t) = a(x, x, t) =
1− x2t2

1− (1 + 2x)t + x2t2 + x2t3
=

1 + xt

1− (1 + x)t− xt2
. (10)
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In particular, from (10), we have the linear recurrence

an+2,k+1 = an+1,k+1 + an+1,k + ank, (11)

from (7) we have the explicit formula

ank =
∑

i+j=k

an,i,j

=
k∑

i=0

min(i,k−i)∑

j=0

(
n− k + 1

j

)(
n− i− j

n− k

)(
n− k + i− j

n− k

)
(−1)j

(12)

and finally from (10) we can obtain the identity

ank =
k∑

j=0

(
n− k + 1

j

)((
j

k − j

))
2j .

4.1. Recurrences

From Series (10), we immediately obtain the following recurrence for the antichain
polynomials:

an+2(x) = (1 + x)an+1(x) + xan(x) (13)

and then, from (13), it is easy to obtain the following identities:

an+2(x)an(x)− an+1(x)2 = (−1)n+12xn+2

am+1(x)an+1(x) + xam(x)an(x) = am+n+2(x) + xam+n+1(x)

an+1(x)2 + xan(x)2 = a2n+2(x) + xa2n+1(x).

We can also obtain another recurrence with the following combinatorial argu-
ment.

Theorem 1 The antichain polynomials an(x) satisfy the recurrence

an+2(x) = an+1(x) + 2
n∑

k=0

xn−k+1ak(x) + 2xn+2. (14)

Proof. For every antichain A of Gn+2 there are the following three cases.

(i) If A does not contain the last elements xn+2 and yn+2, then it is equivalent
to an antichain of Gn+1.

(ii) If A does not contain the element xk (resp. yk) but contains xk+1, . . . , xn+2

(resp. yk+1, . . . , yn+2), then it is equivalent to an antichain of Gk−1 (where
1 ≤ k ≤ n + 1).

(iii) If A contains all the elements x1, . . . , xn+2 (resp. y1, . . . , yn+2), it cannot
contain other elements.

This implies (14). !
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4.2. Explicit Forms

The antichain polynomials can be expressed in terms of Chebyshev polynomials.
Indeed

a(x, t) =
1 + 3x
1 + x

U

(
1 + x

2i
√

x
, i
√

xt

)
− 2x

1 + x
T

(
1 + x

2i
√

x
, i
√

xt

)

where i is the imaginary unit and

T (x; t) =
∑

n≥0

Tn(x)tn =
1− xt

1− 2xt + t2

and

U(x; t) =
∑

n≥0

Un(x)tn =
1

1− 2xt + t2

are the generating series for the Chebyshev polynomials of the first and the second
kind, respectively. So

an(x) =
1 + 3x
1 + x

Un

(
1 + x

2i
√

x

)
(i
√

xt)n − 2x
1 + x

Tn

(
1 + x

2i
√

x

)
(i
√

xt)n.

Now, using the following expansions of the Chebyshev polynomials [22]:

Tn(x) =
1
2

%n/2&∑

k=0

(
n− k

k

)
n

n− k
(−1)k(2x)n−2k,

Un(x) =
%n/2&∑

k=0

(
n− k

k

)
(−1)k(2x)n−2k,

we can obtain, for every n ≥ 1, the expression

an(x) =
%n/2&∑

k=0

(
n− k

k

)
(2n− 3k)x + n− k

n− k
(1 + x)n−2k−1xk.

In particular, since gn = an(1), we have

gn =
%n/2&∑

k=0

(
n− k

k

)
3n− 4k
n− k

2n−2k−1.

We can also obtain another expression for an(x) as follows. Since

a(x, t) =
1 + xt

(1− αt)(1− βt)
=

α + x

α− β

1
1− αt

− β + x

α− β

1
1− βt
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where α,β = (1 + x ±
√

1 + 6x + x2)/2 are the roots of the equation ξ2 − (1+
x)ξ − x = 0, the identity

an(x) =
αn+1 − βn+1

√
1 + 6x + x2

+
x(αn − βn)√
1 + 6x + x2

follows, and hence

an(x) =
1
2n

%n/2&∑

k=0

(
n

2k

)
n + 1 + (3n− 4k + 1)x

2k + 1
(1 + x)n−2k−1(1 + 6x + x2)k.

