ON THE BOUNDARY OF THE SET OF THE CLOSURE OF CONTRACTIVE POLYNOMIALS

Attila Pethö ${ }^{1}$
Faculty of Informatics, University of Debrecen and Hungarian Academy of Sciences, Debrecen, Hungary
Petho.Attila@inf.unideb.hu

Received: 7/24/08, Accepted: 1/26/09

Abstract

For $\left(r_{1}, \ldots, r_{d}\right)^{T}=\mathbf{r} \in \mathbb{R}^{d}$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)^{T} \in \mathbb{Z}^{d}$, let $\tau_{\mathbf{r}}(\mathbf{a})=$ $\left(a_{2}, \ldots, a_{d},-\left\lfloor\mathbf{r}^{T} \mathbf{a}\right\rfloor\right)^{T}$. Further, let $a_{d+k+1}=-\left\lfloor\mathbf{r}^{T} \tau_{\mathbf{r}}^{k}(\mathbf{a})\right\rfloor$. In this paper we prove that if some roots of the polynomial $X^{d}+r_{d} X^{d-1}+\cdots+r_{2} X+r_{1}$ are t-th roots of unity and the others lie in the open unit disc, then $\left|a_{k+t}-a_{k}\right|<c_{1}$ with a constant c_{1} which does not depend on k. Under some conditions this yields an algorithm to decide whether the sequence $\left\{\tau_{\mathbf{r}}^{k}(\mathbf{a})\right\}$ is, for all \mathbf{a}, ultimately periodic, or becomes divergent for some a. We study the boundary of the closure of \mathcal{D}_{3} and show that large parts of it belong to \mathcal{D}_{3}, while others lie outside \mathcal{D}_{3}.

1. Introduction

Let $^{2}\left(r_{1}, \ldots, r_{d}\right)^{T}=\mathbf{r} \in \mathbb{R}^{d}$. Akiyama, Borbély, Brunotte, Thuswaldner and the author introduced [1] the nearly linear mapping $\tau_{\mathbf{r}}: \mathbb{Z}^{d} \mapsto \mathbb{Z}^{d}$ such that if $\mathbf{a}=$ $\left(a_{1}, \ldots, a_{d}\right)^{T} \in \mathbb{Z}^{d}$ then

$$
\begin{equation*}
\tau_{\mathbf{r}}(\mathbf{a})=\left(a_{2}, \ldots, a_{d},-\left\lfloor\mathbf{r}^{T} \mathbf{a}\right\rfloor\right)^{T} \tag{1}
\end{equation*}
$$

For $k \geq 0$ let

$$
\tau^{k}(\mathbf{a})= \begin{cases}\mathbf{a} & \text { if } k=0 \\ \tau\left(\tau^{k-1}(\mathbf{a})\right) & \text { if } k>0\end{cases}
$$

and $a_{d+k+1}=-\left\lfloor\mathbf{r}^{T} \tau_{\mathbf{r}}^{k}(\mathbf{a})\right\rfloor$. They also defined the sets

$$
\mathcal{D}_{d}=\left\{\mathbf{r}:\left\{\tau_{\mathbf{r}}^{k}(\mathbf{a})\right\}_{k=0}^{\infty} \quad \text { is bounded for all } \mathbf{a} \in \mathbb{Z}^{d}\right\}
$$

and \mathcal{E}_{d}, which is the set of real monic polynomials, whose roots lie in the closed unit disc. They proved in the same paper that if $\mathbf{r} \in \mathcal{D}_{d}$ then $R(X)=X^{d}+r_{d} X^{d-1}+$ $\cdots+r_{2} X+r_{1} \in \mathcal{E}_{d}$, and if $R(X)$ lies in the interior of \mathcal{E}_{d} then $\mathbf{r} \in \mathcal{D}_{d}$.

It is natural to ask what happens if $R(X)$ belongs to the boundary of \mathcal{E}_{d}, i.e., some of its roots lies on the unit circle. The case $d=2$ was studied by Akiyama et al.

[^0]in [4], but they were not able to completely settle it. They proved that \mathcal{D}_{2} is equal to the closed triangle with vertices $(-1,0),(1,-2),(1,2)$, but without the points $(1,-2),(1,2)$, the line segment $\{(x,-x-1): 0<x<1\}$ and, possibly, some points of the line segment $\{(1, y):-2<y<2\}$. In the last case write $y=2 \cos \alpha$ and $\omega=\cos \alpha+i \sin \alpha$. It is easy to see, that if $y=0, \pm 1$ (i.e., $\alpha=0, \pm \pi / 2$) then $(1, y)$ belongs to \mathcal{D}_{2}; we conjectured in [4] that this is true for all points of the line segment. In $[3]$ the conjecture was proved for the golden mean, i.e., for $y=\frac{1+\sqrt{5}}{2}$; in [2] the conjecture was proved for those ω which are quadratic algebraic numbers.

Kirschenhofer, Pethő and Thuswaldner [5] studied the sequences $\left\{\tau_{\mathbf{r}}^{k}(\mathbf{a})\right\}$ for $\mathbf{r}=\left(1, \lambda^{2}, \lambda^{2}\right)$, where λ denotes the golden mean. They not only proved that $\mathbf{r} \notin \mathcal{D}_{3}$, but found some connection between the Zeckendorf expansion of the coordinates of the initial vector a and the periodicity of $\left\{\tau_{\mathbf{r}}^{k}(\mathbf{a})\right\}$.

In the present notes we continue the above investigations about the boundary of \mathcal{E}_{d} for $d \geq 3$ in a systematic way. Our most general result is

Theorem 1. Assume that some t-th roots of unity $\beta_{1}, \ldots, \beta_{s}$ are simple zeroes of $R(X)$ and the other zeroes of it have modulus less than one. Then there exist constants c_{1} depending on $\beta_{1}, \ldots, \beta_{s}$ and c_{2} depending on $\beta_{1}, \ldots, \beta_{s}$ and a_{1}, \ldots, a_{d} such that if $k>c_{2}$ then

$$
\left|a_{k+t}-a_{k}\right|<c_{1} .
$$

Further, if t is even and $\beta_{1}, \ldots, \beta_{s}$ are primitive t-th roots of unity, then

$$
\left|a_{k+t / 2}+a_{k}\right|<c_{1}
$$

holds as well.
The importance of Theorem 1 is that c_{1} does not depend on the initial vector \mathbf{a}; in other words, the sequence $\left\{\tau_{\mathbf{r}}^{n}(\mathbf{a})\right\}$ is the union of a finite set and finitely many sequences of at most linear growth.

