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Abstract
This paper investigates representations of real numbers with an arbitrary negative
base −β < −1, which we call the (−β)-expansions. They arise from the orbits of the
(−β)-transformation which is a natural modification of the β-transformation. We
show some fundamental properties of (−β)-expansions, each of which corresponds
to a well-known fact of ordinary β-expansions. In particular, we characterize the
admissible sequences of (−β)-expansions, give a necessary and sufficient condition
for the (−β)-shift to be sofic, and explicitly determine the invariant measure of the
(−β)-transformations.

1. Introduction

The β-expansions were introduced by Rényi [12] and have been studied extensively.
This paper studies representations of real numbers with an arbitrary negative base
−β < −1, which we call the (−β)-expansions, since they are natural modifications
of the β-expansions. There exist several studies on expansions with negative bases
(see e.g., [7, 5]), which are restricted to the negative integer bases. We show some
fundamental properties of (−β)-expansions which correspond to those of ordinary
β-expansions shown by Parry [11] and Bertrand-Mathis [3]: First, we introduce an
order on the integer sequences different from that used in the ordinary β-expansions,
by which we give a characterization of the digit sequences of (−β)-expansions. Sec-
ond, we consider the (−β)-shift, which consists of bi-infinite sequence each of whose
finite subword appears in the digit sequence of some (−β)-expansion. We show
the (−β)-shift is sofic if and only if the (−β)-expansion of a special point is even-
tually periodic, just the same as the positive case. We do this by showing an
efficient algorithm to construct a graph by which a given (−β)-shift is presented.
Finally, we consider the frequency of the digits. We explicitly determine the ab-
solutely continuous invariant measures of the (−β)-transformations which generate
the (−β)-expansions. In contrast to the ordinary β-transformations, the invariant
measures are not necessarily equivalent to the Lebesgue measure. Our results are
formulated in a manner very similar to that of corresponding results for the ordinary
β-expansions.
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Let β > 1 be a real number. A (−β)-representation of a real number x is an
expression of the form,

x = x−k(−β)k + x−k+1(−β)k−1 + · · ·+ x0 +
x1

−β
+

x2

(−β)2
+ · · · ,

where k ≥ 0 is a certain integer and xi > 0 for i ≥ −k. It is denoted by

x = (x−kx−k+1 · · ·x0 . x1x2 · · · )−β .

We denote by Iβ the half-open interval [lβ , rβ) =
[
− β

β+1 , 1
β+1

)
. The (−β)-

transformation Tβ on Iβ is defined by

Tβ(x) = −βx− #−βx− lβ$ = {−βx− lβ}+ lβ ,

where #x$ denotes the largest integer not exceeding a real number x and {x} =
x− #x$.

Figure 1: The (−β)-transformation with β = 2.3

Then, for each x ∈ Iβ , we have a particular (−β)-representation

x = ( . x1x2 · · · )−β ,

where xi = #−βT i−1
β (x) − lβ$ for i ≥ 1. We call this representation the (−β)-

expansion of x. For a real number x not contained in Iβ , there is an integer d such
that x/(−β)d ∈ Iβ , hence we have the (−β)-expansion of x:

x = (x−d+1x−d+2 · · ·x0 . x1x2 · · · )−β

where x−d+i = #−βT i−1
β ( x

(−β)d )− lβ$.
If x ∈ Iβ has the (−β)-expansion x = ( . x1, x2 · · · )−β then we denote

d(x,−β) = (x1, x2, . . .) and dn(x,−β) = xn.
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If the (−β)-representation of a real number x ends up with infinite repetition of
0’s, that is, x = (x−l · · ·x−1x0 . x1x2 · · ·xk000 · · · )−β , we occasionally omit writing
0s and denote it as x = (x−l · · ·x0 . x1x2 · · ·xk)−β . We call the (−β)-expansion
of a real number finite if it ends up with infinite repetition of 0’s. We denote by
(d1, d2, . . . , dm) the infinite repetition of the word (d1, d2, . . . , dm), i.e.,

(d1, d2, . . . , dm) = (d1, d2, . . . , dm, d1, d2, . . . , dm, d1, d2, . . . , dm, d1, . . .).