Again, since gn = an(1), we have

gn =
%n/2&∑

k=0

(
n

2k

)
2n− 2k + 1

2k + 1
2k.

4.3. Euler Transform

The Euler transform of a formal series F (x) =
∑

n≥0 Fnxn is defined as

T α[F (x)] =
1

1− αx
F

(
x

1− αx

)
=

∑

n≥0

[
n∑

k=0

(
n

k

)
αn−kFk

]
xn.

The operator T α is always invertible and in particular (T α)−1 = T −α.
Now, considering a(x, t) as a series in t, we have

T x[a(x, t)] =
1

1− (1 + 3x)t + 2x2t2
= U

(
1 + 3x
2
√

2x
;
√

2xt

)

and consequently

a(x, t) = T −x

[
U

(
1 + 3x
2
√

2x
;
√

2xt

)]
.

Hence

an(x) = xn
n∑

k=0

(
n

k

)
(−1)n−k

√
2kUk

(
1 + 3x
2
√

2x

)
.

5. Equidistributed Antichains

We say that an antichain is equidistributed in a garland Gn when the number of
elements at level 0 is equal to the number of elements at level 1. From identity (7)
it follows immediately that the number of equidistributed antichains of size 2k of
Gn is

enk = an,k,k =
min(k,n−k)∑

j=0

(
n− 2k + 1

j

)(
n− k − j

k − j

)2

(−1)j .
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Moreover, their generating series e(x, t) is the diagonal of Series (5), considered as
a double series in x and y. By Cauchy’s integral theorem [5, 13, 27] we have

e(x, t) =
1

2πi

∮
a(z, x/z, t)

dz

z
=

1
2πi

∮
1− xt2

−tz2 + (1− t + xt2 + xt3)z − tx
dz

where the integral is taken over a simple contour containing all the singularities
s(t) of the series such that s(t) → 0 as t → 0. The polynomial appearing at the
denominator has roots

z± =
1− t + xt2 + xt3 ±

√
(1− t + xt2 + xt3)2 − 4t2x
2t

.

Since only z− → 0 as t→ 0, by the residue theorem we have

e(x, t) = lim
z→z−

1− xt2

−t(z − z+)
=

1− xt2

t(z+ − z−)
;

that is,

e(x, t) =
1− xt2√

(1− t + xt2 + xt3)2 − 4xt2
=

√
1− xt2

1− 2t + t2 − xt2 − 2xt3 − xt4
.

Finally, the generating series for the coefficients en giving the total number of
equidistributed antichains is given by

e(x) = e(1, x) =
1− x2

√
1− 2x− x2 − x4 + 2x5 + x6

=

√
1− x2

(1 + x2)(1− 2x− x2)
.

(15)

The coefficients of this series appear in [25] as sequence A136029. From identity
(7), we have

en =
n∑

k=0

an,k,k =
n∑

k=0

min(k,n−k)∑

j=0

(
n− 2k + 1

j

)(
n− k − j

k − j

)2

(−1)j .

Remark. Series (15) coincides with the generating series for the central ideals of
garlands obtained in [19]. This immediately implies that the antichains and the
central ideals (i.e., ideals of size n) of Gn are equinumerous. In Section 7 we will
give a bijective proof of this result.

6. Riordan Matrices Generated by Antichains

A Riordan matrix [24, 18] is an infinite lower triangular matrix R = [rnk]n,k≥0 =
(g(x), f(x)) whose columns have generating series rk(x) = g(x)f(x)k, where g(x)
and f(x) are given series with g0 = 1, f0 = 0 and f1 $= 0. Riordan matrices appear
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very often in enumerative combinatorics and several times they are contained in
some other matrices. In this section we will prove that from the matrix

A = [an,k]n,k≥0 =





1
1 2
1 4 2
1 6 8 2
1 8 18 12 2
1 10 32 38 16 2
1 12 50 88 66 20 2
1 14 72 170 192 102 24 2
1 16 98 292 450 360 146 28 2
1 18 128 462 912 1002 608 198 32 2
1 20 162 688 1666 2364 1970 952 258 36 2
. . .





