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Abstract
In 2001, Droubay, Justin, and Pirillo studied the so-called standard episturmian word. In
2006 and 2007, Fischler defined another type of word in the framework of simultaneous
diophantine approximation. Both classes of words were described in terms of palindromic
prefixes of infinite words. In 2003, the authors introduced words which they called extremal
FW words after they had met so-called FW words later. Words from both classes appeared
as unique words (up to word isomorphism) satisfying certain properties related to periods.
In the present paper the connections between all these words are displayed in the form of
four comparable characterizations of the four mentioned word classes.

1. Introduction

Let A be a finite set with at least two elements, the so-called alphabet. The free
monoid A∗ generated by A is the set of the finite words on A. The empty word
is denoted by ε. Put A+ = A∗ \ ε. For a word u = u1u2 · · ·um with ui ∈ A for
i = 1, . . . ,m we denote the length m of u by |u| and the number of distinct letters
occurring in u by "u. A word is called constant if it is a power of one letter.

A factor of a word u = {ui}m
i=1 is a word uhuh+1 · · ·uj with 1 ≤ h ≤ j ≤ m.

It is called a prefix of u if h = 1 and a suffix if j = m. For p ≤ m the word
u is called periodic with period p if ui = ui+p for 1 ≤ i ≤ m − p. The reversal
of u = u1u2 · · ·um is u := umum−1 · · ·u1. The word u is called a palindrome if
u = u. Given u, its palindromic right-closure is the (unique) shortest palindrome
u(+) which has prefix u. In this paper we study the palindromic prefixes of words
with many periods.

A word is called standard episturmian whenever for every prefix v of u, v(+) is also
a prefix of u (cf. [1], [7]). Justin and Pirillo (cf.[7, Theorem 2.10]) proved that a word
u is standard episturmian if and only if there exists a word ∆(u) = x1x2 · · ·xK ∈ A+

such that if u[0] = ε and u[k] = (u[k − 1]xk)(+) for k = 1, . . . ,K, then u[K] = u.
For comparison with other characterizations we shall prove the following variant.

Theorem 1. A word u is standard episturmian if and only if there exists a K
such that u can be generated as follows: u[0] := ε; for k = 1, . . . ,K either u[k] =
u[k− 1]v[k]u[k− 1], where v[k] is a letter that does not occur in u[k− 1], or u[k] =
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u[k − 1]u′[k − 1], where u[k − 1] = u[l − 1]u′[k − 1] and l is the largest integer less
than k such that if u[l] = (u[l − 1]x)(+), then u[k] = (u[k − 1]x)(+).

The latter condition implies that if ∆(u) = x1x2 · · ·xK , then l is the largest integer
< k such that xl = xk. The ‘only if’ part of Theorem 1 was already observed by
Justin and Pirillo, see [7, p. 287].

We call a word u an extremal FW word (i.e. extremal Fine and Wilf word) if
there exist positive integers p1 < p2 < · · · < pr = |u| such that u has periods
p1, p2, . . . , pr, but not period gcd(p1, p2, . . . , pr), u has the maximal length for such
a word, and "u ≥ "v for every word v with these properties. We say that u is
an extremal FW word for period set P := {p1, p2, . . . , pr}. We proved in [8] that
if u is an extremal FW word for the set P , then u is unique apart from word
isomorphism and it is a palindrome. We denote the length of the word u which is
extremal for the period set P by L(P ) − 1 = L(p1, p2, . . . , pr) − 1. It follows from
the following theorem that every standard episturmian word is an extremal FW
word. The converse is false as the example aabaaaabaa shows.

Theorem 2. A word u is an extremal FW word if and only if "u > 1 and for
some K it can be generated as follows: u[0] := ε; for k = 1, . . . ,K either u[k] =
u[k − 1]v[k]u[k − 1] where v[k] is a letter which does not occur in u[k − 1], or
u[k] = u[k− 1]u′[k− 1] where u[k− 1] = u[l− 1]u′[k− 1] for some l with 1 ≤ l < k.

