ON RELATIVELY PRIME SETS

Mohamed Ayad
Laboratoire de Math. Pures et Appliquées, Université du Littoral, Calais, France
Ayad@lmpa.univ-littoral.fr
Omar Kihel ${ }^{1}$
Department of Mathematics, Brock University, St. Catharines, Ontario, Canada
okihel@brocku.ca

Abstract

Functions counting the number of subsets of $\{1,2, \ldots, n\}$ having particular properties are defined by Nathanson. Here, generalizations in two directions are given.

Received: 10/1/08, Revised: 3/20/09, Accepted: 3/30/09

1. Introduction

A nonempty subset A of $\{1,2, \ldots, n\}$ is said to be relatively prime if $\operatorname{gcd}(A)=$ 1. Nathanson [2] defined $f(n)$ to be the number of relatively prime subsets of $\{1,2, \ldots, n\}$ and, for $k \geq 1, f_{k}(n)$ to be the number of relatively prime subsets of $\{1,2, \ldots, n\}$ of cardinality k. By analogy with Euler's phi function $\phi(n)$ that counts the number of positive integers a in the set $\{1,2, \ldots, n\}$ such that $\operatorname{gcd}(a, n)=1$, Nathanson [2] defined $\Phi(n)$ to be the number of nonempty subsets A of the set $\{1,2, \ldots, n\}$ such that $\operatorname{gcd}(A)$ is relatively prime to n, and for an integer $k \geq 1$, $\Phi_{k}(n)$ to be the number of subsets A of the set $\{1,2, \ldots, n\}$ such that $\operatorname{gcd}(A)$ is relatively prime to n and $\operatorname{card}(A)=k$. He obtained explicit formulas for these four functions and deduced asymptotic estimates [2].

The functions $f(n), f_{k}(n), \Phi(n)$ and $\Phi_{k}(n)$ have been generalized by El Bachraoui [1] to subsets $A \subseteq\{m+1, m+2, \ldots, n\}$ where m is any nonnegative integer. His proofs use an extension of generalized convolutions and the Möbius inversion formula to functions of several variables. Nathanson and Orosz [3] used El Bachraoui's result to obtain simple explicit formulas and asymptotic estimates. A natural extension of this problem is to generalize the previous functions to subsets of the set $\{a, a+$ $b, \ldots, a+(n-1) b\}$ where a and b are any integers. Nathanson [2] considered the special case $(a, b)=(1,1)$, and El Bachraoui [1] and Nathanson and Orosz [3] considered the case $(a, b)=(m+1,1)$ where m is any non-negative integer. In [1] and [2], the proofs made use of the fact that the mapping $A \rightarrow \frac{1}{d} A$ is a one-to-one correspondence between the subsets of $\{m, \ldots, n\}$ containing m and having gcd $=d($ dividing $m)$, and the relatively prime subsets of $\left\{\frac{m}{d}, \ldots,\left[\frac{n}{d}\right]\right\}$ which contain $\frac{m}{d}$. Their methods seem not to generalize to the case where a and b are any two integers.

In the first part of this paper, we generalize the four functions $f(n), f_{k}(n), \Phi(n)$ and $\Phi_{k}(n)$ to subsets of the set $\{a, a+b, \ldots, a+(n-1) b\}$ where a and b are any

[^0]integers. We give in Theorem 3.1 and Theorem 3.4 explicit formulas for the generalized functions we define. We show in Corollary 3.6, that the results of Nathanson [2], El Bachraoui [1] and Nathanson and Orosz [3] can be deduced as particular cases from Theorem 3.1 and Theorem 3.4.

One can easily recognize that $\Phi(n)$ represents the number of primitive elements of the field $\mathbb{F}_{2^{n}}$ over \mathbb{F}_{2}. In the second part of this paper, among other results, we define a new function $\Psi(n, m)$ generalizing $\Phi(n)$ such that $\Psi(n, p)$ represents the number of primitive elements of $\mathbb{F}_{p^{n}}$ over \mathbb{F}_{p}.