(which is not Riordan and which appears in [25] as sequence A035607) and from
the cubic matrix [an,i,j ]n,i,j≥0 it is possible to extract some Riordan matrices.

6.1. First Matrix

First we consider the matrix

R = [rn,k]n,k≥0 =





1
4 1
18 8 1
88 50 12 1
450 292 98 16 1
2364 1666 688 162 20 1
12642 9424 4482 1340 242 24 1
68464 53154 28004 9922 2312 338 28 1
374274 299660 170610 68664 19266 3668 450 32 1

. . .





where rn,k = a2n,n−k. Recurrence (11) implies a recurrence also for the coefficients
rn,k. Indeed, applying (11), we have

rn+2,k+1 = a2n+4,n−k+1 = a2n+3,n−k+1 + a2n+3,n−k + a2n+2,n−k

= a2n+2,n−k+1 + a2n+2,n−k + a2n+1,n−k

+a2n+2,n−k + a2n+2,n−k−1 + a2n+1,n−k−1 + rn+1,k+1

= rn+1,k + 3rn+1,k+1 + rn+1,k+2 + a2n+1,n−k + a2n+1,n−k−1.



INTEGERS: 9 (2009) 364

Since from (11) we have

a2n+1,n−k + a2n+1,n−k−1 = a2n+2,n−k − a2n,n−k−1 = rn+1,k+1 − rn,k+1,

then we obtain the recurrence

rn+2,k+1 = rn+1,k + 4rn+1,k+1 + rn+1,k+2 − rn,k+1. (16)

Now, from (16) it follows that

xrk+2(x)− (1− 4x + x2)rk+1(x) + xrk(x) = 0 (17)

for the generating series rk(x) =
∑

n≥k rn,kxn of the columns of R. If there exist
two series c(x) and f(x) such that rk(x) = c(x)f(x)k for every k ∈ N, then

c(x) = r0(x) =
∑

n≥0

a2n,nxn

is the generating series of the central coefficients of the matrix A, and hence it is the
diagonal of the double series

c(x, t) =
∑

n,k≥0

a2n,kxktn =
a(x,−

√
t) + a(x,−

√
t)

2

=
1 + x2t

1− (1 + 4x + x2)t + x2t2
.

By Cauchy’s integral theorem we have

c(x) =
1

2πi

∮
c(z;x/z)

dz

z
=

1
2πi

∮
1 + xz

−xz2 + (1− 4x + x2)z − x
dz.

The polynomial appearing in the denominator has roots

z± =
1− 4x + x2 ± (1− x)

√
1− 6x + x2

2x

and only z− → 0 as t→ 0. Hence, by the residue theorem, we have

c(x) = lim
z→z−

1− xz

−z(z − z+)
=

1− xz−

x(z+ − z−)
=

3− x−
√

1− 6x + x2

2
√

1− 6x + x2
. (18)

The coefficients cn of this series appear in [25] as sequence A050146. In particular,
it is easy to see that cn = (3Dn − Dn−1)/2 (for n ≥ 1), where the Dn’s are the
central Delannoy numbers [25, A001850].
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Moreover, from recurrence (17) we obtain xf(x)2 − (1 − 4x + x2)f(x) + x = 0
and hence the series

f(x) =
1− 4x + x2 − (1− x)

√
1− 6x + x2

2x
, (19)

whose coefficients fn appear in [25] as sequence A006319.
Since c1 = 1, f0 = 0 and f1 $= 0, it follows that R is indeed a Riordan matrix.

Specifically, we have R = (c(x), f(x)), where c(x) is series (18) and f(x) is series
(19).

From identity (12) we immediately obtain the explicit formula

rn,k =
k∑

i=0

min(i,k−i)∑

j=0

(
n + k + 1

j

)(
2n− i− j

n + k

)(
n + k + i− j

n + k

)
(−1)j .

