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Abstract
Functions counting the number of subsets of {1, 2, ..., n} having particular
properties are defined by Nathanson. Here, generalizations in two directions

are given.
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1. Introduction

A nonempty subset A of {1, 2, ..., n} is said to be relatively prime if ged(A) =
1. Nathanson [2] defined f(n) to be the number of relatively prime subsets of
{1,2, ..., n} and, for k > 1, fi(n) to be the number of relatively prime subsets of
{1, 2, ..., n} of cardinality k. By analogy with Euler’s phi function ¢(n) that counts
the number of positive integers a in the set {1, 2, ..., n} such that ged(a,n) = 1,
Nathanson [2] defined ®(n) to be the number of nonempty subsets A of the set
{1, 2, ..., n} such that gcd(A) is relatively prime to n, and for an integer k > 1,
1 (n) to be the number of subsets A of the set {1, 2, ..., n} such that ged(A) is
relatively prime to n and card(A) = k. He obtained explicit formulas for these four
functions and deduced asymptotic estimates [2].

The functions f(n), fx(n), ®(n) and ®x(n) have been generalized by El Bachraoui
[1] to subsets A C {m + 1, m+ 2, ...,n} where m is any nonnegative integer. His
proofs use an extension of generalized convolutions and the Mdbius inversion formula
to functions of several variables. Nathanson and Orosz [3] used El Bachraoui’s result
to obtain simple explicit formulas and asymptotic estimates. A natural extension
of this problem is to generalize the previous functions to subsets of the set {a, a +
b,...,a+ (n — 1)b} where a and b are any integers. Nathanson [2] considered
the special case (a,b) = (1,1), and El Bachraoui [1] and Nathanson and Orosz [3]
considered the case (a,b) = (m + 1,1) where m is any non-negative integer. In [1]
and [2], the proofs made use of the fact that the mapping A — %A is a one-to-one
correspondence between the subsets of {m, ..., n} containing m and having gecd
= d (dividing m), and the relatively prime subsets of {%,...,[Z]} which contain
7+ Their methods seem not to generalize to the case where a and b are any two
integers.

In the first part of this paper, we generalize the four functions f(n), fx(n), ®(n)
and ®y(n) to subsets of the set {a, a+b, ..., a+ (n — 1)b} where a and b are any
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integers. We give in Theorem 3.1 and Theorem 3.4 explicit formulas for the gener-
alized functions we define. We show in Corollary 3.6, that the results of Nathanson
[2], El Bachraoui [1] and Nathanson and Orosz [3] can be deduced as particular
cases from Theorem 3.1 and Theorem 3.4.

One can easily recognize that ®(n) represents the number of primitive elements
of the field Fon over Fy. In the second part of this paper, among other results, we
define a new function ¥(n,m) generalizing ®(n) such that ¥(n,p) represents the
number of primitive elements of Fy» over Fp,.

2. Relatively Prime Subsets and a Phi Function for Subsets
of {m,m+1,...,1}

Let [z] denote the greatest integer less than or equal to z, and pu(n) the Mobius
function. Nathanson [2] proved the following two theorems.

Theorem 1. For all positive integers n and for k > 1,
n

) =3 () (24— 1)
d

[y

" fiulm) = g iy (41,

d=1

Theorem 2. For all positive integers n > 2 and k > 1

() = 3 p(d)2"
d|

and

Be(n) = ;uw(%).

Theorem 1 implies that f(n) ~ 2™ as n — oo, which means that almost all finite
sets of integers are relatively prime.