Define the integral vectors $\mathbf{1}=(1, \ldots, 1)^{T}, \overline{\mathbf{1}}=\left(1,-1, \ldots,(-1)^{d-1}\right)^{T}, \mathbf{i}=$ $(1,0,-1,0, \ldots)$ and $\overline{\mathbf{i}}=(0,1,0,-1, \ldots)$. As a consequence of Theorem 1 we prove

Theorem 2. Assume that $1,-1$ or i is a simple zero of $R(X)$ and the other zeroes of it have modulus less than one. Then there exists a computable finite set $A \subset \mathbb{Z}^{d}$ with the following property: for all $\mathbf{a} \in \mathbb{Z}^{d}$ there exist an integer k depending on the zeroes of $R(X)$ and \mathbf{a} and integers L, K such that $\tau_{\mathbf{r}}^{k}(\mathbf{a}-L \mathbf{1}) \in A, \tau_{\mathbf{r}}^{k}(\mathbf{a}-L \overline{\mathbf{1}}) \in A$ and $\tau_{\mathbf{r}}^{k}(\mathbf{a}-L \mathbf{i}-K \overline{\mathbf{i}}) \in A$, respectively.

Theorem 2 immediately implies an algorithm to test $\mathbf{r} \in \mathcal{D}_{d}$ provided that $1,-1$ or i is a simple root of $R(X)$. Of course we have to test for all $\mathbf{a} \in A$ whether the sequence $\left\{\tau_{\mathbf{r}}^{n}(\mathbf{a})\right\}$ is ultimately periodic or divergent. We show that for $d=3$ both cases occur.

By a recent result of Paul Surer [10] the boundary of \mathcal{E}_{3} can be parametrized by the union of the sets $B_{1}=\{(-s, s-(s+1) t,(s+1) t-1):-1 \leq s, t \leq 1\}$, $B_{2}=\{(s, s+(s+1) t,(s+1) t+1):-1 \leq s, t \leq 1\}$ and $B_{3}=\{(v, 1+2 t v, 2 t+v)$: $-1 \leq t, v \leq 1\}$. We prove that large portions of B_{1} belong to \mathcal{D}_{3} and others do not belong to \mathcal{D}_{3}. For example, if $0 \leq(s+1)(t+1)<1$ and $a_{0}=0, a_{1}=1, a_{2}=2$ then $\tau_{\mathbf{r}}^{k}(\mathbf{a})=(k, k+1, k+2)$ holds for all k, i.e., $\mathbf{r} \notin \mathcal{D}_{3}$. On the other hand, if $s \geq 0, s \leq(s+1) t \leq 1$ then $\left\{\tau_{\mathbf{r}}^{n}(\mathbf{a})\right\}$ is ultimately constant, i.e., $\mathbf{r} \in \mathcal{D}_{3}$. Experiments show that these examples are typical for elements both of B_{1} and B_{2}. This means that if $\left\{\tau_{\mathbf{r}}^{n}(\mathbf{a})\right\}$ is ultimately periodic then its period length is short, usually the sequence is ultimately constant. On the other hand, if $\left\{\tau_{\mathbf{r}}^{n}(\mathbf{a})\right\}$ is divergent then it is ultimately an arithmetical progression.

Choosing the values $s=1, t=\frac{\lambda}{2}, v=1$ shows that the point $\mathbf{r}=\left(1, \lambda^{2}, \lambda^{2}\right)^{T}$ studied in [5] belongs to $B_{2} \cap B_{3}$.

2. Preparatory Results

To prove Theorem 1 we need some preparation from linear algebra and from linear recurring sequences. We recapitulate here with minor changes Chapter 2 of [7], because we need the notations in the sequel. First of all, we analyze the mapping $\tau=\tau_{\mathbf{r}}$ defined by Equation (1). Let $\mathbf{P}=\mathbf{P}(\mathbf{r}) \in \mathbb{Z}^{d \times d}$ be the companion matrix of $R(X)$, i.e.,

$$
\mathbf{P}=\left(\begin{array}{cccc}
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1 \\
-r_{1} & -r_{2} & \ldots & -r_{d}
\end{array}\right)
$$

With this definition we have the following assertion.

Lemma 3. Let $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)^{T} \in \mathbb{Z}^{d}$ and $1 \leq k \in \mathbb{Z}$. Then there exist $-1<$ $\delta_{1}, \ldots, \delta_{k} \leq 0$ such that

$$
\tau^{k}(\mathbf{a})=\mathbf{P}^{k} \mathbf{a}+\sum_{j=1}^{k} \mathbf{P}^{k-j} \boldsymbol{\delta}_{j}
$$

holds, where $\boldsymbol{\delta}_{j}=\left(0, \ldots, 0, \delta_{j}\right)^{T} \in \mathbb{R}^{d}$.
Proof. See the simple proof of Lemma 2 of [7].
Let $\left\{G_{n}\right\}_{n=0}^{\infty}$ be the linear recurring sequence defined by the initial terms $G_{0}=$ $\cdots=G_{d-2}=0, G_{d-1}=1$ and by the difference equation

$$
\begin{equation*}
G_{n+d}=-r_{d} G_{n+d-1}-\cdots-r_{1} G_{n} \tag{2}
\end{equation*}
$$

Further, let $\mathbf{G}_{n}=\left(G_{n}, \ldots, G_{n+d-1}\right)^{T}$ and for $n \geq 0$ denote by \mathcal{G}_{n} the $d \times d$ matrix, whose columns are $\mathbf{G}_{n}, \ldots, \mathbf{G}_{n-d+1}$. Then we obviously have

$$
\mathcal{G}_{n}=\mathbf{P} \mathcal{G}_{n-1} \quad \text { for } \quad n=1,2, \ldots
$$

This implies

$$
\begin{equation*}
\mathcal{G}_{n}=\mathbf{P}^{n} \mathcal{G}_{0} \quad \text { for } \quad n \geq 0 \tag{3}
\end{equation*}
$$

As

$$
\mathcal{G}_{0}=\left(\begin{array}{cccc}
G_{d-1} & G_{d-2} & \ldots & G_{0} \\
G_{d} & G_{d-1} & \ldots & G_{1} \\
\vdots & \vdots & \ddots & \vdots \\
G_{2 d-1} & G_{2 d-2} & \ldots & G_{d-1}
\end{array}\right)
$$

is a lower triangular matrix with entries 1 in the main diagonal, it is non-singular and its inverse is

$$
\mathcal{G}_{0}^{-1}=\left(\begin{array}{ccccc}
1 & 0 & \ldots & 0 & 0 \\
r_{d} & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
r_{3} & r_{4} & \ldots & 1 & 0 \\
r_{2} & r_{3} & \ldots & r_{d} & 1
\end{array}\right) .
$$

Thus we get

$$
\begin{equation*}
\mathbf{P}^{n}=\mathcal{G}_{n} \mathcal{G}_{0}^{-1} \tag{4}
\end{equation*}
$$