By the definition of (−β)-expansion, if β ∈ N then the (−β)-expansion of lβ is
of the form lβ = ( .βββ · · · )−β , while it has another (−β)-representation that looks
much better:

lβ = ( . (β − 1)0(β − 1)0(β − 1)0 · · · )−β .

In Section 2, we will consider this type of representations of lβ in a more general
setting, which play the crucial role in our theory.

Example 1. The following are the (−β)-expansions of some real numbers when
β = 2:

2 = (110.)−2, 3 = (111.)−2, 4 = (100.)−2, . . . , 100 = (110100100.)−2, . . .

−1 = (11 . )−2, − 2 = (10.)−2, − 3 = (1101.)−2, . . . ,−100 = (11101100.)−2

2/3 = (1.111111 · · · )−2, 1/5 = (.011101110111 · · · )−2,

l2 = −2/3 = (0.222222 · · · )−2.

Example 2. Let β = 3+
√

5
2 . Then Table 1 shows the (−β)-expansions of several

small integers. For this β, we can check that the (−β)-expansion of every element of
Z[β] is finite by a method similar to that for the ordinary β-expansions by Akiyama
[1]. In Section 3, we will see that the (−β)-shift (which is a shift space consisting of
the bi-infinite sequences each of whose finite subword appears in the digit sequence
of some (−β)-expansion) is the sofic shift represented by the graph shown in Figure
2.

Figure 2: The graph which represents the (−β)-shift with β = 3+
√

5
2 .
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x (−β)-expansion of x x (−β)-expansion of x
1 (1.)−β −1 (12.1)−β

2 (121.21)−β −2 (11.1)−β

3 (122.21)−β −3 (10.1)−β

4 (110.11)−β −4 (21.021)−β

5 (111.11)−β −5 (1212.121)−β

6 (112.11)−β −6 (1211.121)−β

7 (100.01)−β −7 (1210.121)−β

8 (101.01)−β −8 (1222.221)−β

9 (221.1021)−β −9 (1221.221)−β

Table 1: (−β)-expansions of small integers with β = 3+
√

5
2 .

2. Admissible Sequences

We say an integer sequence (x1, x2, . . .) is (−β)-admissible, if there exists a real num-
ber x ∈ Iβ such that d(x,−β) = (x1, x2, . . .). We say a finite word (x1, x2, . . . , xn)
over the alphabet Aβ = {0, 1, . . . , #β$} is (−β)-admissible if it appears in a (−β)-
admissible sequence. This section gives a characterization of the (−β)-admissible
sequences.

Proposition 3. An integer sequence (x1, x2, . . .) is (−β)-admissible if and only if

( . xixi+1xi+2 · · · )−β ∈ Iβ for all i ≥ 1. (1)

Proof. The “only if” part is obvious. So assume (1) and put x = ( . x1x2x3 · · · )−β .
We prove

xi = #−βT i−1
β (x)− lβ$, and T i

β(x) = ( . xi+1xi+2 · · · )−β (2)

for i ≥ 1 by induction on i. Since −βx − x1 = ( . x2x3 · · · )−β ∈ Iβ , (2) holds for
i = 1. Suppose (2) holds for i < k. Then it is easily confirmed that (2) holds
for i = k. Thus (2) holds for all i ≥ 1, which means, x = ( . x1x2 · · · )−β is the
(−β)-expansion of x.

To make Proposition 3 more explicit, we introduce an order ≺ on the sequences
of integers in the following way. Let (x1, x2, . . .) and (y1, y2, . . .) be two finite or
infinite integer sequences which have the same number of terms. Then we define

(x1, x2, . . .) ≺ (y1, y2, . . .)

if and only if there exists an integer k ≥ 1 such that xi = yi for i < k and (−1)k(xk−
yk) < 0. We denote (x1, x2, . . .) ' (y1, y2, . . .) if (x1, x2, . . .) ≺ (y1, y2, . . .) or
(x1, x2, . . .) = (y1, y2, . . .).
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Let
d(lβ ,−β) = (b1, b2, · · · ). (3)

Then, by putting b0 = 0, we have a (−β)-representation of rβ :

rβ = ( . b0b1b2 · · · )−β .