Theorems 1 and 2 have been generalized by El Bachraoui [1] to subsets of the set
{m+1, m+2, ..., 1} for arbitrary non-negative integers m < [. Using an extension
of the Mobius inversion formula to functions of many variables and generalized con-
volutions, El Bachraoui [1] obtained explicit formulas for the generalized functions
he defined and Nathanson and Orosz [3] simplified them. They proved in [1], [3]
the following two theorems.
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Theorem 3. For non-negative integers m <1 and for k > 1, let f(m,l) denote the
number of relatively prime subsets of {m+1, m+2, ..., 1} and fr(m,l) denote the
number of relatively prime subsets of {m +1, m+2, ..., I} of cardinality k. Then

Fm,1) =" u(d) (2%]*[%] _ 1)

l
d=1

and

fetmat) =Sty (A2,

Theorem 4. For non-negative integers m <1 and for k > 1, let ®(m,l) denote the
number of subsets of the set {m + 1, m+ 2, ..., 1} such that gcd(A) is relatively
prime ton, and ®p(m,l) denote the number of subsets of the set {m+1,m+2,... 1}
of cardinality k such that ged(A) is relatively prime to n. Then

®(m, 1) = u(d)20i-#])

djl
—k[%] ) .

&

and

e~

elon.t) = S

d|l

3. Relatively Prime Subsets and a Phi Function for Subsets
of {a,a+b,...,a+ (n—1)b}

It is natural to ask whether one can generalize the formulas obtained by Nathanson
[2], El Bachraoui [1], and Nathanson and Orosz [3] to subsets of a set A = {a, a +
b, ..., a+(n—1)b}, where a, b, and n are any integers. The purpose of this section
is to generalize Theorems 2.1, 2.2, 2.3 and 2.4 to the general case where a and b are
any integers. The generalization is given in Theorem 3.1 and Theorem 3.5.

Theorem 5. For all positive integers n, a and b, let (%) (n) denote the number
of relatively prime subsets of {a, a+b, ..., a+ (n —1)b} and f,ga’b) (n) denote the
number of relatively prime subsets of {a,a +b,...,a+ (n — 1)b} of cardinality k.
Suppose that ged(a,b) =1, then

a+(n—1)b

Fem = 3 ) (2 1)

d=1
ged(b,d) =1

and
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a+(n—1)b
a, n/d + e
SR I )
d=1
ged(b,d) =1
where
0 i d| n,
ea=4 1 ifd{nand(—ab~')modde {0,....,n— [2]d—1},
0 otherwise.

If ged(a, b) # 1, it is easy to see that f(®b)(n) = f,ga’b)(n) =0.
To prove Theorem 5, we need the following lemma.

Lemma 6. For an integer d > 1, and for nonzero integers a and b with ged(a,b) = 1,
let Agy={zx=a+ibfori=0,...,(n—1); d|x}.

(i) If ged (b,d) # 1, then |Aq4| = 0.

(ii) If ged (b,d) =1, then |Aq| = [%] + eq where

0 if d| n,
ea=4 1 ifd{nand(—ab')modde {0,....,n—[2]d—1},
0 otherwise.

Proof. (i) If ged(b,d) # 1, then no element of the arithmetic sequence a, a +
b, ..., a+ (n—1)bis divisible by d because we supposed that ged(a,b) = 1, i.e., Ag
is empty and |A4| = 0.

(ii) We suppose that ged(d,b) = 1. If d | n then [A4] = [2]. If d{n and d < n,
then every d consecutive terms of the arithmetic sequence a, a+b, ..., a+(n—1)b
constitute a complete set of residues mod d. Hence, the sequence a, a+b, ..., a+
([2] d—1) b contains exactly [2] terms divisible by d. Then |Aq| = [2] + 1 if
and only if one term a 4+ tb =0 (mod d) for a certain ¢ € {[%]d, B 1}. Then
|Ag] = [%] + 1 if and only if (—ab™*) mod d € {0,...,n— [2]d— 1}, otherwise
|Ag| = [%]. If d > n, the proof is similar. O

Proof of Theorem 8.1. Let Ay = {x =a+ibfori=20,...,(n—1); d |z}, and
P(Agq) = {the nonempty subsets of A;}. Then

fePm =2 =1~ |J Py

p prime

The principle of inclusion-exclusion implies that
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Favm) = (2" =1) - (ZIP4,)]
— YIP(A4,) NP4,
+ SIP(A4,) NPA)NPA) .. ),

where p, ¢ and r are distinct primes. Clearly, if py,...,p; are distinct primes, then

t

NPA)| = [Plage_, |-

i=1
Thus,

a+(n—1)b
Femy =37 p(d)|P(Ad)l.
d=1

Then Lemma 6 implies that

a+(n—1)b
fla(n) = Z u(d) (2[n/d]+€d _ 1) )
d=1
ged(b,d) =1
The proof for Formula (1) is similar. ad