Denoting by $p_{i j}^{(n)}, 1 \leq i, j \leq d, n \geq 0$ the entries of \mathbf{P}^{n} and setting $r_{d+1}=1$ we obtain

$$
\begin{equation*}
p_{1 j}^{(n)}=\sum_{u=0}^{d-j} r_{j+u+1} G_{n+u}, j=1, \ldots, d \tag{5}
\end{equation*}
$$

in particular $p_{1 d}^{(n)}=G_{n}$.
As a_{k+1} is the first coordinate of $\tau^{k}(\mathbf{a})$, Lemma 3 and (5) imply

$$
\begin{equation*}
a_{k+1}=\sum_{j=1}^{d} p_{1 j}^{(k)} a_{j}+\sum_{j=1}^{k} p_{1 d}^{(k-j)} \delta_{j}=\sum_{j=1}^{d} p_{1 j}^{(k)} a_{j}+\sum_{j=1}^{k} G_{k-j} \delta_{j} . \tag{6}
\end{equation*}
$$

On the other hand, if $\beta_{1}, \ldots, \beta_{h}$ denote the distinct zeroes of the polynomial $R(X)=X^{d}+r_{d} X^{d-1}+\cdots+r_{1}$ with multiplicities $e_{1}, \ldots, e_{h} \geq 1$, respectively, then

$$
\begin{equation*}
G_{n}=g_{1}(n) \beta_{1}^{n}+\cdots+g_{h}(n) \beta_{h}^{n} \tag{7}
\end{equation*}
$$

holds for any $n \geq 0$. Here $g_{i}(X), 1 \leq i \leq h$, are polynomials with coefficients of the field $\mathbb{Q}\left(\beta_{1}, \ldots, \beta_{h}\right)$ of degrees at most $e_{i}-1$. (See e.g. [8].)

Equations (5) and (7) imply that there exist polynomials $g_{i j \ell}(X)$ with coefficients of the field $\mathbb{Q}\left(\beta_{1}, \ldots, \beta_{h}\right)$ of degrees at most $e_{\ell}-1$ such that

$$
\begin{equation*}
p_{i j}^{(n)}=\sum_{\ell=1}^{h} g_{i j \ell}(n) \beta_{\ell}^{n} \tag{8}
\end{equation*}
$$

Using this equality, by (7) and (6) we obtain

$$
\begin{equation*}
a_{k+1}=\sum_{j=1}^{d} a_{j} \sum_{\ell=1}^{h} g_{1 j \ell}(k) \beta_{\ell}^{k}+\sum_{j=1}^{k} \delta_{j} \sum_{\ell=1}^{h} g_{\ell}(k-j) \beta_{\ell}^{k-j} . \tag{9}
\end{equation*}
$$

3. Proof of Theorems 1 and 2

Proof of Theorem 1. Our starting point is Equation (9). It was used in a simpler form in [1] to prove that if all roots of $R(X)$ have modulus less than one, then $\left\{\tau_{\mathbf{r}}^{k}(\mathbf{a})\right\}$ is ultimately periodic. This is true, because both summands in (9) are bounded. However, if one of the roots of $R(X)$ lies on the unit circle, then we usually have no control on the second summand - it can be bounded or unbounded. A closer look at (9) makes it possible to prove our theorem.

Let $t \geq 1$. Then Equation (9) implies

$$
\begin{aligned}
a_{k+t+1}-a_{k+1}= & \sum_{\ell=1}^{h} \beta_{\ell}^{k} \sum_{j=1}^{d} a_{j}\left(\beta_{\ell}^{t} g_{1 j \ell}(k+t)-g_{1 j \ell}(k)\right) \\
& +\sum_{j=k+1}^{k+t} \delta_{j} \sum_{\ell=1}^{h} g_{\ell}(k+t-j) \beta_{\ell}^{k+t-j} \\
& \quad+\sum_{j=1}^{k} \delta_{j} \sum_{\ell=1}^{h} \beta_{\ell}^{k-j}\left(g_{\ell}(k+t-j) \beta_{\ell}^{t}-g_{\ell}(k-j)\right) .
\end{aligned}
$$

As $\beta_{1}, \ldots, \beta_{s}$ are t-th roots of unity, we have $\beta_{i}^{t}=1, i=1, \ldots, s$. Further, as they are simple zeroes of $R(X)$, the polynomials $g_{1 j \ell}(X), j=1, \ldots, d, \ell=1, \ldots, s$, and $g_{\ell}(X), \ell=1, \ldots, s$, are constants depending only on $\beta_{1}, \ldots, \beta_{h}$. Thus

$$
\begin{equation*}
\beta_{\ell}^{t} g_{1 j \ell}(k+t)-g_{1 j \ell}(k)=g_{\ell}(k+t-j) \beta_{\ell}^{t}-g_{\ell}(k-j)=0 \tag{10}
\end{equation*}
$$

for all $\ell=1, \ldots, s, j=1, \ldots, d$. Thus our expression for $a_{k+t+1}-a_{k+1}$ simplifies
to

$$
\begin{aligned}
&\left|a_{k+t+1}-a_{k+1}\right| \leq\left|\sum_{\ell=s+1}^{h} \beta_{\ell}^{k} \sum_{j=1}^{d} a_{j}\left(\beta_{\ell}^{t} g_{1 j \ell}(k+t)-g_{1 j \ell}(k)\right)\right| \\
&+\left|\sum_{j=k+1}^{k+t} \delta_{j} \sum_{\ell=1}^{h} g_{\ell}(k+t-j) \beta_{\ell}^{k+t-j}\right| \\
&+\left|\sum_{j=1}^{k} \delta_{j} \sum_{\ell=s+1}^{h} \beta_{\ell}^{k-j}\left(g_{\ell}(k+t-j) \beta_{\ell}^{t}-g_{\ell}(k-j)\right)\right|
\end{aligned}
$$

Changing j to $j+k$ we can estimate the second summand as follows:

$$
\left|\sum_{j=1}^{t} \delta_{j+k} \sum_{\ell=1}^{h} g_{\ell}(t-j) \beta^{t-j}\right| \leq \sum_{j=0}^{t-1} \sum_{\ell=1}^{h}\left|g_{\ell}(j)\right|
$$

As $\left|\beta_{\ell}\right|<1$ for $\ell=s+1, \ldots, h$ and $\left|\delta_{j}\right|<1$ for $j=1, \ldots, k$, there exists a constant c_{3} depending only on the roots of $R(X)$ and a such that if $k \geq c_{3}$, then

$$
\left|\beta_{\ell}^{k} \sum_{j=1}^{d} a_{j}\left(g_{1 j \ell}(k+t) \beta_{\ell}^{t}-g_{1 j \ell}(k)\right)\right|<\frac{1}{2 h}
$$

By the same reason there exists a constant c_{4}, depending only on the roots of $R(X)$, such that if $k \geq c_{4}$, then

$$
\left|\sum_{\ell=s+1}^{h} \beta_{\ell}^{k}\left(g_{\ell}(k+t) \beta_{\ell}^{t}-g_{\ell}(k)\right)\right|<\left|\beta_{\ell}\right|^{k / 2}
$$