We denote the sequence (b0, b1, b2, b3, . . .) by d(rβ ,−β).

Example 4. Let β be a quadratic Pisot number whose minimal polynomial is X2−
aX − b. Frougny and Solomyak [6] showed that the coefficients a and b satisfy

a ≥ b > 0 or − a + 1 < b < 0.

By using Proposition 3, we have

d(lβ ,−β) =

{
(a, a− b), a ≥ b > 0,
(a− 1,−b), −a + 1 < b < 0.

Numerical experiments suggest that the (−β)-expansion of every element of Z[β−1]
is finite if −a + 1 < b < 0.

Proposition 5. If (x1, x2, . . .) is a (−β)-admissible sequence, then

d(lβ ,−β) ' (xn+1, xn+2, . . .) ≺ d(rβ ,−β) for all n ≥ 0.

In particular,

(b1, b2, . . .) ' (bn+1, bn+2, . . .) ≺ (b0, b1, b2, . . .) for all n ≥ 0,

where (b1, b2, . . .) = d(lβ ,−β) and b0 = 0.

Proof. Since ( . x1x2 · · · )−β is the (−β)-expansion of a real number x ∈ Iβ , Tn
β (x) =

( . xn+1xn+2 · · · )−β and hence

lβ = ( . b1b2 · · · )−β ≤ ( . xn+1xn+2 · · · )−β < ( . b0b1b2 · · · )−β = rβ .

We first show d(lβ ,−β) ' (xn+1, xn+2, . . .). Suppose that (b1, b2, . . .) )=
(xn+1, xn+2, . . .), and let k be the integer such that bi = xn+i for i < k and
bk )= xn+k. Then we have
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( . xn+1xn+2 · · · )−β − ( . b1b2 · · · )−β

=
(

xn+k

(−β)k
+

xn+k+1

(−β)k+1
+

xn+k+2

(−β)k+2
+ · · ·

)

−
(

bk

(−β)k
+

bk+1

(−β)k+1
+

bk+2

(−β)k+2
+ · · ·

)

=
1

(−β)k
((xn+k − bk) + ( . xn+k+1xn+k+2 · · · )−β − ( . bk+1bk+2 · · · )−β)

=
1

(−β)k

(
(xn+k − bk) + Tn+k

β (x)− T k
β (lβ)

)
< 0.

Therefore, since |Tn+k
β (x) − T k

β (lβ)| < 1, xn+k < bk if k is an odd integer, and
xn+k > bk if k is even, that is, d(lβ ,−β) ≺ (xn+1, xn+2, . . .). We can show
(xn+1, xn+2, . . .) ≺ d(rβ ,−β) in the same manner.

The converse of Proposition 5 is not generally true: For example, let β be the
real root of X3 − 2X2 + X − 1 = 0. Then d(lβ ,−β) = (b1, b2, . . .) = (1, 0, 1). Let
(x1, x2, . . . , ) = (0, 1, 0, 0). Then

d(lβ ,−β) = (1, 0, 1) ≺ (xn, xn+1, . . .) ≺ (0, 1, 0, 1) = d(rβ ,−β) for all n ≥ 0.

However, ( . 0100)−β = rβ )∈ Iβ and hence (0, 1, 0, 0) is not admissible.
We introduce a sequence d∗(rβ ,−β) = (c∗1, c∗2, . . .) as follows:

d∗(rβ ,−β)

=

{
(0, b1, b2, . . . , bq−1, bq − 1) d(lβ ,−β) = (b1, b2, . . . , bq) for some odd q,
d(rβ ,−β) otherwise.

(4)

Let β again be the real root of of X3 − 2X2 + X − 1 = 0. Then d(lβ ,−β) =
(b1, b2, . . .) = (1, 0, 1) and hence d∗(rβ ,−β) = (c∗1, c∗2, . . .) = (0, 1, 0, 0). The follow-
ing lemmas characterize the sequence d∗(rβ ,−β).