The numbers L(p1, p2, . . . , pr) also appear in a seemingly different context. In
[10] we defined a quantity denoted by L′(p1, p2, . . . , pr) which is the minimal value
n for the following property: Let X1,X2, . . . ,Xr be non-empty finite words in the
alphabet A with |Xi| = pi for each i with 1 ≤ i ≤ r. For each i with 1 ≤ i ≤
r, let Wi ∈ Xi{X1, . . . ,Xr}∞ (in other words Wi is an infinite concatenation of
X1, . . . ,Xr beginning in Xi.) If W1, . . . ,Wr agree on a prefix of length n then
Wi = Wj for all i and j. We proved in [10] that L′(p1, p2, . . . , pr) = L(p1, p2, . . . , pr)
if pr ≤ L(p1, p2, . . . , pr−1) and L′(p1, p2, . . . , pr) = pr otherwise. Furthermore,
examples of words realizing the maximal value L′−1 for not satisfying the property
are constructed by using extremal FW words. As was pointed out by T. Harju, the
existence of L′, but not the optimal bound, may be deduced from the details of the
proof of the so-called graph lemma for infinite words (see Theorem 5.1 in Harju and
Karhumäki [5]).

Extremal FW words are closely related to words introduced by S. Fischler. Let
{ni}∞i=1denote the increasing sequence (assumed to be infinite) of all lengths of palin-
dromic prefixes of a word u. Fischler [3] gave an explicit construction of all words u
such that ni+1 ≤ 2ni+1 for all i. He proved that among all such non-periodic words
u the quantity limsup ni+1/ni is minimal for the Fibonacci word. We call the palin-
dromic prefixes of the word u Fischler words. Later, Fischler [4] applied his study
to simultaneous approximation to a fixed real number and its square by rational
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numbers with the same denominator. The following result shows that every ex-
tremal FW word is a Fischler word, but not conversely.

Theorem 3. A word u is a Fischler word if and only if for some K it can be
generated as follows: u[0] := ε; for k = 1, . . . ,K either u[k] = u[k − 1]v[k]u[k − 1]
where v[k] is some letter, or u[k] = u[k−1]u′[k−1] where u[k−1] = u[l−1]u′[k−1]
for some l with 1 ≤ l < k.

We call a word u a FW word (i.e. Fine and Wilf word) if there exist positive
integers n and p1, p2, . . . , pr such that u has length n and periods p1, p2, . . . , pr and
"u ≥ "v for any word v of length n and with periods p1, p2, . . . , pr. Note that for
every positive integer n and periods p1, . . . , pr there exists a FW word. It is proved
in [9] that the FW word for length n and periods p1, p2, . . . , pr is unique apart from
word isomorphism. We call u a FW word for period set {p1, p2, . . . , pr} if it is the
FW word for length |u| and periods p1, p2, . . . , pr.

The word u is called a pseudo-palindrome if u is a fixed point of some involutary
antimorphism θ of A∗; an involutary antimorphism is given by a map θ : A∗ → A∗

such that θ ◦ θ = id and θ(uv) = θ(v)θ(u) for all u, v ∈ A∗. The reversal operator
R : A∗ → A∗ given by R(u) = u is a basic example, hence every palindrome is a
pseudo-palindrome. It is proved in [9] that every FW word is a pseudo-palindrome.

Similar to the previous theorems we have the following characterization of FW
words which implies that every extremal FW word is a FW word.

Theorem 4. A word u is a FW word if and only if for some K it can be generated
as follows: u[0] := ε; for k = 1, . . . ,K either u[k] = u[k − 1]v[k]u[k − 1] where v[k]
is not ε and consists of distinct letters or u[k] = u[k − 1]u′[k − 1] where u[k − 1] =
u[l − 1]u′[k − 1] for some l with 1 ≤ l < k.

Observe that standard episturmian words and Fischler words are defined in
terms of palindromes whereas extremal FW words and FW words are defined in
terms of periods. The relation between periods and (pseudo-)palindromic prefixes
of (pseudo-)palindromic words is exhibited in the following equivalence.

Lemma 5. Let w be a (pseudo-)palindrome and u a prefix of w. Then u is a
(pseudo-) palindrome if and only if |w|− |u| is a period of w.

2. Proof of Lemma 5

Proof of Lemma 5. Denote the involutary antimorphism by θ. Thus θ(w) = w. In
case of proper palindromes θ is the reversal operator.
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Suppose |w| − |u| is a period of w. Then there are words v and v′ such that
w = uv = v′u. Since w is a (pseudo-)palindrome,

θ(v)θ(u) = θ(uv) = θ(w) = w = v′u.

By |θ(u)| = |u|, we have θ(u) = u. Thus u is a (pseudo-)palindrome.
Suppose u is a (pseudo-)palindrome. Then

uv = w = θ(w) = θ(v)θ(u) = θ(v)u.