Thus

$$
\begin{aligned}
\left|a_{k+t+1}-a_{k+1}\right| \leq 1 / 2 & +\sum_{j=0}^{t-1} \sum_{\ell=1}^{h}\left|g_{\ell}(j)\right| \\
& +\left|\sum_{j=1}^{k-c_{4}} \delta_{j} \sum_{\ell=s+1}^{h} \beta_{\ell}^{k-j}\left(g_{\ell}(k+t-j) \beta_{\ell}^{t}-g_{\ell}(k-j)\right)\right| \\
& +\left|\sum_{j=k-c_{4}+1}^{k} \delta_{j} \sum_{\ell=s+1}^{h} \beta_{\ell}^{k-j}\left(g_{\ell}(k+t-j) \beta_{\ell}^{t}-g_{\ell}(k-j)\right)\right|
\end{aligned}
$$

The third summand is bounded by

$$
\sum_{j=0}^{\infty}\left|\beta_{\ell}^{j / 2}\right|=\frac{1}{1-\left|\beta_{\ell}^{1 / 2}\right|}
$$

while the fourth summand can be estimated as above and we get for it the upper bound

$$
\sum_{j=0}^{c_{4}-1} \sum_{\ell=s+1}^{h}\left|g_{\ell}(t+j) \beta_{\ell}^{t}-g_{\ell}(j)\right|
$$

which is a constant depending only on the roots of $R(X)$. The sum of these bounds depends only on the roots of $R(X)$ and we can choose it as c_{1}. To finish the proof of the first statement put $c_{2}=\max \left\{c_{3}, c_{4}\right\}$.

If t is even, we estimate $\left|a_{k+t / 2+1}+a_{k+1}\right|$ as in the previous case. The only important difference is that we use

$$
\beta_{\ell}^{t} g_{1 j \ell}(k+t)+g_{1 j \ell}(k)=g_{\ell}(k+t-j) \beta_{\ell}^{t}+g_{\ell}(k-j)=0
$$

instead of (10). This is true because $\beta_{1} \ldots, \beta_{s}$ are primitive t-th roots of unity, thus $\beta_{j}^{t / 2}=-1, j=1, \ldots, s$.

Proof of Theorem 2. If $R(1)=0$ then $\mathbf{r}^{T} \mathbf{1}=r_{1}+\cdots+r_{d}=-1$, thus $\tau_{\mathbf{r}}(\mathbf{1})=\mathbf{1}$. Let n be an integer. Then $\mathbf{r}^{T}(n \mathbf{1})=n r_{1}+\cdots+n r_{d}=-n$, thus $\tau_{\mathbf{r}}(n \mathbf{1})=n \mathbf{1}$, i.e., $(n \mathbf{1})$ is a fixed point of $\tau_{\mathbf{r}}$ for all integers n.

We apply Theorem 1 with $t=1$. Let $\mathbf{a} \in \mathbb{Z}^{d}$. There exists a constant c_{1} such that if k is large enough, then $\left|a_{k+1}-a_{k}\right|<c_{1}$. Fix such a k and consider d consecutive terms $a_{k+i}, i=0, \ldots, d-1$ of $\left\{a_{n}\right\}$. Put $L=\min \left\{a_{k+i}, i=0, \ldots, d-1\right\}$ and assume that $L=a_{k+j}$ for some $j \in[0, d-1]$. If $h \in[0, d-1]$ then $0 \leq a_{k+h}-L \leq(d-1) c_{1}$. Indeed, the lower bound holds by the choice of L. To prove the upper bound assume that $h>j$. Then

$$
\begin{aligned}
a_{k+h}-L & =a_{k+h}-a_{k+j}=a_{k+h}-a_{k+h-1}+\cdots+a_{k+j+1}-a_{k+j} \\
& \leq\left|a_{k+h}-a_{k+h-1}\right|+\cdots+\left|a_{k+j+1}-a_{k+j}\right| \\
& \leq(d-1) c_{1}
\end{aligned}
$$

The case $h<j$ can be handled similarly.
Let $\mathbf{b}=\mathbf{a}-L \mathbf{1}$. Then we have

$$
\tau_{\mathbf{r}}^{u}(\mathbf{b})=\tau_{\mathbf{r}}^{u}(\mathbf{a})-\tau_{\mathbf{r}}^{u}(L \mathbf{1})=\tau_{\mathbf{r}}^{u}(\mathbf{a})-L \mathbf{1}
$$

for all $u \geq 0$. Putting $u=k-1$ we get $\tau_{\mathbf{r}}^{k-1}(\mathbf{a}-L \mathbf{1})=\tau_{\mathbf{r}}^{k-1}(\mathbf{a})-L \mathbf{1}=\left(a_{k}-\right.$ $\left.L, \ldots, a_{k+d-1}-L\right)$. Thus the set $A=\left\{0, \ldots,(d-1) c_{1}\right\}^{d}$ satisfies the assertion.

If $R(-1)=0$ then $\mathbf{r}^{T} \overline{\mathbf{1}}=r_{1}+r_{2}(-1)+\cdots+r_{d}(-1)^{d-1}=(-1)^{d+1}$, thus $\tau_{\mathbf{r}}(\overline{\mathbf{1}})=(-1)^{d} \overline{\mathbf{1}}$. This implies that if n is an integer, then $\mathbf{r}^{T}(n \overline{\mathbf{1}})=(-1)^{d} n \overline{\mathbf{1}}$, i.e., $n \overline{\mathbf{1}}$ is a fixed point of $\tau_{\mathbf{r}}$ or $\tau_{\mathbf{r}}^{2}$ according as d is even or odd. Using that -1 is a primitive second root of unity beside $\left|a_{k+2}-a_{k}\right|<c_{1}$ we also have $\left|a_{k+1}+a_{k}\right|<c_{1}$.

The rest of the proof is analogous to the case $R(1)=0$ and we conclude that $A=\left\{0, \ldots,(2 d-1) c_{1}\right\}^{d}$ satisfies the assertion of the theorem.

Finally, if i is a root of $R(X)$, then $R(X)=\left(X^{2}+1\right)\left(X^{d-2}+q_{d-3} X^{d-3}+\cdots+q_{0}\right)$ with $q_{d-3}, \ldots, q_{0} \in \mathbb{R}$. It is easy to check that if $n, m \in \mathbb{Z}$ and $\mathbf{v}=n \mathbf{i}+m \overline{\mathbf{i}}$, then $\tau_{\mathbf{r}}^{4}(\mathbf{v})=\mathbf{v}$. Further, as i is a primitive fourth root of unity we have $\left|a_{k+4}-a_{k}\right|<$ c_{1} and $\left|a_{k+2}+a_{k}\right|<c_{1}$. The rest of the proof is analogous again to the case $R(1)=0$.