Lemma 6. Let d∗(rβ ,−β) = (c∗1, c∗2, . . .). Then

d∗(rβ ,−β) = lim
x→rβ−0

d(x,−β);

that is, for any n > 0 there exists an εn > 0 such that

di(x,−β) = c∗i for i < n and x ∈ (rβ − εn, rβ). (5)

Proof. We provide the proof by considering the following three cases:
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(a) d(lβ ,−β) is not purely periodic.

(b) d(lβ ,−β) is purely periodic with even period q.

(c) d(lβ ,−β) is purely periodic with odd period q.

Here we remark that the case β ∈ N corresponds to the case (c), where q = 1.
We use the following interpretation of the (−β)-expansion: Divide the interval Iβ

into the following disjoint intervals,

I0 =
(
rβ − 1

β , rβ

)
, I1 =

(
rβ − 2

β , rβ − 1
β

]
, . . . ,

I%β&−1 =
(
rβ − %β&

β , rβ − %β&−1
β

]
, I%β& =

[
lβ , rβ − %β&

β

]
.

Then di(x,−β) = d if and only if T i−1
β (x) ∈ Id.

We denote by Cβ the set of endpoints of Ii, i.e.,

Cβ =
{

lβ , rβ , rβ −
1
β

, . . . , rβ −
#β$
β

}
. (6)

In case (a), T i
β(lβ) is an inner point of Ic∗i+2

for every i ≥ 1, at which Tβ is
continuous. Therefore, (5) holds, if we put

εn =
1

βn−1
min

({∣∣T i
β(lβ)− c

∣∣ : i = 1, . . . , n− 2, c ∈ Cβ

}
∪

{
{β}
β

})
,

for n ≥ 1 Note here that {β}
β is the length of I%β&.

In case (b), we have

T i
β(lβ) =






left endpoint of I%β&, i ≡ 0 mod q,

right endpoint of Ic∗i+2
, i ≡ −1 mod q,

inner point of Ic∗i+2
, otherwise.

Therefore (5) holds if we put

εn =
1

βn−1
min

({∣∣T i
β(lβ)− c

∣∣ : i = 1, . . . , q − 2, c ∈ Cβ

}
∪

{
{β}
β

})
,

for n ≥ 1. In fact, since q is an even integer and 0 < rβ − x < εn, T i+1
β (x) < T i

β(lβ)
for i ≡ −1 mod q, and T i+1

β (x) > T i
β(lβ) for i ≡ 0 mod q.

In case (c), let q be the period length and let a map T̂β : [lβ , rβ ] → [lβ , rβ ] be
defined by

T̂β(x) = −βx−$ − βx− lβ#
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where $x# is the largest integer strictly less than a real number x > 0, and $0#= 0.
Therefore

T̂β(x) =






rβ , x = rβ − k
β for some k ∈ {1, . . . , #β$},

lβ , x = rβ ,

Tβ(x), otherwise.

From the transformation T̂β , we obtain another particular (−β)-representations
of x ∈ [lβ , rβ ],

x = ( . x̂1x̂2 · · · )−β ,

where x̂i =$ − βT̂ i−1
β (x) − lβ# for i ≥ 1, which can be explained in the following

another way: We divide the interval Iβ into the following disjoint intervals,

Î0 =
[
rβ − 1

β , rβ

]
, Î1 =

[
rβ − 2

β , rβ − 1
β

)
, . . . ,

Î&β%−1 =
[
rβ − &β%

β , rβ − &β%−1
β

)
, Î&β% =

[
lβ , rβ − &β%

β

)
.

Then x̂i = d is equivalent to T̂ i−1
β (x) ∈ Id for i ≥ 1. This representation coincides

with the (−β)-expansion of x if T̂n
β (x) )= rβ for all n ≥ 0, and (x̂1, x̂2, . . .) =

(c∗1, c∗2, . . .) if x = rβ . Then we have

T̂ i
β(rβ) =






right endpoint of Î0, i ≡ 0 mod (q + 1),
left endpoint of Î&β%, i ≡ 1 mod (q + 1),
left endpoint of Îc∗i+1

, i ≡ −1 mod (q + 1),
inner point of Îc∗i+1

, otherwise.