Hence |w|− |u| = |v| = |θ(v)| is a period of w.

3. Proofs of Theorems 1 and 3

Both in Theorem 1 and in Theorem 3 we have either u[k] = u[k − 1]v[k]u[k − 1]
where v[k] is some letter or u[k] = u[k−1]u′[k−1] where u[k−1] = u[l−1]u′[k−1]
and l < k. Observe that in the former case u[k] ≤ 2|u[k − 1]| + 1 and in the latter
case |u[k]| = 2|u[k − 1]|− |u[l − 1]| ≤ 2|u[k − 1]|.

Proof of Theorem 3. Let u be a Fischler word. Let u[k](k = 0, 1, . . . ,K) be the
sequence of increasing palindromic prefixes of u. Let nk denote the length of u[k]
for k = 0, 1, . . . ,K. Then nk ≤ 2nk−1 + 1 for all k. If nk = 2nk−1 + 1, then
u[k] = u[k − 1]v[k]u[k − 1] for a letter v[k], because both u[k] and u[k − 1] are
palindromes. If nk ≤ 2nk−1, then u[k] = u[k − 1]u′[k − 1] for a word u′[k − 1] of
length nk − nk−1 ≤ nk−1. By Lemma 5 |u′[k − 1]| is a period of u[k], hence of
u[k − 1]. Write u[k − 1] = wu′[k − 1] for some word w. Since

u′[k − 1]wu′[k − 1] = u′[k − 1]u[k − 1] = u′[k − 1] u[k − 1]

= u[k − 1]u′[k − 1] = u[k] = u[k] = u[k − 1]u′[k − 1]

= u[k − 1]u′[k − 1] = wu′[k − 1]u′[k − 1]

= u′[k − 1] wu′[k − 1]

we see that w is a palindrome. Furthermore w is a prefix of u[k − 1] and therefore
of u. By definition of Fischler word w = u[l − 1] for some l < k.

Let u be constructed as in Theorem 3. Let {nk}K
k=1 be the increasing sequence

of the lengths of the palindromic prefixes of u. Then nk ≤ 2nk−1 +1 by the remark
at the beginning of this section.

Proof of Theorem 1. Let u be a standard episturmian word. Then, by Theorem
2.10 of Justin and Pirillo [7], there exists a word ∆(u) = x1x2 . . . xK ∈ A+ such
that if u[0] = ε and u[k] = (u[k − 1]xk)(+) for k = 1, . . . ,K then u[K] = u.
Since u[k] = u[k − 1]xku[k − 1] is a palindrome, we have |u[k]| ≤ 2|u[k − 1]| + 1
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for k = 1, . . . ,K. Thus every standard episturmian word is a Fischler word. By
Theorem 3 it suffices to show that in the former case of the characterization v[k] =
xk does not occur in u[k− 1] and in the latter case l is the largest integer < k such
that xl = xk.

Suppose xk occurs in u[k − 1]. Then, by the definition of standard episturmian,
xk = xl for some l < k. Write u[k − 1] = u[l − 1]w[l] for some word w[l]. Then xk

is the initial letter of w[l] and

u[k − 1]w[l] = w[l] u[k − 1] = w[l] u[k − 1] = w[l]u[l − 1]w[l]

= w[l] u[l − 1]w[l] = u[l − 1]w[l]w[l] = u[k − 1]w[l]

= u[k − 1]w[l].

Thus u[k − 1]w[l] is a palindrome. Hence

|(u[k − 1]xk)(+)| ≤ |u[k − 1]w[l]| ≤ 2|u[k − 1]|.

So if the former case of the characterization for k holds, then xk = v[k] does not
occur in u[k − 1].

Suppose l < k is such that xl = xk. Then u[k] = u[k−1]u′[k−1] with u[k−1] =
u[l− 1]u′[k− 1]. Hence |u[k]|− |u[k− 1]| = |u′[k− 1]| = |u[k− 1]|− |u[l− 1]|. Thus
|u[k]|− |u[k−1]| is minimal if |u[l−1]| is maximal. This implies that l is the largest
integer < k such that xl = xk.

Suppose a word u is constructed as described in Theorem 1. If u[k] = u[k −
1]v[k]u[k−1] where v[k] does not occur in u[k−1], then obviously (u[k−1]v[k])(+) =
u[k]. In the other case the inital letter xk of u′[k−1] occurs in u[k−1] as the letter
following the palindromic prefix u[l−1] for some l < k. By choosing l as the largest
integer < k with this property, the criterion secures that u[k] = (u[k − 1]xk)(+).
Thus u is standard episturmian by the characterization due to Justin and Pirillo.