4. The Case $d=3$

In this section we specialize the results of Theorems 1 and 2 to the case $d=3$. First we compute $p_{1 j}^{(n)}$ using (5) and get $p_{11}^{(n)}=r_{2} G_{n}+r_{3} G_{n+1}+r_{4} G_{n+2}=$ $-r_{1} G_{n-1}, p_{12}^{(n)}=r_{3} G_{n}+G_{n+1}$ and $p_{13}^{(n)}=G_{n}$. Inserting these values into (6) we obtain

$$
\begin{equation*}
a_{k+1}=-r_{1} G_{k-1} a_{1}+\left(G_{k+1}+r_{3} G_{k}\right) a_{2}+G_{k} a_{3}+\sum_{j=1}^{k} G_{k-j} \delta_{j} \tag{11}
\end{equation*}
$$

In the sequel we need the following lemma of M. Ward [9].
Lemma 4. Let the linear recurring sequence $\left\{G_{n}\right\}_{n=0}^{\infty}$ be defined by (2). Assume that $R(X)$ is square-free and denote by $\alpha_{1}, \ldots, \alpha_{d}$ its roots. Then

$$
G_{n}=\sum_{h=1}^{d} \frac{\alpha_{h}^{n}}{R^{\prime}\left(\alpha_{h}\right)}
$$

where $R^{\prime}(X)$ denotes the derivative of $R(X)$.
By a recent result of Paul Surer [10] the boundary of \mathcal{E}_{3} is the union of the sets $B_{1}=\{(-s, s-(s+1) t,(s+1) t-1):-1 \leq s, t \leq 1\}, B_{2}=\{(s, s+(s+1) t,(s+$ 1) $t+1):-1 \leq s, t \leq 1\}$ and $B_{3}=\{(v, 1+2 t v, 2 t+v):-1 \leq t, v \leq 1\}$.

4.1. The Set B_{1}

In this case $R(X)=X^{3}+((s+1) t-1) X^{2}+(s-(s+1) t) X-s=(X-1)\left(X^{2}+\right.$ $(s+1) t X+s)=(X-1)(X-\alpha)(X-\beta)$. We have

$$
(1-\alpha)(1-\beta)=R^{\prime}(1)=3+2((s+1) t-1)+(s-(s+1) t)=(s+1)(t+1)
$$

Using this and Lemma 4 we get

$$
\begin{aligned}
G_{n} & =\frac{1}{R^{\prime}(1)}+\frac{\alpha^{n}}{R^{\prime}(\alpha)}+\frac{\beta^{n}}{R^{\prime}(\beta)} \\
& =\frac{1}{(s+1)(t+1)}+\frac{\alpha^{n}(\beta-1)-\beta^{n}(\alpha-1)}{(\alpha-\beta)(\alpha-1)(\beta-1)} \\
& =\frac{1}{(s+1)(t+1)}\left(1+\frac{\alpha^{n}(\beta-1)-\beta^{n}(\alpha-1)}{\alpha-\beta}\right)
\end{aligned}
$$

Later we need the difference of two consecutive terms of the sequence $\left\{G_{n}\right\}$, which is

$$
\begin{aligned}
G_{n} & -G_{n-1} \\
& =\frac{1}{(s+1)(t+1)}\left(\frac{\alpha^{n}(\beta-1)-\alpha^{n-1}(\beta-1)-\beta^{n}(\alpha-1)+\beta^{n-1}(\alpha-1)}{\alpha-\beta}\right) \\
& =\frac{\alpha^{n-1}-\beta^{n-1}}{\alpha-\beta} .
\end{aligned}
$$

Using this expression and (11) for any $k \geq 2$ we obtain

$$
\begin{aligned}
a_{k+1}-a_{k} & =s a_{1} \frac{\alpha^{k-2}-\beta^{k-2}}{\alpha-\beta}+a_{2}\left(\frac{\alpha^{k}-\beta^{k}}{\alpha-\beta}+((s+1) t-1) \frac{\alpha^{k-1}-\beta^{k-1}}{\alpha-\beta}\right) \\
& +\frac{\alpha^{k-1}-\beta^{k-1}}{\alpha-\beta} a_{3}+\sum_{j=1}^{k-1} \delta_{j} \frac{\alpha^{k-j-1}-\beta^{k-j-1}}{\alpha-\beta}
\end{aligned}
$$

Observe that the summand $G_{0} \delta_{k}$ is zero, and therefore it is omitted. We estimate the last summand as

$$
\left|\sum_{j=1}^{k-1} \delta_{j} \frac{\alpha^{k-j-1}-\beta^{k-j-1}}{\alpha-\beta}\right| \leq \frac{1}{|\alpha-\beta|}\left(\frac{1}{1-|\alpha|}+\frac{1}{1-|\beta|}\right)
$$

Since $|\alpha|,|\beta|<1$, the absolute value of the first three summands can be made arbitrarily small by choosing k large enough. Thus we get

Theorem 5. Assume that $-1<s, t<1$, $\mathbf{r}=(-s, s-(s+1) t,(s+1) t-1)^{T}$. Let α, β be the roots of $R(X)=X^{3}+((s+1) t-1) X^{2}+(s-(s+1) t) X-s$, which have modulus less than 1. Let

$$
c_{11}=\left\lfloor\frac{1}{|\alpha-\beta|}\left(\frac{1}{1-|\alpha|}+\frac{1}{1-|\beta|}\right)\right\rfloor
$$

and $A=A\left(c_{11}\right)=\left\{\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{Z}^{3}: 0 \leq x_{1} \leq c_{11}, x_{1}-c_{11} \leq x_{2} \leq x_{1}+c_{11}, x_{2}-\right.$ $\left.c_{11} \leq x_{3} \leq x_{2}+c_{11}\right\}$. For any $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}^{3}$ there exist integers L, k such that $\tau_{\mathbf{r}}^{k}\left(a_{1}-L, a_{2}-L, a_{3}-L\right) \in A$.

Later we present an application of Theorem 5. Before that we show that a large part of B_{1} does not belong to \mathcal{D}_{3}.

Theorem 6. Assume that $-1<s, t<1, \mathbf{r}=(-s, s-(s+1) t,(s+1) t-1)^{T}$ and put $u=(s+1) t$.
(1) If $u<-s$ and $\mathbf{a}=(0,1,2)^{T}$, then $a_{n+1}=a_{n}+1$ holds for all $n \geq 0$.
(2) If $u \geq-s$ and $s<0$ and $\mathbf{a}=(0,0,1)^{T}$, then $a_{3}=1$ and $a_{n+2}=a_{n}+1$ holds for all $n \geq 0$.
(3) If $1-2 s \leq u<-s / 2$ and $s>2 / 3$ and $\mathbf{a}=(0,1,3)^{T}$, then $a_{3}=4, a_{4}=3$ and $a_{n+2}=a_{n}+2$ holds for all $n \geq 0$.
(4) If $\frac{s+2}{2}<u<\frac{2 s+3}{3}$ and $s>3 / 4$ and $\mathbf{a}=(0,1,2)^{T}$, then $a_{3}=0, a_{4}=3$ and $a_{n+5}=a_{n}+1$ holds for all $n \geq 0$.
(5) If $\frac{3 s+4}{4}<u<\frac{4 s+5}{5}$ and $s>10 / 11$ and $\mathbf{a}=(0,3,2)^{T}$, then $a_{3}=1, a_{4}=$ $4, a_{5}=0, a_{6}=5$ and $a_{n+7}=a_{n}+1$ holds for all $n \geq 0$.