2. Relatively Prime Subsets and a Phi Function for Subsets of $\{m, m+1, \ldots, l\}$

Let $[x]$ denote the greatest integer less than or equal to x, and $\mu(n)$ the Möbius function. Nathanson [2] proved the following two theorems.

Theorem 1. For all positive integers n and for $k \geq 1$,

$$
f(n)=\sum_{d=1}^{n} \mu(d)\left(2^{[n / d]}-1\right)
$$

and

$$
f_{k}(n)=\sum_{d=1}^{n} \mu(d)\binom{[n / d]}{k} .
$$

Theorem 2. For all positive integers $n \geq 2$ and $k \geq 1$

$$
\Phi(n)=\sum_{d \mid n} \mu(d) 2^{n / d}
$$

and

$$
\Phi_{k}(n)=\sum_{d \mid n} \mu(d)\binom{\frac{n}{d}}{k}
$$

Theorem 1 implies that $f(n) \sim 2^{n}$ as $n \rightarrow \infty$, which means that almost all finite sets of integers are relatively prime.

Theorems 1 and 2 have been generalized by El Bachraoui [1] to subsets of the set $\{m+1, m+2, \ldots, l\}$ for arbitrary non-negative integers $m<l$. Using an extension of the Möbius inversion formula to functions of many variables and generalized convolutions, El Bachraoui [1] obtained explicit formulas for the generalized functions he defined and Nathanson and Orosz [3] simplified them. They proved in [1], [3] the following two theorems.

Theorem 3. For non-negative integers $m<l$ and for $k \geq 1$, let $f(m, l)$ denote the number of relatively prime subsets of $\{m+1, m+2, \ldots, l\}$ and $f_{k}(m, l)$ denote the number of relatively prime subsets of $\{m+1, m+2, \ldots, l\}$ of cardinality k. Then

$$
f(m, l)=\sum_{d=1}^{l} \mu(d)\left(2^{\left[\frac{l}{d}\right]-\left[\frac{m}{d}\right]}-1\right)
$$

and

$$
f_{k}(m, l)=\sum_{d=1}^{l} \mu(d)\binom{[l / d]-[m / d]}{k} .
$$

Theorem 4. For non-negative integers $m<l$ and for $k \geq 1$, let $\Phi(m, l)$ denote the number of subsets of the set $\{m+1, m+2, \ldots, l\}$ such that $\operatorname{gcd}(A)$ is relatively prime to n, and $\Phi_{k}(m, l)$ denote the number of subsets of the set $\{m+1, m+2, \ldots, l\}$ of cardinality k such that $\operatorname{gcd}(A)$ is relatively prime to n. Then

$$
\Phi(m, l)=\sum_{d \mid l} \mu(d) 2^{\left(\frac{l}{d}-\left[\frac{m}{d}\right]\right)}
$$

and

$$
\Phi_{k}(m, l)=\sum_{d \mid l} \mu(d)\binom{\frac{l}{d}-\left[\frac{m}{d}\right]}{k}
$$

3. Relatively Prime Subsets and a Phi Function for Subsets of $\{a, a+b, \ldots, a+(n-1) b\}$

It is natural to ask whether one can generalize the formulas obtained by Nathanson [2], El Bachraoui [1], and Nathanson and Orosz [3] to subsets of a set $A=\{a, a+$ $b, \ldots, a+(n-1) b\}$, where a, b, and n are any integers. The purpose of this section is to generalize Theorems 2.1, 2.2, 2.3 and 2.4 to the general case where a and b are any integers. The generalization is given in Theorem 3.1 and Theorem 3.5.