6.2. Second Matrix

Now we consider the matrix

S = [sn,k]n,k≥0 =





1
6 1
32 10 1
170 72 14 1
912 462 128 18 1
4942 2816 978 200 22 1
27008 16722 6800 1782 288 26 1
148626 97880 44726 14016 2938 392 30 1
822560 568150 284000 101946 25872 4510 512 34 1

. . .





where sn,k = a2n+1,n−k. Exactly as in the previous case, recurrence (11) implies
the linear recurrence

sn+2,k+1 = sn+1,k + 4sn+1,k+1 + sn+1,k+2 − sn,k+1, (20)

which is the same as (16). Then the generating series sk(x) =
∑

n≥k sn,kxn of the
columns of S satisfy the recurrence xsk+2(x)− (1− 4x + x2)sk+1(x) + xsk(x) = 0.
Consequently sk(x) = d(x)f(x)k for every k ∈ N, where f(x) is the series given by
(19) and

d(x) = s0(x) =
∑

n≥0

a2n+1,nxn
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is the diagonal of the double series

d(x, t) =
∑

n,k≥0 a2n+1,kxktn =
a(x,−

√
t)− a(x,−

√
t)

2
√

t

=
1 + 2x− x2t

1− (1 + 4x + x2)t + x2t2
.

By Cauchy’s integral theorem, we have

d(x) =
1

2πi

∮
d(z;x/z)

dz

z
=

1
2πi

∮
1 + 2z − xz

−xz2 + (1− 4x + x2)z − x
dz

and consequently by the residue theorem we have

d(x) = lim
z→z−

1 + (2− x)z
−z(z − z+)

=
1 + (2− x)z−

x(z+ − z−)
,

that is,

d(x) =
2− 5x + x2 − (2− x)

√
1− 6x + x2

2x
√

1− 6x + x2
. (21)

The coefficients dn of this series appears in [25] as sequence A125190, and they can
be expressed in terms of central Delannoy numbers: dn = (2Dn+1−5Dn+Dn−1)/2.

In conclusion, S is a Riordan matrix. Specifically, we have S = (d(x), f(x)),
where d(x) is series (21) and f(x) is series (19).

Finally, from identity (12) we obtain the explicit formula

sn,k =
k∑

i=0

min(i,k−i)∑

j=0

(
n + k + 2

j

)(
2n− i− j + 1

n + k + 1

)(
n + k + i− j + 1

n + k + 1

)
(−1)j .

6.3. Third Matrix

The last matrix we consider is

H = [hn,k]n,k≥0





1
1 1
1 2 1
3 3 3 1
7 6 6 4 1
15 14 12 10 5 1
33 32 27 22 15 6 1
75 72 63 50 37 21 7 1
171 164 146 118 88 58 28 8 1
. . .
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where hn,k =
n∑

i=k

an,i,i−k. Using recurrence (6) we have

hn+3,k+1 =
n+3∑

i=k+1

an+3,i,i−k−1

=
n+3∑

i=k+1

(an+2,i,i−k−1 + an+2,i−1,i−k−1 + an+2,i,i−k−2

−an+1,i−1,i−k−2 − an,i−1,i−k−2)

= hn+2,k+1 +
n+2∑

i=k

an+2,i,i−k + hn+2,k+2

−
n+1∑

i=k+1

an+1,i,i−k−1 −
n∑

i=k+1

an,i,i−k−1;

that is,

hn+3,k+1 = hn+2,k + hn+2,k+1 + hn+2,k+2 − hn+1,k+1 − hn,k+1. (22)

Let hk(x) =
∑

n≥k hn,kxn be the generating series for the columns of H. From
recurrence (22) and the first few values of hn,k we obtain the equation

xhk+2(x)− (1− x + x2 + x3)hk+1(x) + xhk(x) = 0. (23)

Now we suppose that hk(x) = e(x)h(x)k for every k ∈ N. Clearly for k = 0 we
obtain the generating series e(x) for the equidistributed antichains. Moreover, from
(23) we have the equation

xh(x)2 − (1− x + x2 + x3)h(x) + x = 0

whose solution is

h(x) =
1− x + x2 + x3 −

√
1− 2x− x2 − x4 + 2x5 + x6

2x
. (24)

The coefficients of this series form essentially sequence A004149 in [25]. In conclu-
sion, H is a Riordan matrix and more precisely H(x) = (e(x), h(x)), where e(x) is
series (15) and h(x) is series (24).