In the above cases \mathbf{r} does not belong to \mathcal{D}_{3}.
Proof. (1) We have $a_{k}=k$ for $k=0,1,2$. Assume that this is true for $k<n+2$. Then

$$
\begin{aligned}
a_{n+2} & =-\lfloor-s(n-1)+(s-u) n+(u-1)(n+1)\rfloor \\
& =-\lfloor-n-1+s+u\rfloor=n+2
\end{aligned}
$$

because $u<-s$.
(2) We have $a_{3}=-\lfloor u-1\rfloor=1$. Assume that $a_{2 n}=a_{2 n+1}=n$ and $a_{2 n+2}=n+1$. Then

$$
\begin{aligned}
a_{2 n+3} & =-\lfloor-s n+(s-u) n+(u-1)(n+1)\rfloor \\
& =-\lfloor-n-1+u\rfloor=n+1=a_{2 n+1}+1
\end{aligned}
$$

Similar computation shows that if $a_{2 n+1}=n$ and $a_{2 n+1}=a_{2 n+2}=n+1$, then $a_{2 n+4}=n+2=a_{2 n+2}+1$.
(3) As $\mathbf{a}=(0,1,2)$ we have $a_{3}=-\lfloor s+u-2\rfloor$. Using the inequalities for u and s we get

$$
\begin{aligned}
s+u-2 & \geq s+s / 2-1>0 \\
& <5 s / 3-1<1
\end{aligned}
$$

whence $a_{3}=0$. Similarly, $a_{4}=-\lfloor s-2 u\rfloor$ and as

$$
\begin{aligned}
s-2 u & \geq s-s-2=-2 \\
& <s-4 s / 3-2=-s / 3-2>-3
\end{aligned}
$$

$a_{4}=3 ; a_{5}=-\lfloor-2 s+3 u-3\rfloor$ and as

$$
\begin{aligned}
-2 s+3 u-3 & \geq-2 s+3 s / 2+3-3>-1 \\
& <2 s-2 s+3-3=0
\end{aligned}
$$

$a_{5}=1 ; a_{6}=-\lfloor 3 s-2 u-1\rfloor$ and as

$$
\begin{aligned}
3 s-2 u-1 & \geq 3 s-4 s / 3-3>-2 \\
& <3 s-s-2-1<-1
\end{aligned}
$$

$a_{6}=2 ; a_{7}=-\lfloor-2 s+u-2\rfloor$ and as

$$
\begin{aligned}
-2 s+u-2 & \geq-2 s+s / 2>-3 \\
& <-2 s+2 s / 3-1<-2
\end{aligned}
$$

$a_{7}=3$. Since $\left(a_{5}, a_{6}, a_{7}\right)=\left(a_{0}, a_{1}, a_{2}\right)+\mathbf{1}$ and $\tau_{\mathbf{r}}^{k}(\mathbf{a}+\mathbf{1})=\tau_{\mathbf{r}}^{k}(\mathbf{a})+\mathbf{1}$ for $k \geq 0$, the assertion follows.

The proof of cases $(4),(5)$ is similar, therefore it is omitted.
In contrast with the last theorem, we prove now that large parts of B_{1} belong to \mathcal{D}_{3}.

Theorem 7. Assume that $-1<s, t<1$, $\mathbf{r}=(-s, s-(s+1) t,(s+1) t-1)^{T}$ and $\mathbf{a} \in \mathbb{Z}^{3}$. If
(1) $-s, s-(s+1) t,(s+1) t-1 \leq 0$ or
(2) $s \in(0.334,0.399)$ and $t=-\frac{s}{s+1}$,
then $\left\{\tau_{\mathbf{r}}^{k}(\mathbf{a})\right\}$ is ultimately constant, i.e., $\mathbf{r} \in \mathcal{D}_{3}$.
Proof. (1) As $\tau_{\mathbf{r}}^{k}(\mathbf{a}+L \mathbf{1})=\tau_{\mathbf{r}}^{k}(\mathbf{a})+L \mathbf{1}$, adding $L \mathbf{1}$ to a with a suitable integer L we have that all coordinates of $\mathbf{a}+L \mathbf{1}$ are non-negative. Thus we may assume that this is valid already for the initial vector \mathbf{a}. Now assume that $a_{n-1}, a_{n}, a_{n+1} \geq 0$ for some $n \geq 1$. Then

$$
\begin{aligned}
-\max \left\{a_{n-1}, a_{n}, a_{n+1}\right\} & \leq-s a_{n-1}+(s-(s+1) t) a_{n}+((s+1) t-1) a_{n+1} \\
& \leq-\min \left\{a_{n-1}, a_{n}, a_{n+1}\right\}
\end{aligned}
$$

and equality holds if and only if $a_{n-1}=a_{n}=a_{n+1}$, in which case we are done. Otherwise, $\min \left\{a_{n-1}, a_{n}, a_{n+1}\right\}+1 \leq a_{n+2} \leq \max \left\{a_{n-1}, a_{n}, a_{n+1}\right\}$, i.e., the minimum of three consecutive terms is increasing, but their maximum is not, thus the sequence becomes constant after some steps.
(2) In this case we apply Theorem 5 . In the actual case the polynomial $R(X)$ has the form $R(X)=(X-1)\left(X^{2}-s X+s\right)$. Its roots α, β for $0 \leq s \leq 1$ are conjugate
complex numbers, hence $|\alpha|=|\beta|=\sqrt{s}$. Further, $|\alpha-\beta|=\sqrt{4 s-s^{2}}$. Using these expressions Theorem 5 implies $c_{11}=\frac{2}{(1-\sqrt{s}) \sqrt{4 s-s^{2}}}$. It is easy to see that c_{11} as a function of s is always larger than 4 and is less than 5 provided $s \in(0.079,0.478)$.