Theorem 5. For all positive integers n, a and b, let $f^{(a, b)}(n)$ denote the number of relatively prime subsets of $\{a, a+b, \ldots, a+(n-1) b\}$ and $f_{k}^{(a, b)}(n)$ denote the number of relatively prime subsets of $\{a, a+b, \ldots, a+(n-1) b\}$ of cardinality k. Suppose that $\operatorname{gcd}(a, b)=1$, then

$$
f^{(a, b)}(n)=\sum_{\substack{d=1 \\ \operatorname{gcd}(b, d)=1}}^{a+(n-1) b} \mu(d)\left(2^{[n / d]+\varepsilon_{d}}-1\right)
$$

and

$$
\begin{equation*}
f_{k}^{(a, b)}(n)=\sum_{\substack{d=1 \\ \operatorname{gcd}(b, d)=1}}^{a+(n-1) b} \mu(d)\binom{[n / d]+\varepsilon_{d}}{k} \tag{1}
\end{equation*}
$$

where

$$
\varepsilon_{d}= \begin{cases}0 & \text { if } d \mid n, \\ 1 & \text { if } d \nmid n \text { and }\left(-a b^{-1}\right) \bmod d \in\left\{0, \ldots, n-\left[\frac{n}{d}\right] d-1\right\} \\ 0 & \text { otherwise. }\end{cases}
$$

If $\operatorname{gcd}(a, b) \neq 1$, it is easy to see that $f^{(a, b)}(n)=f_{k}^{(a, b)}(n)=0$.
To prove Theorem 5 , we need the following lemma.

Lemma 6. For an integer $d \geq 1$, and for nonzero integers a and b with $\operatorname{gcd}(a, b)=1$, let $A_{d}=\{x=a+i b$ for $i=0, \ldots,(n-1) ; d \mid x\}$.
(i) If $\operatorname{gcd}(b, d) \neq 1$, then $\left|A_{d}\right|=0$.
(ii) If $g c d(b, d)=1$, then $\left|A_{d}\right|=\left[\frac{n}{d}\right]+\varepsilon_{d}$ where

$$
\varepsilon_{d}= \begin{cases}0 & \text { if } d \mid n, \\ 1 & \text { if } d \nmid n \text { and }\left(-a b^{-1}\right) \bmod d \in\left\{0, \ldots, n-\left[\frac{n}{d}\right] d-1\right\} \\ 0 & \text { otherwise. }\end{cases}
$$

Proof. (i) If $\operatorname{gcd}(b, d) \neq 1$, then no element of the arithmetic sequence $a, a+$ $b, \ldots, a+(n-1) b$ is divisible by d because we supposed that $\operatorname{gcd}(a, b)=1$, i.e., A_{d} is empty and $\left|A_{d}\right|=0$.
(ii) We suppose that $\operatorname{gcd}(d, b)=1$. If $d \mid n$ then $\left|A_{d}\right|=\left[\frac{n}{d}\right]$. If $d \nmid n$ and $d \leq n$, then every d consecutive terms of the arithmetic sequence $a, a+b, \ldots, a+(n-1) b$ constitute a complete set of residues $\bmod d$. Hence, the sequence $a, a+b, \ldots, a+$ $\left(\left[\frac{n}{d}\right] d-1\right) b$ contains exactly $\left[\frac{n}{d}\right]$ terms divisible by d. Then $\left|A_{d}\right|=\left[\frac{n}{d}\right]+1$ if and only if one term $a+t b \equiv 0(\bmod d)$ for a certain $t \in\left\{\left[\frac{n}{d}\right] d, \ldots, n-1\right\}$. Then $\left|A_{d}\right|=\left[\frac{n}{d}\right]+1$ if and only if $\left(-a b^{-1}\right) \bmod d \in\left\{0, \ldots, n-\left[\frac{n}{d}\right] d-1\right\}$, otherwise $\left|A_{d}\right|=\left[\frac{n}{d}\right]$. If $d>n$, the proof is similar.