Finally, using identity (12) we can obtain the explicit formula

hn,k =
n∑

i=k

m∑

j=0

(
n− 2i + k + 1

j

)(
n− i− j

i− j − k

)(
n− i− j + k

i− j

)
(−1)j

where m = min(i, i− k, n− i, n− i + k).
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Figure 4: The garland G3, the lattice J (G3) of ideals and the semilattice A(G3) of
antichains.

7. The Lattice of Ideals and the Semilattice of Antichains

As we recalled in the introduction, for any poset P there is a standard bijection
between J (P ) and A(P ) defined by associating to each ideal the antichain of its
maximal elements. In the particular case of garlands we can define another useful
bijection ϕ : J (Gn) → A(Gn). First notice that each ideal I of Gn can be uniquely
decomposed into the disjoint union of the set I0 of all its element of rank 0, and the
set I1 of all its elements of rank 1. Let I ′0 be the complementary set of I0 in the set
of all elements of rank 0 of Gn. If I = I0 ) I1 then we set ϕ(I) = I ′0 ) I1. Clearly
ϕ is well defined, since I ′0 ) I1 is always an antichain, and it is easy to verify that
it is a bijection. Equivalently, the map ϕ can be defined in terms of the encodings
ψ1 : J (Gn)→W and ψ2 : A(Gn)→W described in Section 2. Indeed, it is easy to
see that ϕ = ψ1ψ

−1
2 = ψ−1

2 ◦ ψ1.
Let C(Gn) be the set of all central ideals of Gn and let E(Gn) be the set of all

equidistributed antichains of Gn.

Theorem 2 The map ϕ : C(Gn)→ E(Gn) is a bijection.

Proof. Let I = I0 ) I1 be an ideal of a garland Gn. Then

ϕ(I) ∈ E(Gn) ⇐⇒ |I ′0| = |I1| ⇐⇒ |I0|+ |I1| = n ⇐⇒ I ∈ C(Gn).

This means that the map ϕ : J (Gn) → A(Gn) can be restricted to the map ϕ :
C(Gn)→ E(Gn). Since ϕ is a bijection, its restriction is also a bijection. !

If we order the antichains by inclusion then A(Gn) becomes a meet-semilattice. It
has the same size of J (Gn) but it is a different poset (see Figure 4 for an example).
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However, we have

Theorem 3 The posets A(Gn) and J (Gn) have the same simple graph H(Gn) un-
derlying their Hasse diagram.

Proof. Let H1(Gn) be the simple graph underlying the Hasse diagram of J (Gn) and
similarly let H2(Gn) be the simple graph underlying the Hasse diagram of A(Gn). In
both cases the adjacency is defined by the cover relation: two vertices are adjacent
if and only if one of them is covered by the other in the corresponding poset.

The map ϕ can be extended to a graph morphism ϕ : H1(Gn) → H2(Gn). To
prove that ϕ indeed preserves adjacency, let I and J be two ideals adjacent in
H1(Gn). If I is covered by J in J (Gn), then J can be obtained by I by adding
exactly one new element z. Hence

(i) if z has rank 1, then J0 = I0, J1 = I1){z} and ϕ(J) = J ′0)J1 = I ′0)I1){z} =
ϕ(I) ) {z}; that is, ϕ(J) covers ϕ(I) in A(Gn);

(ii) if z has rank 0, then J0 = I0){z}, J1 = I1 and ϕ(I) = I ′0)I1 = J ′0){z})J1 =
ϕ(J) ) {z}; that is, ϕ(I) covers ϕ(J) in A(Gn).

In both cases ϕ(I) and ϕ(J) are adjacent in H2(Gn). So, in conclusion, ϕ is a graph
isomorphism and H1(Gn) and H2(Gn) are isomorphic graphs. !

The ladder Ln is the simple graph on the 2n vertices (i, h) with 1 ≤ i ≤ n and
1 ≤ h ≤ 2, where (i, h) is adjacent to (j, k) if and only if i = j and h $= k, or
|i− j| = 1 and h = k. An independent subset of Ln is a set of vertices in which no
pair of vertices is adjacent [16]. It is easy to see that the simple graph underlying
the Hasse diagram of Gn is the ladder Ln and that the antichains of Gn correspond
exactly to the independent subsets of Ln (see Figure 5).
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Figure 5: A garland and the associated ladder

Hence we have

Theorem 4 The semilattice A(Gn) of the antichains of a garland is isomorphic to
the semilattice I(Ln) of the independent subsets of a ladder.