4. Some Lemmas

Lemma 6. (a) If p1, p2, . . . , pr are coprime integers and p ∈ {p1, p2, . . . , pr}, then
p, p1 + p, p2 + p, . . . , pr + p are coprime integers too.
(b) If p1 < p2 < · · · < pr are coprime integers, then p1, p2 − p1, . . . , pr − p1 are
coprime integers.

Proof. a) Suppose d | p, d | p + pi for all i. Then d | pi for all i. The proof for (b)
is similar.

Lemma 7. ([9, Lemma 1]) Let u = u1 · · ·um be a word with "u = s and periods
q1 < · · · < qr. Put u′ := u1 · · ·um−q1 . If m ≥ 2q1 − y, with 0 ≤ y < q1, then u′ is a
word with "u′ ≥ s− y and periods q1, q2 − q1, . . . , qr − q1.
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Proof. Because of the period q1, every letter of u occurs in u′ with the possible
exception of some of the y letters uq1−y+1, uq1−y+2, . . . , uq1 . Hence "u′ ≥ s − y.
For t ≤ m − qj we have ut = ut+qj = ut+qj−q1 . So u′ has period qj − q1 for
j = 2, . . . , r.

Lemma 8. ([9], Lemma 2) Suppose u = u1 · · ·um has periods q1, . . . , qr. Let u′ :=
u1u2 · · ·um+q1 have period q1. Then the word u′ has periods q1, q2 + q1, . . . , qr + q1.

Proof. Note that if q1 ≤ m, then um+1 · · ·um+q1 is the suffix of u of length q1. If
q1 > m, then uq1+1 · · ·um+q1 is a suffix of u. For t ≤ m− qj we have ut = ut+qj =
ut+qj+q1 for j = 2, . . . , r.

Lemma 9. Every extremal FW word is a palindrome.

Proof. [8, Theorem 4].

Lemma 10. If w is a FW word for the period set Q = {q1, . . . , qs} and u := wvw
where v '= ε and v consists of distinct letters none of which occurs in w, then u is a
FW word for the period set P := {|w|+|v|, |w|+|v|+q1, |w|+|v|+q2, . . . , |w|+|v|+qs}.

Proof. By Lemma 8, P is a set of periods of u. Suppose u is not a FW word for
P . Then there exists a word u′ with period set P such that |u′| = |u| and "u′ > "u.
Let w′ be the prefix of u′ of length |w|. Then, by Lemma 7, w′ has all periods from
Q and "w′ ≥ "u′ − |v| > "u− |v| = "w. This shows that w is not a FW word for Q,
which contradicts our assumption.

Lemma 11. If w is a FW word for the period set Q := {q1, . . . , qs} and u = ww′

where w = vw′ for some v with |v| ∈ Q, then u is a FW word for the period set
P := {|w′|, |w′| + q1, |w′| + q2, . . . , |w′| + qs}.

Proof. By Lemma 8, P is a set of periods of u. Suppose u is not a FW word for
period set P . Then there exists a word u′ with period set P such that |u′| = |u|
and "u′ > "u. Let v be the prefix of u′ of length |w|. Then, by Lemma 7, v has all
periods from Q and "v = "u′ > "u = "w. This shows that w is not a FW word for
Q, contradicting our assumption.

Lemma 12. If w is a FW word for the period set Q := {q1, . . . , qs} with q1 <
q2 < · · · < qs and w = uv with |v| = q1, then u is a FW word for the period set
Q′ := {q1, q2 − q1, . . . , qs − q1} where we omit “q1,” if |u| < q1 or qi = 2q1 for some
i.

Proof. Suppose u is not a FW word for Q′. Then there exists a word u′ with
|u′| = |u|, "u′ > "u and period set Q′.
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If |v| ≤ |u|, then consider w′ := u′v′ where v′ is the suffix of u′ of length |v|. By
Lemma 8, w′ has all periods from Q. Moreover, "w′ = "u′ > "u = "w and |w′| = |w|.
This gives a contradiction with the assumption that w is a FW word.

If |v| > |u|, then v is of the form v′′u. Consider w′ := u′v′u′ where v′ consists of
|v′′| distinct letters, none of which appears in u′. Then w′ has all periods from Q
by Lemma 8. Moreover, "w′ = "u′ + |v′| > "u + "v′′ ≥ "w, again in contradiction
with the assumption.