Therefore (5) holds if we put

εn =
1

βn−1
min

({∣∣∣T̂ i
β(rβ)− c

∣∣∣ : i = 2, . . . , q − 1, c ∈ Cβ

}
∪

{
1− $β#

β

})

for n ≥ 1, where Cβ is defined by (6).

As a corollary of Lemma 6, we immediately obtain the following.

Corollary 7. We have

rβ = ( . c∗1c
∗
2 · · · )−β , lβ = ( . c∗2c

∗
3 · · · )−β ,

where d∗(rβ ,−β) = (c∗1, c∗2, . . .).
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Lemma 8. Let d(lβ ,−β) = (b1, . . . , bq) have the odd period q, and let d∗(rβ ,−β) =
(c∗1, c∗2, . . . , c∗q+1). Then,

d(lβ ,−β) ! (c∗n, c∗n+1, . . .) ! d(rβ ,−β) = (0, b1, b2, . . .) (7)

for all n ≥ 1.

Proof. Since the first inequality in (7) for all n ≥ 0 implies the second one, we prove
the first one. It is clear that (c∗n, c∗n+1, . . .) )= d(lβ ,−β) and hence it suffices to show

d(lβ ,−β) ' (c∗n, c∗n+1, . . .) for all n ≥ 1. (8)

As we have shown in Lemma 6 that (c∗n, c∗n+1, . . . , c
∗
n+m) appears in some (−β)-

admissible sequence for any n ≥ 1 and m ≥ 0. Therefore, by Proposition 5, we
have

(b1, b2, . . . , bm+1) ' (c∗n, c∗n+1, . . . , c
∗
n+m) for all n ≥ 1 and m ≥ 0,

which exactly means that (8) holds.

Lemma 9. Let (x1, x2, . . .) be a sequence of Aβ = {0, 1, . . . , #β$} which satisfies

d(lβ ,−β) ' (xn, xn+1, xn+2, . . .) ≺ d∗(rβ ,−β) for all n ≥ 1. (9)

Then
( . xnxn+1 · · · )−β ∈ Iβ for all n ≥ 1.

Proof. Let b0 = 0 and d(lβ ,−β) = (b1, b2, . . .). We first show that, if (x1, x2, . . .)
satisfy Condition (9), then,

( . xnxn+1 · · ·xn+r)−β ≥ ( . bmbm+1 · · · )−β − 1
βr+1

whenever (xn, xn+1, . . . , xn+r) - (bm, bm+1, . . . , bm+r)
(10)

and
( . xnxn+1 · · ·xn+r)−β ≤ ( . bmbm+1 · · · )−β + 1

βr+1

whenever (xn, xn+1, . . . , xn+r) ' (bm, bm+1, . . . , bm+r)
(11)

for all m ≥ 0, n ≥ 1 and r ≥ 0. We prove this by induction on r.
When r = 0, if (xn) - (bm), i.e., xn ≤ bm, then

( . xn)−β =
xn

−β
≥ bm

−β
= ( . bmbm+1 · · · )−β −

1
β

Tm(lβ) ≥ ( . bmbm+1 · · · )−β −
1
β

.

Thus, (10) holds for r = 0. We can prove (11) for r = 0 in the same manner as
(10).

Now suppose that (10) and (11) hold for all m ≥ 0, n ≥ 1 when r < k.
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If (xn, xn+1, . . . , xn+k) - (bm, bm+1, . . . , bm+k), then either xn = bm and
(xn+1, . . . , xn+k) ' (bm+1, . . . , bm+k) or xn < bm. In the first case, by the as-
sumption on the induction,

( . xn · · ·xn+k)−β − ( . bmbm+1 · · · )−β

=
1
−β

[( . xn+1 · · ·xn+k)−β − ( . bm+1bm+2 · · · )−β ]

≥ − 1
βk+1

.