For the initial points $\mathbf{a} \in A(4)$ we tested the sequence $\left\{a_{n}\right\}$ for $s \in(0.334,0.399)$. Of course it is impossible to do this directly, because there are uncountably many values in the interval. However, the convexity property of the mapping $\tau_{\mathbf{r}}$ (see [1] Theorem 4.6) allows us to test only the end points of the interval. We have done this by using the computer algebra system MAPLE 9 and found that $\tau_{\mathbf{r}(0.334)}(\mathbf{a})=\tau_{\mathbf{r}(0.399)}(\mathbf{a})$ except when $\mathbf{a}=(0,4,0),(0,-4,0)$. If $\mathbf{a}=(0,-4,0)$ then $\left\{a_{n}\right\}=(0,-4,0,3,3,2,2,3,4,4,4)$, if $0.334 \leq s \leq 0.375$ and $\left\{a_{n}\right\}=(0,-4,0,4,4,3,3,4,5,5,5)$, if $0.375<s \leq 0.468$. Similarly if $\mathbf{a}=(0,4,0)$ then $\left\{a_{n}\right\}=(0,4,0,-2,-1,1,2,2,2)$, if $0.334 \leq s<0.375$ and $\left\{a_{n}\right\}=(0,4,0,-3,-2,0,1,1,1)$, if $0.375 \leq s \leq 0.468$. This completes the proof.

Note that the examples of the last two theorems seem to be typical in the sense that if $\left\{a_{n}\right\}$ is bounded then it is ultimately constant.

4.2. The Set B_{2}

In this case $R(X)=X^{3}+((s+1) t+1) X^{2}+(s+(s+1) t) X+s=(X+1)\left(X^{2}+\right.$ $(s+1) t X+s)=(X+1)(X-\alpha)(X-\beta)$. We show again that large parts of B_{2} belong to \mathcal{D}_{3} and others do not.

First we prove the analogue of Theorem 5 for the actual case.
Theorem 8. Assume that $-1<s, t<1, \mathbf{r}=(s, s+(s+1) t,(s+1) t+1)^{T}$. Let α, β be the roots of $R(X)=X^{3}+((s+1) t+1) X^{2}+(s+(s+1) t) X+s$, which have modulus less than 1. Let

$$
c_{12}=\left\lfloor\frac{1}{|\alpha-\beta|}\left(\frac{\max \{1,|\alpha+1|\}}{1-|\alpha|}+\frac{\max \{1,|\beta+1|\}}{1-|\beta|}\right)\right\rfloor
$$

and $A=A\left(c_{12}\right)=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in \mathbb{Z}^{4}: 0 \leq x_{1} \leq c_{12},-x_{1}-c_{12} \leq x_{2} \leq\right.$ $\left.-x_{1}+c_{12}, x_{2}-c_{12} \leq x_{3} \leq x_{2}+c_{12},-x_{3}-c_{12} \leq x_{4} \leq-x_{3}+c_{12}\right\}$. For $\left(a_{1}, a_{2}, a_{3}\right)^{T} \in$ \mathbb{Z}^{3} and $L, k \in \mathbb{Z}$ define $a_{d+k+1}^{(L)}=-\left\lfloor\mathbf{r}^{T} \tau_{\mathbf{r}}^{k}\left(a_{1}+L, a_{2}-L, a_{3}+L\right)\right.$. Then for any $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{Z}^{3}$ there exist integers L, k such that $\left(a_{k}^{(L)}, a_{k+1}^{(L)}, a_{k+2}^{(L)}, a_{k+3}^{(L)}\right) \in A$.

Proof. The proof is analogous to the proof of Theorem 5, therefore we present only the important differences. We have

$$
G_{n}=\frac{1}{(s+1)(1-t)}\left((-1)^{n}+\frac{\alpha^{n}(\beta+1)-\beta^{n}(\alpha+1)}{\alpha-\beta}\right)
$$

Thus

$$
G_{n+1}+G_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { and } \quad G_{n+2}-G_{n}=\frac{\alpha^{n}(\alpha+1)-\beta^{n}(\beta+1)}{\alpha-\beta}
$$

which imply the inequalities

$$
\left|a_{k+1}+a_{k}\right| \leq \frac{1}{|\alpha-\beta|}\left(\frac{1}{1-|\alpha|}+\frac{1}{1-|\beta|}\right)
$$

and

$$
\left|a_{k+2}-a_{k}\right| \leq \frac{1}{|\alpha-\beta|}\left(\frac{|\alpha+1|}{1-|\alpha|}+\frac{|\beta+1|}{1-|\beta|}\right)
$$

Taking the maximum of the right hand sides and using that $a_{k+1}+a_{k}$ and $a_{k+2}-a_{k}$ are integers we get the assertion.

In the next theorem we show that some part of B_{2} belongs to \mathcal{D}_{3}, while some other part does not belong to \mathcal{D}_{3}.

Theorem 9. Assume that $-1<s, t<1, \mathbf{r}=(s, s+(s+1) t,(s+1) t+1)^{T}$ and put $u=(s+1) t$.
(1) If $-1<s \leq 0$ and $t>0$, but $(s, t) \neq(-1,1)$ and $\mathbf{a}=(0,0,1)^{T}$, then $a_{2 n+f}=(-1)^{f} n, n=0,1, \ldots, f=0,1$.
(2) If $s \leq 0$ and $1+2 s<u<1+\frac{s}{2}$ and $\mathbf{a}=(0,-1,3)^{T}$, then $a_{3}=-4, a_{4}=$ $6, a_{5}=-7$ and $a_{n+6}=a_{n}+9$ holds for all $n \geq 0$.
(3) If $s, u+1 \geq 0$ and $s+u<0$, then for all initial vectors the sequence $\left\{a_{n}\right\}$ is ultimately periodic with period $L,-L$ for some integer L.

In cases (1) and (2), \mathbf{r} does not belong to \mathcal{D}_{3}, while in case (3) it does belong to \mathcal{D}_{3}.
Proof. (1) For the initial vector the statement is true. Assume that it is true for $a_{2 n}, a_{2 n+1}, a_{2 n+2}$. Then

$$
\begin{aligned}
a_{2 n+3} & =-\lfloor s n-(s+u) n+(u+1)(n+1)\rfloor \\
& =-\lfloor n+1+u\rfloor=-(n+1)
\end{aligned}
$$

because $u=(s+1) t$ is positive and less than 1 . The case $a_{2 n+1}, a_{2 n+2}, a_{2 n+3}$ can be treated similarly.
(2) We have $a_{3}=-\lfloor-(s+u)+3(u+1)\rfloor=-\lfloor-s+2 u+3\rfloor=-4, a_{4}=$ $-\lfloor-s+3(s+u)-4(u+1)\rfloor=-\lfloor 2 s-u-4\rfloor=6$. The proofs of the remaining statements are similar.
(3) As $\tau_{\mathbf{r}}^{k}\left(\mathbf{a}+L(1,-1,1)^{T}\right)=\tau_{\mathbf{r}}^{k}(\mathbf{a})+(-1)^{k} L(1,-1,1)^{T}$ holds for all $\mathbf{a} \in \mathbb{Z}^{3}$ and $k \geq 0$, we may assume that $a_{1}, a_{3} \geq 0$ and $a_{2} \leq 0$. Let $k=\min \left\{a_{1},\left|a_{2}\right|, a_{3}\right\}$ and $K=\max \left\{a_{1},\left|a_{2}\right|, a_{3}\right\}$, and assume that $k \neq K$, otherwise we are done. Then

$$
s a_{1}+(s+u) a_{2}+(u+1) a_{3}=s a_{1}-(s+u)\left|a_{2}\right|+(u+1) a_{3} .
$$