Theorem 7. For all positive integers a and b such that ged(a,b) = 1,

(a,b)
lim —f (n)

n—oo on

=1

Proof. 1t is easy to see that (2" —1) — (a + (n— 1)b—1) (27/2+1 — 1) < @b (p) <
(2" —1). Then
(a7b)
lim o0 Zn(n)

=1

O

Remark 8. One can obtain better bounds for f(®*) (n) but we were interested in
showing only that almost all subsets of the set {a,a+b,...,a+(n—1)b} are relatively
prime.

Theorem 9. For positive integers a, b and n, let ®(®P) (n) denote the number of
subsets A of {a,a+0b,...,a+ (n—1)b} such that ged(A) is relatively prime to n,
and @,(ca’b) (n) denote the number of subsets A of {a,a+b,...,a+ (n—1)b} such
that ged(A) is relatively prime to n and card(A) = k. Suppose that ged(a,b) = 1.
Then
@) (n) = > uld) (27 1)
din
ged(b,d) = 1

and
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DU SN

din
ged(b,d) = 1

a3

N——
—~
[\)
~

Proof. Tt is easy to see that ®(@?)(n) = (2" — 1) — ‘Up prime’pnP(Ap)‘ where Ay =

{a<z<a+(n—-1)b:d|z}. Using the principle of inclusion-exclusion and the
same idea as in the proof of Theorem 3.1, one obtains from above that

(I)(a b) Z M |’P Ad

It was proved in Lemma 3.2 that if gcd(b, d) =1, then |44 = ([2] + 4), and since
d|n,eq=0. Then

b () = S uld) (27 —1).
d|n
ged(b,d) =1

The proof for Formula 2 is similar. O

Corollary 10. The formulas for f(m,k), fx(m,l), ®(m,l) and Pr(m,l) obtained
in [1], [2], [3] are consequences of Theorem 5 and Theorem 7.

Proof. 'We will prove the corollary for f(m,k) only. For the other formulas, the
proof is similar. Let a=m+1,b=1,l=a+(n—1)b=n+m. Thenn=1—m

Flm, 1) = fm D (n Zu ) (2l e - 1),

All we need to prove is that [ ] +eq= [é] — [%}

Ifd | (I—m), then ¢4 = 0 and it is easy to see that [Z—Tm] = {é} — [%}, and

the result follows. l
Ifdt (I—m),letl= {E} d+ 2 and m = [%]d—kywithogx,ygd—l. Since
d t (I—m), then z # y mod d.

o If v <y, then [;m] = [ﬂ — [ﬂ] 1. From the definition, ¢4 = 1 if —(m+1)
(mod d) {0 — [I_T] — 1}; otherwise e4 = 0. Then,

tom - [5p)d-1 = [ dba- ((ld+y) - (14 - (7] - D a1

= z—y+d—-1
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But —(m + 1) = —[%]d—y—l =d—y—1modd. Since x > 0, then,
—(m+1)modd € {0,..., 0 —y+d—1} = {0,...,lfmf[l_7m]d71}.

Hence ¢4 = 1 and
l=m) o _|L -[™
d 4= 1a| " lal

e If x > y, it is easy to see that

and l
l—m— {Tm}d—lzx—y—l
But
0<z—-y—-1<d-—y-1.
Then

—(m+1)modd_d—y—1¢{o,...,z—m— {—}dq}.

(5e] 41

Remark 11.If a and b are integers not necessary positive, one can easily deduce
from Theorem 3.1 and Theorem 3.5, the formulas for f(®*) (n), ,ga’b)(n), (@) (p)

@,(ca’b) (n) and @,(Ca’b) (n).