In the latter case, again by the assumption on the induction,

( . xnxn+1 · · ·xn+k)−β − ( . bmbm+1 · · · )−β

=
xn − bm

−β
+

( . xn+1 · · ·xn+k)−β − ( . bm+1bm+2 · · · )−β

−β

≥ 1
β
{1 + [( . bm+1bm+2 · · · )−β − ( . xn+1 · · ·xn+k)−β ]}

≥ 1
β

{
1 +

[
lβ −

(
rβ +

1
βk

)]}
= − 1

βk+1
.

Thus (10) holds for r = k. We can prove (11) for r = k in the same manner as
(10). By taking the limit r →∞ in (10), and respectively (11), we obtain

( . bmbm+1 · · · )−β ≤ ( . xnxn+1 · · · )−β whenever (bm, bm+1, . . .) ' (xn, xn+1, . . .),

and, respectively,

( . bmbm+1 · · · )−β ≥ ( . xnxn+1 · · · )−β whenever (bm, bm+1, . . .) - (xn, xn+1, . . .)

for all m,n ≥ 1. In particular, we have

lβ = ( . b1b2 · · · )−β ≤ ( . xnxn+1 · · · )−β ≤ ( . b0b1b2 · · · )−β = rβ for all n ≥ 1,

since d∗(rβ ,−β) ' (b0, b1, b2, . . .).
To complete the proof, we show that ( . xnxn+1 · · · )−β )= rβ . Let k be the inte-

ger such that xn+i−1 = c∗i for i < k and (−1)k(xn+k−1−c∗k) < 0. Then, by Lemma 6,
there exists a real number y ∈ Iβ such that d(y,−β) = (c∗1, c∗2, . . . , c∗k, yk+1, yk+2, . . .).
Therefore we have

( . xnxn+1 · · · )−β − y

=
1

(−β)k

(
(xn+k−1 − c∗k) + ( . xn+kxn+k+1 · · · )−β − T k

β (y)
)
≤ 0,

and ( . xnxn+1 · · · )−β ≤ y < rβ .
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Theorem 10. An integer sequence (x1, x2, . . .) is (−β)-admissible if and only if

d(lβ ,−β) ' (xn, xn+1, xn+2, . . .) ≺ d∗(rβ ,−β) for all n ≥ 0. (12)

Proof. The “if” part is immediate from Proposition 3 and Lemma 9. By using
Corollary 7, the “only if” part can be proved in the same manner as Proposition
5.

3. (−β)-Shift

We use the terminologies and notations of symbolic dynamical systems following
[10]. We define the (−β)-shift S−β as the set, endowed with the shift, of all bi-infinite
sequences of Aβ = {0, 1, . . . , #β$} for which every finite subword is (−β)-admissible,
i.e., it appears in some (−β)-admissible sequence.

Theorem 11. Let x = (. . . , x−1, x0, x1, x2, . . .) ∈ AZ
β. Then x ∈ S−β if and only if

d(lβ ,−β) ' (xn, xn+1, . . .) ' d∗(rβ ,−β) for all n ∈ Z (13)

Proof. The “only if” part is clear. So assume (13). Then we have exactly one of
the following three cases:

(i) d(lβ ,−β) ' (xn, xn+1, . . .) ≺ d∗(rβ ,−β) for all n ∈ Z

(ii) There are infinitely many n ≤ 0 such that

(xn, xn+1, . . .) = d∗(rβ ,−β).

(iii) There exists some N ∈ Z such that

d(lβ ,−β) ≺ (xn, xn+1, . . .) ≺ d∗(rβ ,−β) for all n ≤ N,

and
(xN+1, xN+2, . . .) = d∗(rβ ,−β).

In case (i), xn = (xn, xn+1, . . .) is a (−β)-admissible sequence for all n ∈ Z and
clearly every subword of xn is (−β)-admissible. In case (ii), every finite subword
of x becomes some finite subword of d∗(rβ ,−β) which has been shown to be (−β)-
admissible in Lemma 6.