Here all summands are non-negative, therefore the sum is greater than k and less than K and we get $-K+1 \leq a_{4} \leq-k$. We have $a_{2}, a_{4} \leq 0$ and $a_{3} \geq 0$, which justify the equality

$$
s a_{2}+(s+u) a_{3}+(u+1) a_{4}=-\left(s\left|a_{2}\right|-(s+u) a_{3}+(u+1)\left|a_{4}\right|\right)
$$

As the summands in the bracket are non-negative we obtain $-K \leq s a_{2}+(s+u) a_{3}+$ $(u+1) a_{4} \leq-k$ and equality holds only if $a_{2}=-a_{3}=a_{4}$. If this is not true then $k+1 \leq a_{5} \leq K$. This means that the lower bound for the absolute value of the terms $\left|a_{n}\right|$ is increasing, but the upper bound is not decreasing, thus $\left\{\left|a_{n}\right|\right\}$ must became ultimately constant.

4.3. The Set B_{3}

By Surer's [10] characterization $R(X)=X^{3}+(2 t+v) X^{2}+(2 t v+1) X+v=$ $(X+v)\left(X^{2}+2 t X+1\right)=(X+v)(X-\alpha)(X-\bar{\alpha})$. We study only the case $t=0,|v| \leq 1$ and prove

Theorem 10. The points $\mathbf{r}=(v, 1, v)^{T},|v| \leq 1$, belong to $\mathcal{D}_{3} \backslash \mathcal{D}_{3}^{0}$, where \mathcal{D}_{3}^{0} denotes the set of those $\mathbf{r} \in \mathbb{R}^{3}$ for which $\left\{\tau_{\mathbf{r}}^{k}(\mathbf{a})\right\}_{k=0}^{\infty}$ is for all $\mathbf{a} \in \mathbb{Z}^{3}$ the ultimately zero sequence.

Proof. Let $\left\{a_{n}\right\}$ be a sequence of integers satisfying

$$
0 \leq v a_{n-1}+a_{n}+v a_{n+1}+a_{n}<1
$$

for all $n \geq 1$. Putting $b_{n}=a_{n}+a_{n+2}, n \geq 0$ we rewrite the last inequality as

$$
\begin{equation*}
0 \leq v b_{n-1}+b_{n}<1 \tag{12}
\end{equation*}
$$

If $0 \leq v<1$ then $v \in \mathcal{D}_{1}^{0}$ by Proposition 4.4 of [4], i.e., the sequence $\left\{b_{n}\right\}$ is ultimately zero. We prove that for the other values of v, i.e., $-1 \leq v<0$ and $v=1$, the sequence $\left\{b_{n}\right\}$ is ultimately constant. This is obviously true for $v= \pm 1$. If $b_{0}=0$ then $b_{n}=0$ for all $n \geq 0$.

Assume that $-1<v<0$. If $b_{0}>0$ then $1 \leq b_{n} \leq b_{n-1}$ holds for all $n \geq 1$. Indeed, $b_{n} \geq-v b_{n-1}>0$, which proves the left inequality. On the other hand, $b_{n}<1-v b_{n-1}<1+b_{n-1}$. As both b_{n} and b_{n-1} are integers we get the right-hand side inequality. We proved that $\left\{b_{n}\right\}$ is non-negative and monotonic decreasing, and thus it is ultimately constant. If $b_{0}<0$ then one can analogously prove that $\left\{b_{n}\right\}$ is non-positive and monotonically increasing, and thus it is ultimately constant too.

After this preparation we turn to the proof of the theorem. Without loss of generality we may assume that $b_{n}=b, n \geq 0$. Let $a_{0}, a_{1} \in \mathbb{Z}$. Then $a_{2}=b-a_{0}, a_{3}=$ $b-a_{1}$ and $a_{4 k+j}=a_{j}$ for all $j=0,1,2,3 ; k=0,1, \ldots$ Thus $\left\{a_{n}\right\}$ is an ultimately periodic sequence, i.e., $\mathbf{r} \in \mathcal{D}_{3}$. As we may choose a_{0}, a_{1} arbitrarily, e.g., such that $\left\{a_{n}\right\}$ is not the zero sequence, we have $\mathbf{r} \notin \mathcal{D}_{3}^{0}$. This completes the proof of the theorem.

References

[1] S. Akiyama, T. Borbély, H. Brunotte, A. Pethő and J. M. Thuswaldner, Generalized radix representations and dynamical systems I, Acta Math. Hungar. 108 (2005), 207-238.
[2] S. Akiyama, H. Brunotte, A. Pethő and W. Steiner, Periodicity of certain piecewise affine planar maps, Tsukuba J. Math. 32 (2008), 197-251.
[3] S. Akiyama, H. Brunotte, A. Pethő and W. Steiner, Remarks on a conjecture on certain integer sequences, Periodica Mathematica Hungarica 52 (2006), 1-17.
[4] S. Akiyama, H. Brunotte, A. Рethő and J. M. Thuswaldner, Generalized radix representations and dynamical systems II, Acta Arith. 121 (2006), 21-61.
[5] P. Kirschenhofer, A. Pethő and J.M. Thuswaldner, On a family of three term nonlinear recurrences, Int. J. Number Theory 4 (2008), 135-146.
[6] A. PethŐ, On a polynomial transformation and its application to the construction of a public key cryptosystem, Computational Number Theory, Proc., pp. $31-44$, Walter de Gruyter Publ. Comp., Eds.: A. Pethő, M. Pohst, H. G. Zimmer and H. C. Williams, , 1991.
[7] A. Pethő, Notes on CNS polynomials and integral interpolation, in: More Sets, Graphs and Numbers, pp.301-315, edited by E Györy, G.O.H. Katona and L. Lovász, Bolyai Soc. Math. Stud. 15 Springer, Berlin, 2006.
[8] T.N. Shorey and R. Tijdeman, Exponential Diophantine Equations, Cambridge Univ. Press, 1986.
[9] M. Ward, The maximal prime divisors of linear recurrences, Can. J. Math. 6 (1954), 455462.
[10] P. SURER, private communication.

[^0]: ${ }^{1}$ The author was supported partially by the Hungarian National Foundation for Scientific Research Grant No. T67580 and by the TéT project JP-26/2006.
 ${ }^{2}$ In this note a vector is always a column vector and \mathbf{v}^{T} means its transpose.