Hence ¢4 = 0 and

Remark 12. Suppose in Theorem 3.5 that ged(a,b) = a # 1.

(i) If ged(a, n) # 1, then it is easy to show that ®(®¥) (n) =0 and @,(Ca’b)(n) =0.
(ii) If ged(a,n) = 1. Let aq = £ and by = 2. Then, ged(aq,ba) = 1. Hence,
®(@0) (n) = aebe) (n) and " (n) = B ") (n).

4. Prime Applications

Let E(n,m)={h:{1, 2, ..., n} — Z/mZ}. For h € E(n,m), we define the support
of h to be supp(h) = {z € {1, 2, ..., n};h(x) # 0}, and ged(h) = ged(supp(h)).
We say that h is prime if ged(h) = 1.

Proposition 13. Let A C {1, 2, ..., n}, then there exist (m — 1)l elements h €
E(n,m) such that supp(h) = A.
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Proof. Tt is clear that there is a one-to-one and onto correspondence between {h €
E(n,m), supp(h) = A} and {g : A — Z/mZ\{0}}, hence the result. O

From Proposition 4.1, we deduce that the mapping
E(n,2) -2 P{12 ....,n)),

such that 8(h) = supp(h), is bijective. Moreover, it maps the prime applications h
to what Nathanson [2] calls relatively prime sets.

Let us denote by F(n,m) (respectively ¥(n,m)), the number of prime elements
h € E(n,m) (respectively h € E(n,m) such that ged(ged(h),n) = 1). It is easy to
see that F(n,2) = f(n) and ¥(n,2) = ®(n).

Theorem 14. For all positive integers n and m > 2,

=Y 1)

and

= 3 uldym @
d|n

Before proving Theorem 14, we need the following lemma.

Lemma 15. For any d > 1, let By = {h € E(n,m), supp(h) # 0;d | ged(h)}. Then
|Bg| = mM/4 — 1.

Proof. If d > n, then clearly By = (). It is easy to see that the number of elements
in {1, ..., n} that are divisible by d is equal to [n/d]. Notice that h € By if and
only if supp(h) C {d, 2d, ..., [§]d}. Tt follows from Proposition 13 that

’Bd‘ = [nz/%](m—l)i( [nl/d] ) =m/d 1

=1

Proof of Theorem 14. As in the proof of Theorem 5, we will use the principle of
inclusion-exclusion. We obtain

F(n,m) = m"—1-

U 5

q prime

—1+Zu )| Bal-

1= Y ()|

d=2
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Using Lemma 4.3, we obtain
d=2 d=1

The proof for Formula 3 is similar. a

In what follows, we discuss the possible link between finite fields and E(n,p).
Notice that when m = p is a prime, ¥(n,p) is the number of primitive elements
of the finite field Fpn over F,. Since ‘E(n,p)| = ]]Fpn’ = p", it is natural to ask
whether it is possible to define explicitly an operation * such that E(n,p) is a field
under + and *, where + is the usual addition of applications. One answer may be
the following;:

Let P, (x) be a monic irreducible polynomial over F,, of degree n. Let

E(n,p) T Fpla]/(Pu(x))
such that

Let g,h € E(n,p), set gxh =771(7(g) - 7(h)). Then (E(n,p),+,%) is a field and 7
is an isomorphism.
The proof of this statement is straightforward.

Remark 16. Let p be a prime. The Formula 3 shows that ¥(n,p) is equal to the
number of primitive element of F,» over F,. Consider any bijection from the set of
primitive elements of Fy» over F,, onto {h € E(n,p); ged( ged(h),n) = 1}. Extend
this bijection to Fp» in order to obtain a bijection from F,» onto E(n,p). By
transferring the laws, E(n,p) becomes a field and the bijection is an isomorphism
of fields.

Question: Is it possible to construct an isomorphism of additive groups from
F,» onto E(n,p), which maps any primitive element onto some h € E(n,p), with
ged(ged(h),n) =17
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