Proof of Theorem 3.1. Let $A_{d}=\{x=a+i b$ for $i=0, \ldots,(n-1) ; d \mid x\}$, and $\mathcal{P}\left(A_{d}\right)=\left\{\right.$ the nonempty subsets of $\left.A_{d}\right\}$. Then

$$
f^{(a, b)}(n)=\left(2^{n}-1\right)-\left|\bigcup_{p \text { prime }} \mathcal{P}\left(A_{p}\right)\right| .
$$

The principle of inclusion-exclusion implies that

$$
\begin{aligned}
f^{(a, b)}(n) & =\left(2^{n}-1\right)-\left(\sum\left|\mathcal{P}\left(A_{p}\right)\right|\right. \\
& -\sum\left|\mathcal{P}\left(A_{p}\right) \cap \mathcal{P}\left(A_{q}\right)\right| \\
& \left.+\sum\left|\mathcal{P}\left(A_{p}\right) \cap \mathcal{P}\left(A_{q}\right) \cap \mathcal{P}\left(A_{r}\right)\right|-\ldots\right)
\end{aligned}
$$

where p, q and r are distinct primes. Clearly, if p_{1}, \ldots, p_{t} are distinct primes, then

$$
\left|\bigcap_{i=1}^{t} \mathcal{P}\left(A_{p_{i}}\right)\right|=\left|\mathcal{P}\left(A_{\prod_{i=1}^{t} p_{i}}\right)\right|
$$

Thus,

$$
f^{(a, b)}(n)=\sum_{d=1}^{a+(n-1) b} \mu(d)\left|\mathcal{P}\left(A_{d}\right)\right|
$$

Then Lemma 6 implies that

$$
f^{(a, b)}(n)=\sum_{\substack{d=1 \\ \operatorname{gcd}(b, d)=1}}^{a+(n-1) b} \mu(d)\left(2^{[n / d]+\varepsilon_{d}}-1\right)
$$

The proof for Formula (1) is similar.

Theorem 7. For all positive integers a and b such that $\operatorname{gcd}(a, b)=1$,

$$
\lim _{n \rightarrow \infty} \frac{f^{(a, b)}(n)}{2^{n}}=1
$$

Proof. It is easy to see that $\left(2^{n}-1\right)-(a+(n-1) b-1)\left(2^{n / 2+1}-1\right) \leq f^{(a, b)}(n) \leq$ $\left(2^{n}-1\right)$. Then

$$
\lim _{n \rightarrow \infty} \frac{f^{(a, b)}(n)}{2^{n}}=1
$$

Remark 8. One can obtain better bounds for $f^{(a, b)}(n)$ but we were interested in showing only that almost all subsets of the set $\{a, a+b, \ldots, a+(n-1) b\}$ are relatively prime.

Theorem 9. For positive integers a, b and n, let $\Phi^{(a, b)}(n)$ denote the number of subsets A of $\{a, a+b, \ldots, a+(n-1) b\}$ such that $\operatorname{gcd}(A)$ is relatively prime to n, and $\Phi_{k}^{(a, b)}(n)$ denote the number of subsets A of $\{a, a+b, \ldots, a+(n-1) b\}$ such that $\operatorname{gcd}(A)$ is relatively prime to n and $\operatorname{card}(A)=k$. Suppose that $\operatorname{gcd}(a, b)=1$. Then

$$
\Phi^{(a, b)}(n)=\sum_{\substack{d \mid n \\ \operatorname{gcd}(b, d)=1}} \mu(d)\left(2^{\frac{n}{d}}-1\right)
$$

and

$$
\begin{equation*}
\Phi_{k}^{(a, b)}(n)=\sum_{\substack{d \mid n \\ \operatorname{gcd}(b, d)=1}} \mu(d)\binom{\frac{n}{d}}{k} \tag{2}
\end{equation*}
$$

Proof. It is easy to see that $\Phi^{(a, b)}(n)=\left(2^{n}-1\right)-\left|\bigcup_{p \text { prime, } p \mid n} \mathcal{P}\left(A_{p}\right)\right|$ where $A_{d}=$ $\{a \leq x \leq a+(n-1) b: d \mid x\}$. Using the principle of inclusion-exclusion and the same idea as in the proof of Theorem 3.1, one obtains from above that

$$
\Phi^{(a, b)}(n)=\sum_{d \mid n} \mu(d)\left|\mathcal{P}\left(A_{d}\right)\right|
$$

It was proved in Lemma 3.2 that if $\operatorname{gcd}(b, d)=1$, then $\left|A_{d}\right|=\left(\left[\frac{n}{d}\right]+\varepsilon_{d}\right)$, and since $d \mid n, \varepsilon_{d}=0$. Then

$$
\Phi^{(a, b)}(n)=\sum_{\substack{d \mid n \\ \operatorname{gcd}(b, d)=1}} \mu(d)\left(2^{\frac{n}{d}}-1\right)
$$

The proof for Formula 2 is similar.