Clearly the antichain polynomial an(x) is the rank polynomial of the semilattice
A(Gn) and the independence polynomial [16] of the ladder Ln.
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Let p(x) and q(x) be two real polynomials with degree n and n + 1, with real
distinct roots. Let r1 < · · · < rn and s1 < · · · < sn+1 be their roots. The
polynomials p(x) and q(x) strictly interlace if s1 < r1 < s2 < r2 < · · · < sn <
rn < sn+1. A sequence {pn(x)}n of real polynomials is a Sturm sequence [17] when
every polynomial pn(x) has degree n, has n real distinct roots and strictly interlaces
pn+1(x).

Theorem 5 The antichain polynomials an(x) form a Sturm sequence.

Proof. The claim follows immediately from recurrence (13) [17, Corollary 2.4]. !

A sequence {a0, a1, . . . , an} of (positive) real numbers is unimodal when there
exists an index k such that a0 ≤ a1 ≤ · · · ≤ ak ≥ ak+1 ≥ · · · ≥ an while it
is log-concave when ak+1ak−1 ≤ a2

k for every k = 1, 2, . . . , n − 1. A polynomial
is unimodal (resp. log-concave) when the sequence of its coefficients is unimodal
(resp. log-concave).

Theorem 6 The antichain polynomials an(x) are log-concave and unimodal.

Proof. Since every real polynomial having only real negative roots is log-concave [28],
it follows immediately that an(x) is log-concave. Moreover, since all its coefficients
are positive, it also follows that an(x) is unimodal. !

Since a ranked poset is rank-unimodal when its rank polynomial is unimodal,
Theorem 6 implies

Theorem 7 The semilattice A(Gn) is rank-unimodal.

8. Antichains and Lattice Paths

The antichains of a garland can be easily interpreted in terms of lattice paths, and
more precisely in terms of trinomial paths; that is, lattice paths starting from H =
(0, 0) and made of up steps U = (1, 1), down steps D = (1,−1) and horizontal steps
(1, 0). Every antichain A of Gn can be represented by means of a trinomial path γA

as follows. Reading the garland from left to right, column by column, we write an
up step U when we encounter an element of A at level 1, a down step D when we
encounter an element of A at level 0, a horizontal step H when we encounter no
elements. See Figure 6 for an example. Since A is an antichain, the path γA has
neither peaks UD nor valleys DU . Moreover A is an equidistributed antichain if
and only if γA is a central path; that is, if and only if γA ends on the x-axis.

Now we can reobtain the generating Series (15) for the equidistributed antichains
with a combinatorial argument in terms of central trinomial paths with no peaks
and no valleys. First of all, we consider the class S of all smooth Motzkin paths, i.e.,
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Figure 6: The antichain A = {x1, y3, y4, x7} of G7 and the corresponding path
γA = DHUUHHD.

Motzkin paths with no peaks and no valleys. Every non-empty smooth Motzkin
path γ can be uniquely decomposed in one of the following ways (see Figure 7):

γ = Hγ′ (γ′ ∈ S), γ = Uγ′D (γ′ ∈ S, γ′ $= •),

γ = Uγ′DHγ′′ (γ′, γ′′ ∈ S, γ′ $= •).

• or " " "γ′ $= • or " " " "!! ""

γ′ $= •
or " " " " " "!! ""

γ′ $= •
γ′′

Figure 7: Main decomposition of Motzkin paths with no peaks and no valleys.

Hence, if s(x) is the generating series of smooth Motzkin paths then we have the
identity

s(x) = 1 + xs(x) + x2(s(x)− 1) + x3(s(x)− 1)s(x),

or x3s(x)2 − (1− x− x2 + x3)s(x) + 1− x2 = 0, and hence

s(x) =
1− x− x2 + x3 −

√
1− 2x− x2 − x4 + 2x5 + x6

2x3
.