In case (iii), we proceed the proof by showing that, for any s, t with s ≤ t, the
word x[N+s,N+t] = (xN+s, xN+s+1, . . . , xN+t) is (−β)-admissible. If s > 0, then
x[N+s,N+t] is a subword of d∗(rβ ,−β) which is (−β)-admissible (Lemma 6). So
assume s ≤ 0 and let m be an integer such that

(b1, . . . , bm−l+1) ! (xN+l, xN+l+1, . . . , xN+m) ! (c∗1, . . . , c
∗
m−l+1) for all l ≤ 0,

where d(lβ ,−β) = (b1, b2, . . .) and d∗(rβ ,−β) = (c∗1, c∗2, . . .).
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If such an m does not exist, we have some l < s and m > t such that

(b1, . . . , bm−l+1) = (xN+l, xN+l+1, . . . , xN+m)

or
(xN+l, xN+l+1, . . . , xN+m) = (c∗1, . . . , c

∗
m−l+1).

(b1, . . . , bm−l+1), (c∗1, . . . , c∗m−l+1) and all their subwords including x[N+s,N+t] are
(−β)-admissible. If such an m exists, we may assume that m > t, and by Lemma
6, there exists a (−β)-admissible sequence (y1, y2, . . .) such that yi = c∗i for i ≤ m.
Therefore the concatenation (xN+s, xN+s+1, . . . , xN , y1, y2, . . .) is a (−β)-admissible
sequence and hence the word x[N+s,N+t] = (xN+s, . . . , xN , y1, y2, . . . , yt) is (−β)-
admissible.

In the rest of this section, our primary concern is in the case where d(lβ ,−β) is
eventually periodic. Before proceeding, we recall some basic definitions and results
in symbolic dynamics from [10]. Let G be a finite directed graph. V(G) denotes
the vertices of G and E(G) denotes the edges of G. Let i(e) (t(e), resp.) denote the
vertex at which e ∈ E(G) starts (ends, resp.). A labeled graph G is a finite directed
graph whose each edge e carries its label L(e) ∈ Aβ . Let ξ = . . . , e−1, e0, e1, . . . be
a bi-infinite path on G, i.e., en ∈ E(G) and t(en) = i(en+1) for all n ∈ Z. Then the
label L(ξ) is defined by

L(ξ) = (. . . ,L(e−1),L(e0),L(e1), . . .) ∈ AZ
β .

The set of labels of all bi-infinite paths on G is denoted by

XG = {L(ξ) | ξ is a bi-infinite path on G} ,

which is known to be a shift space. We say a shift space X is sofic if there exists
some labeled graph G such that X = XG, and we say a sofic shift X is presented
by G if X = XG. A labeled graph is called right resolving if, for each vertex U ,
the edges starting at U carry different labels. It is known that every sofic shift can
be presented by a right resolving labeled graph (see, e.g., [10]). In the proof of the
following theorem, we construct a graph which represents S−β . Our construction
is hinted upon [8], in which Kenyon and Vershik construct graphs which represent
sofic covers of hyperbolic toral automorphisms. When we consider applications to
hyperbolic toral automorphisms, our algorithm looks much more efficient in general
when it is applicable. We implemented their algorithm in [8] and found that it
sometimes outputs graphs having a huge number of vertices. A good example of
this is the case when β is the minimal Pisot number. Our construction is simple
and much more efficient.

Theorem 12. S−β is a sofic shift if and only if d(lβ ,−β) is eventually periodic.

Proof. We prove the “if” part by showing a concrete algorithm to construct a graph
Gβ by which S−β is presented. We first consider the case when d(lβ ,−β) is not
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purely periodic with an odd period. In this case, d∗(rβ ,−β) = d(rβ ,−β) =
(0, b1, b2, . . .) where d(lβ ,−β) = (b1, b2, . . .). Therefore the condition

d(lβ ,−β) ' (xn, xn+1, . . .) ' d∗(rβ ,−β) for all n ≥ 1 (14)

is equivalent to

d(lβ ,−β) ' (xn, xn+1, . . .) for all n ≥ 1.

Let d(lβ ,−β) = (b1, b2, . . . , bp, bp+1, bp+2, . . . , bp+q) and let

l =

{
q, q is an even integer,
2q, q is an odd integer.