Corollary 10. The formulas for $f(m, k), f_{k}(m, l), \Phi(m, l)$ and $\Phi_{k}(m, l)$ obtained in [1], [2], [3] are consequences of Theorem 5 and Theorem 7.

Proof. We will prove the corollary for $f(m, k)$ only. For the other formulas, the proof is similar. Let $a=m+1, b=1, l=a+(n-1) b=n+m$. Then $n=l-m$,

$$
f(m, l)=f^{(m+1,1)}(n)=\sum_{d=1}^{l} \mu(d)\left(2^{\left[\frac{l-m}{d}\right]+\varepsilon_{d}}-1\right)
$$

All we need to prove is that $\left[\frac{l-m}{d}\right]+\varepsilon_{d}=\left[\frac{l}{d}\right]-\left[\frac{m}{d}\right]$.
If $d \mid(l-m)$, then $\varepsilon_{d}=0$ and it is easy to see that $\left[\frac{l-m}{d}\right]=\left[\frac{l}{d}\right]-\left[\frac{m}{d}\right]$, and the result follows.
If $d \nmid(l-m)$, let $l=\left[\frac{l}{d}\right] d+x$ and $m=\left[\frac{m}{d}\right] d+y$ with $0 \leq x, y \leq d-1$. Since $d \nmid(l-m)$, then $x \neq y \bmod d$.

- If $x<y$, then $\left[\frac{l-m}{d}\right]=\left[\frac{l}{d}\right]-\left[\frac{m}{d}\right]-1$. From the definition, $\varepsilon_{d}=1$ if $-(m+1)$ $(\bmod d) \in\left\{0, \ldots, l-m-\left[\frac{l-m}{d}\right] d-1\right\}$; otherwise $\varepsilon_{d}=0$. Then,

$$
\begin{aligned}
l-m-\left[\frac{l-m}{d}\right] d-1 & =\left[\frac{l}{d}\right] d+x-\left(\left[\frac{m}{d}\right] d+y\right)-\left(\left[\frac{l}{d}\right]-\left[\frac{m}{d}\right]-1\right) d-1 \\
& =x-y+d-1
\end{aligned}
$$

But $-(m+1)=-\left[\frac{m}{d}\right] d-y-1 \equiv d-y-1 \bmod d$. Since $x \geq 0$, then, $-(m+1) \bmod d \in\{0, \ldots, x-y+d-1\}=\left\{0, \ldots, l-m-\left[\frac{l-m}{d}\right] d-1\right\}$. Hence $\varepsilon_{d}=1$ and

$$
\left[\frac{l-m}{d}\right]+\varepsilon_{d}=\left[\frac{l}{d}\right]-\left[\frac{m}{d}\right]
$$

- If $x>y$, it is easy to see that

$$
\left[\frac{l-m}{d}\right]=\left[\frac{l}{d}\right]-\left[\frac{m}{d}\right]
$$

and

$$
l-m-\left[\frac{l-m}{d}\right] d-1=x-y-1
$$

But

$$
0 \leq x-y-1 \leq d-y-1
$$

Then

$$
-(m+1) \bmod d=d-y-1 \notin\left\{0, \ldots, l-m-\left[\frac{l-m}{d}\right] d-1\right\}
$$

Hence $\varepsilon_{d}=0$ and

$$
\left[\frac{l-m}{d}\right]+\varepsilon_{d}=\left[\frac{l}{d}\right]-\left[\frac{m}{d}\right]
$$

Remark 11. If a and b are integers not necessary positive, one can easily deduce from Theorem 3.1 and Theorem 3.5, the formulas for $f^{(a, b)}(n), f_{k}^{(a, b)}(n), \Phi^{(a, b)}(n)$ $\Phi_{k}^{(a, b)}(n)$ and $\Phi_{k}^{(a, b)}(n)$.