5. Proofs of Theorems 2 and 4

Proof of Theorem 4. We proved in Lemma 6 of [9] that every FW word can be
generated in the way stated in the theorem. It remains to prove that every word
u which can be generated by the given inductive procedure is a FW word. We use
induction on k.

It is clear that u[1] = v[1]. Since v[1] consists of |v[1]| distinct letters, it is a FW
word with period set {|v[1]|} = {|u[1]|− |u[0]|}. Suppose u[k−1] is a FW word with
period set

{|u[k − 1]|− |u[k − 2]|, |u[k − 1]|− |u[k − 3]|, . . . , |u[k − 1]|− |u[0]|}.

If u[k] = u[k− 1]v[k]u[k− 1] with v[k] as in the statement of the theorem, then, by
Lemma 10, u[k] is a FW word for periods

{|u[k − 1]| + |v[k]|, |u[k − 1]| + |v[k]| + |u[k − 1]|− |u[k − 2]|, . . . ,

|u[k − 1]| + |v[k]| + |u[k − 1]|− |u[0]|}

= {|u[k]|− |u[k − 1]|, |u[k]|− |u[k − 2]|, . . . , |u[k]|− |u[0]|}.

If u[k] = u[k − 1]u′[k − 1] with u′[k − 1] as in the statement of the theorem, then
|u′[k − 1]| = |u[k − 1]|− |u[l− 1]| is in the period set of u[k − 1]. From Lemma 7 it
follows that u[k] is a FW word for periods

{|u′[k − 1]|, |u′[k − 1]| + |u[k − 1]|− |u[k − 2]|, . . . ,

|u′[k − 1]| + |u[k − 1]|− |u[0]|}

= {|u[k]|− |u[k − 1]|, |u[k]|− |u[k − 2]|, . . . , |u[k]|− |u[0]|}.

This completes the induction step and shows that u = u[K] is a FW word for period
set {|u[K]|− |u[K − 1]|, |u[K]|− |u[K − 2]|, . . . , |u[K]|− |u[0]|}.

Proof of Theorem 2. Suppose u is an extremal FW word for some period set P . Then
u is a FW word and can be constructed in the way indicated by Theorem 4. Suppose
there is a k such that u[k] = u[k − 1]v[k]u[k − 1] where |v[k]| > 1. Put v[k] =
x1 . . . xm. Then in u every x1 is followed by x2 and every x2 is preceded by x1.
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Hence u is not a palindrome. This contradicts our assumption in view of Lemma 9.
Thus u can be constructed by the given inductive procedure.

Let u be constructed according to the inductive procedure from the statement of
Theorem 2. For k = 0, 1, . . . we define

P [k] := {|u[k]|− |u[k − 1]|, |u[k]|− |u[k − 2]|, . . . , |u[k]|− |u[0]|}.

It is clear that u[1] = v[1] is a FW word for the period set {1}. Since "u >
1, there is some minimal j > 1 with v[j] '= v[1]. Then u[j] is of the form
u1u2 . . . unun+1 . . . u2n−1 with un = v[j] and ui = v[1] for i '= n. Observe that
u[j] has periods n, n + 1, . . . , 2n− 1. Suppose u[j] is not an extremal FW word for
the period set {n, n + 1, . . . , 2n − 1}. Then there exists an extremal FW word w
with period set {n, n+1, . . . , 2n−1} and either |w| > 2n−1, "w > 1 or |w| = 2n−1,
"w > 2. We consider the prefix w′ of w of length |w| − n. By Lemma 12, w′ is a
FW word with period (n + 1) − n = 1 and therefore constant. In the former case
we have |w| ≥ 2n and w has period n and it follows that "w′ = "w > 1. This
yields a contradiction. In the latter case w has period n and |w′| = n − 1 implies
"w′ ≥ "w − 1 > 1. Again this yields a contradiction. Thus u[j] is an extremal FW
word for some period set P [j].

Next we apply induction on k, starting from k = j + 1. Let u[k − 1] be an
extremal FW word with period set P [k− 1]. As explained in the proof of Theorem
4, by Lemmas 10 and 11, u[k] is a FW word for period set P [k]. Suppose it is not
extremal. Let u′ be an extremal FW word for period set P [k].