Now let T be the class of smooth central trinomial paths. Moreover let TX be the
class of all smooth central trinomial paths beginning with a step X ∈ {U,D,H}.
Clearly T = 1 + TH + TU + TD, where TH = HT and TU - TD (where the bijection
is given by reflection across the x-axis). Every non-empty path γ ∈ TU decomposes
uniquely as γ = Uγ′Dγ′′, where γ′ ∈ S, γ′ $= •, and γ′′ ∈ T \ TU . If t(x) and u(x)
denote the generating series for T and TU , then we have the identity

u(x) = x2(s(x)− 1))(1 + xt(x) + u(x)).

Since t(x) = 1 + xt(x) + 2u(x), it follows that

u(x) =
x2(s(x)− 1)

1− x + x2 + x3 − (x2 + x3)s(x)

t(x) =
1− x2 + x2s(x)

1− x + x2 + x3 − (x2 + x3)s(x)
= e(x). (25)
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We can also proceed in a different way as follows. We say that a path is positive
(negative) when it never goes below (above) the x-axis. Negative paths correspond
bijectively to positive paths by means of the reflection around the x-axis. We say
that a positive (negative) Motzkin path γ is elevated if γ = Uγ′D (γ = Dγ′U)
where γ′ is any positive (negative) Motzkin path. Clearly a (positive or negative)
Motzkin path γ has no peaks and no valleys if and only if this is also true for γ′.

Every non-empty path γ ∈ T can be decomposed in a unique way as γ = γ′γ′′

where γ′ is an alternating product of positive and negative elevated Motzkin paths
(where the first path can be either positive or negative) and γ′′ = • or γ′′ = Hγ′′′

with γ′′′ ∈ T (see Figure 8). This immediately implies the identity

" " " "!! ""

- .
γ1 $= •

" " "
"" !!/ 0γ2 $= •

" " "!! ""

- .
γ3 $= • 1 1 1 1 1 1 1 1 1 1 1 1 " "

2
3

4
5γ′′′

γ′ γ′′

Figure 8: Decomposition of trinomial paths with no peaks and no valleys.

t(x) =
(

2
1− x2s(x)

− 1
)

(1 + xt(x))

from which we reobtain the expression of t(x) in (25).
Differentiating s(x) and t(x) it is possible to obtain the identities

x(1− 2x− x2 − x4 + 2x5 + x6)s′(x) + (3− 5x− 2x2 − x4 + x5)s(x)

−3 + x + 4x2 − x4 − x5 = 0

(1− 2x− x2 − x4 + 2x5 + x6)t′(x)− (1− x + 4x2 + 2x3 − x4 − x5)t(x) = 0

and hence the recurrences

(n + 9)sn+6 − (2n + 15)sn+5 − (n + 6)sn+4 − (n + 3)sn+2

+(2n + 3)sn+1 + nsn = 0,

(n + 6)tn+6 − (2n + 11)tn+5 − (n + 3)tn+4 − 4tn+3 − (n + 4)tn+2

+(2n + 3)tn+1 + (n + 1)tn = 0.

From the expression for t(x) appearing in (25) we have the identity

(1− x + x2 + x3)t(x)− (x2 + x3)s(x)t(x) = 1− x2 + x2s(x)

from which follows the relation
n+1∑

k=0

sktn−k+1 +
n∑

k=0

sktn−k = tn+3 − tn+2 + tn+1 − sn+1 + tn.
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Asymptotically we have

gn ∼
1
2
(1 +

√
2)n+1, sn ∼

1
n

√√
2− 1
nπ

(
1 +

√
2
)n+2

,

tn ∼
1
2

√√
2 + 1
nπ

(
1 +

√
2
)n

.

The first relation is an immediate consequence of (8) while the last relation has
been obtained in [19] using Darboux’s theorem. Also the second relation can be
obtained using Darboux’s theorem, exactly as in [19]. Hence gn+1 ∼ (1 +

√
2)gn,

sn+1 ∼ (1 +
√

2)sn, tn+1 ∼ (1 +
√

2)tn and

sn

gn
∼ 2(1 +

√
2)

n

√√
2− 1
nπ

,
tn
gn
∼

√√
2− 1
nπ

,
sn

tn
∼ 2(1 +

√
2)

n
.
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