Remark 12. Suppose in Theorem 3.5 that $\operatorname{gcd}(a, b)=\alpha \neq 1$.
(i) If $\operatorname{gcd}(\alpha, n) \neq 1$, then it is easy to show that $\Phi^{(a, b)}(n)=0$ and $\Phi_{k}^{(a, b)}(n)=0$.
(ii) If $\operatorname{gcd}(\alpha, n)=1$. Let $a_{\alpha}=\frac{a}{\alpha}$ and $b_{\alpha}=\frac{b}{\alpha}$. Then, $\operatorname{gcd}\left(a_{\alpha}, b_{\alpha}\right)=1$. Hence, $\Phi^{(a, b)}(n)=\Phi^{\left(a_{\alpha}, b_{\alpha}\right)}(n)$ and $\Phi_{k}^{(a, b)}(n)=\Phi_{k}^{\left(a_{\alpha}, b_{\alpha}\right)}(n)$.

4. Prime Applications

Let $E(n, m)=\{h:\{1,2, \ldots, n\} \rightarrow \mathbb{Z} / m \mathbb{Z}\}$. For $h \in E(n, m)$, we define the support of h to be $\operatorname{supp}(h)=\{x \in\{1,2, \ldots, n\} ; h(x) \neq 0\}$, and $\operatorname{gcd}(h)=\operatorname{gcd}(\operatorname{supp}(h))$. We say that h is prime if $\operatorname{gcd}(h)=1$.

Proposition 13. Let $A \subset\{1,2, \ldots, n\}$, then there exist $(m-1)^{|A|}$ elements $h \in$ $E(n, m)$ such that $\operatorname{supp}(h)=A$.

Proof. It is clear that there is a one-to-one and onto correspondence between $\{h \in$ $E(n, m), \operatorname{supp}(h)=A\}$ and $\{g: A \rightarrow \mathbb{Z} / m \mathbb{Z} \backslash\{0\}\}$, hence the result.

From Proposition 4.1, we deduce that the mapping

$$
E(n, 2) \quad \xrightarrow{\theta} \mathcal{P}(\{1,2, \ldots, n\}),
$$

such that $\theta(h)=\operatorname{supp}(h)$, is bijective. Moreover, it maps the prime applications h to what Nathanson [2] calls relatively prime sets.

Let us denote by $F(n, m)$ (respectively $\Psi(n, m)$), the number of prime elements $h \in E(n, m)$ (respectively $h \in E(n, m)$ such that $\operatorname{gcd}(\operatorname{gcd}(h), n)=1)$. It is easy to see that $F(n, 2)=f(n)$ and $\Psi(n, 2)=\Phi(n)$.

Theorem 14. For all positive integers n and $m \geq 2$,

$$
F(n, m)=\sum_{d=1}^{n} \mu(d)\left(m^{[n / d]}-1\right)
$$

and

$$
\begin{equation*}
\Psi(n, m)=\sum_{d \mid n} \mu(d) m^{n / d} \tag{3}
\end{equation*}
$$

Before proving Theorem 14, we need the following lemma.

Lemma 15. For any $d \geq 1$, let $B_{d}=\{h \in E(n, m), \operatorname{supp}(h) \neq \emptyset ; d \mid \operatorname{gcd}(h)\}$. Then $\left|B_{d}\right|=m^{[n / d]}-1$.