If u[k] = u[k−1]v[k]u[k−1], then |u′| ≥ |u[k]| = 2|u[k−1]|+1. Let v′ be the suffix
of u′ of length |u[k]|−|u[k−1]|. Then u′ = u′′v′ with |u′′| = |u′|−|u[k]|+|u[k−1]| ≥
|u[k−1]. By Lemma 12, u′′ has all periods occurring in P [k−1]. By our assumption
that u[k−1] is an extremal FW word for P [k−1] we have that either |u′′| ≤ |u[k−1]|
or |u′′| > |u[k − 1]| and u′′ has

gcd(|u[k − 1]|− |u[k − 2]|, |u[k − 1]|− |u[k − 3]|, . . . , |u[k − 1]|− |u[0]|)

as a period. In the former case we obtain |u′′| = |u[k − 1]|, "u′′ ≤ "u[k − 1], hence
|u′| = |u[k − 1]| + |v′| = |u[k]| and u′ = u′′v′′u′′ where |v′′| = 1. Then "u[k] − 1 =
"u[k−1] ≥ "u′′ ≥ "u′−1. Thus u[k] is an extremal word for P [k] itself. In the latter
case u′′ is constant, since the gcd of the period set is a period of u′′ and it equals 1
by Lemma 6(a). Moreover, |u′′| ≥ |u[k − 1]| + 1 = |u[k]| − |u[k − 1]| = |v′|. Since
u′ = u′′v′ and u′ has period |v′|, we have "u′ = "u′′ = 1. This contradicts that u′ is
an extremal FW word for P [k].

If u[k] = u[k − 1]u′[k − 1] where u[k − 1] = u[l − 1]u′[k − 1] for some l with
1 ≤ l < k, then |u′| ≥ |u[k]| = 2|u[k − 1]| − |u[l − 1]|. Let u′′ be the prefix of
u′ of length |u′| − (|u[k]| − |u[k − 1]|) = |u′| − |u′[k − 1]|. By Lemma 12, u′′

has all periods occurring in P [k − 1]. As above, it follows that |u′′| ≤ |u[k − 1]|
or u′′ is a constant word with |u′′| > |u[k − 1]|. In the former case we have |u′| =
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|u′′| + |u[k]|− |u[k − 1]| ≤ |u[k]| and |u′| ≥ |u[k]| so that |u′| = |u[k]|. Furthermore
u′ has period |u[k]|− |u[k − 1] from P [k] and u′′ is a prefix of u′ of length

|u′|− |u′[k − 1]| ≥ |u[k]|− |u[k]| + |u[k − 1]| ≥ |u′[k − 1] = |u[k]|− |u[k − 1]|.

Hence "u′′ = "u′. Since u′ is an extremal FW word for period set P [k], and u[k]
with |u[k]| = |u′| has also period set P [k] but is not an extremal FW word for P [k],
we have "u′ > "u[k]. Thus |u′′| = |u′|− |u′[k − 1]| = |u[k]|− |u′[k − 1]| = |u[k − 1]|
and "u′′ = "u′ > "u[k] = "u[k − 1] which contradicts that u[k − 1] is a FW word
for P [k − 1]. In the latter case "u′ = "u′′ = 1 contradicting that u′ is an extremal
FW word. This completes the induction step. We conclude that u = u[K] is an
extremal FW word for period set P [K].

6. Further Properties of FW Words

Corollary 13. If w is an extremal FW word, then every palindromic prefix u of w
with "u > 1 is an extremal FW word.

Corollary 14. If w is a FW word, then every pseudo-palindromic prefix u of w is
a FW word.

The truth of the analogous statements for standard episturmian words and Fischler
words follows immediately from their definitions.
Proof of Corollary 13. It suffices to prove it for the largest palindromic prefix of
w, since thereafter we can apply induction. Suppose w is an extremal FW word
for period set q1, q2, . . . , qr. Let u be the largest palindromic prefix of w. Then, by
Lemma 5, |w|− |u| is the shortest period of w. Hence, by Lemma 7, u has periods
q1, q2− q1, . . . , qr − q1. Suppose u is not an extremal FW word. Then there exists a
non-constant word v with periods q1, q2− q1, . . . , qr− q1 and |v| > |u|. Let v′ be the
suffix of v of length q1 and consider the word vv′. By Lemma 8 the word has periods
q1, q2, . . . , qr. Furthermore it is non-constant and has length > |u| + q1 = |w|. This
contradicts that w is an extremal FW word.

Proof of Corollary 14. This proof is similar to the proof of Corollary 13.
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