Proof. If $d>n$, then clearly $B_{d}=\emptyset$. It is easy to see that the number of elements in $\{1, \ldots, n\}$ that are divisible by d is equal to $[n / d]$. Notice that $h \in B_{d}$ if and only if $\operatorname{supp}(h) \subset\left\{d, 2 d, \ldots,\left[\frac{n}{d}\right] d\right\}$. It follows from Proposition 13 that

$$
\left|B_{d}\right|=\sum_{i=1}^{[n / d]}(m-1)^{i}\binom{[n / d]}{i}=m^{[n / d]}-1
$$

Proof of Theorem 14. As in the proof of Theorem 5, we will use the principle of inclusion-exclusion. We obtain

$$
\begin{aligned}
F(n, m) & =m^{n}-1-\left|\bigcup_{q \text { prime }} B_{q}\right|=m^{n}-1-\sum_{d=2}^{n}-\mu(d)\left|B_{d}\right| \\
& =m^{n}-1+\sum_{d=2}^{n} \mu(d)\left|B_{d}\right| .
\end{aligned}
$$

Using Lemma 4.3, we obtain

$$
F(n, m)=m^{n}-1+\sum_{d=2}^{n} \mu(d)\left(m^{[n / d]}-1\right)=\sum_{d=1}^{n} \mu(d)\left(m^{[n / d]}-1\right)
$$

The proof for Formula 3 is similar.

In what follows, we discuss the possible link between finite fields and $E(n, p)$. Notice that when $m=p$ is a prime, $\Psi(n, p)$ is the number of primitive elements of the finite field $\mathbb{F}_{p^{n}}$ over \mathbb{F}_{p}. Since $|E(n, p)|=\left|\mathbb{F}_{p^{n}}\right|=p^{n}$, it is natural to ask whether it is possible to define explicitly an operation $*$ such that $E(n, p)$ is a field under + and $*$, where + is the usual addition of applications. One answer may be the following:

Let $P_{n}(x)$ be a monic irreducible polynomial over \mathbb{F}_{p} of degree n. Let

$$
E(n, p) \quad \xrightarrow{\tau} \mathbb{F}_{p}[x] /\left(P_{n}(x)\right)
$$

such that

$$
\tau(g)=\sum_{i=1}^{n} g(i) x^{n-i}
$$

Let $g, h \in E(n, p)$, set $g * h=\tau^{-1}(\tau(g) \cdot \tau(h))$. Then $(E(n, p),+, *)$ is a field and τ is an isomorphism.

The proof of this statement is straightforward.

Remark 16. Let p be a prime. The Formula 3 shows that $\Psi(n, p)$ is equal to the number of primitive element of $\mathbb{F}_{p^{n}}$ over \mathbb{F}_{p}. Consider any bijection from the set of primitive elements of $\mathbb{F}_{p^{n}}$ over \mathbb{F}_{p} onto $\{h \in E(n, p) ; \operatorname{gcd}(\operatorname{gcd}(h), n)=1\}$. Extend this bijection to $\mathbb{F}_{p^{n}}$ in order to obtain a bijection from $\mathbb{F}_{p^{n}}$ onto $E(n, p)$. By transferring the laws, $E(n, p)$ becomes a field and the bijection is an isomorphism of fields.

Question: Is it possible to construct an isomorphism of additive groups from $\mathbb{F}_{p^{n}}$ onto $E(n, p)$, which maps any primitive element onto some $h \in E(n, p)$, with $\operatorname{gcd}(\operatorname{gcd}(h), n)=1$?

References

[1] M. El Bachraoui, The number of relatively prime subsets and phi functions for $\{m, m+$ $1, \ldots, n\}$, Integers 7 (2007), \#A43, 8 pp . (electronic).
[2] M. B. Nathanson, Affine invariants, relatively prime sets, and a phi function for subsets of $\{1,2, \ldots, n\}$, Integers 7 (2007), \#A1, 7 pp . (electronic).
[3] M. B. Nathanson, B. Orosz, Asymptotic estimates for phi functions for subsets of $\{M+1, M+2, \ldots, N\}$, Integers 7 (2007), \#A54, 5 pp. (electronic).

[^0]: ${ }^{1}$ Research partially supported by NSERC.