Define the map ϕ : {0, 1, 2, . . . , p + l}×Aβ → {0, 1, 2, . . . , p + l} by

ϕ(i, d) =






i + 1, 1 ≤ i < p + l and d = bi,

p + 1, i = p + l and d = bp+l,

1, i )= 0 and (−1)i(bi − d) < 0,
0, otherwise.

Let ϕ∗ : {0, 1, . . . , p + l}×A∗
β → {0, 1, . . . , p + l} be defined as follows: ϕ∗(i, (d)) =

ϕ(i, d) for all d ∈ Aβ and

ϕ∗(i, (d1, d2, . . . , dk)) = ϕ(ϕ∗(i, (d1, . . . , dk−1)), dk).

Notice that if ϕ∗(1, (x1, . . . , xk)) = 0 then there is some subword (xl, . . . , xk) such
that (b1, . . . , bk−l+1) 0 (xl, . . . , xk), but the converse is not generally true. This is
because ϕ∗ does not check all subsequence of (x1, . . . , xk).

Let G′
β be the graph whose vertices are all subsets of {1, 2, . . . p + l}, with one

additional vertex F called the fail state. Let G′
β have the following edges. From any

vertex U )= F , for every d ∈ Aβ there is an edge labeled d to the vertex ϕ(U, d)∪{1}
provided this does not contain 0. If this set contains 0, there is instead an edge
labeled d from U to the fail state F . Let Gβ be the connected component of G′

β

which contains the vertex {1}.
We show Gβ to have the desired property. Let XGβ be the shift presented by the

graph Gβ . It suffices to show B(S−β) = B(XGβ ), where B(X) denote the language
of a shift X. Let (x1, x2, . . .) be a one-sided infinite sequence of Aβ which satisfies

d(lβ ,−β) ' (xn, xn+1, xn+2, . . .) for all n ≥ 1. (15)

Then it is clear that the bi-infinite sequence

(. . . , 0, 0, 0, x1, x2, x3, . . .)
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is contained in S−β . Thus the language B(S−β) consists of the finite prefixes of all
one-sided infinite sequences (x1, x2, . . .) which satisfies (15).

We claim that a one-sided sequence (x1, x2, . . .) is the label of an infinite path
in Gβ starting at the vertex {1}, if and only if it satisfies the condition (15). In
fact, if (x1, x2, . . .) is not the label of any infinite path starting at the vertex {1},
there is a finite path starting at {1} and ending up with the fail state labeled
by (x1, x2, . . . , xm) for some m > 0. This means there exists some n > 0 and
k > 0 such that m = n + k − 1 and b1 = xn, b2 = xn+1, . . . , bk−1 = xn+k−2 and
(−1)k(bk − xn+k−1) > 0 and therefore we have d(lβ ,−β) 0 (xn, xn+1, . . .). Since
there is an edge from {1} to itself labeled 0, the bi-infinite word (. . . , 0, 0, x1, x2, . . .)
is always an element of XGβ if (x1, x2, . . .) is the label of a infinite path starting at
{1}. Since {1} ⊂ U for every vertex U of Gβ , F(U) ⊂ F({1}), where F(U) is the
follower set of U , that is, F(U) is the set of words

{(L(e1),L(e2), . . . ,L(ek)) | ξ = . . . , e−1, e0, e1, . . . is some bi-infinite

path on Gβ and i(e1) = U} .

Therefore we have B(XGβ ) = F({1}), proving B(XGβ ) = B(S−β).
Then we consider the case when d(lβ ,−β) is purely periodic with an odd period.

Let

S−−β = {(xi)i∈Z | d(lβ ,−β) ' (xn, xn+1, . . .)},

and

S+
−β = {(xi)i∈Z | (xn, xn+1, . . .) ' d∗(rβ ,−β)}.

Then clearly
S−β = S−−β ∩ S+

−β .

We can construct a graph G−
β which represents S−−β in the same manner as we

construct Gβ when d(lβ ,−β) is not purely periodic with an odd period. The con-
struction of the graph G+

β which represents S+
−β is similar to that of G−

β . The only
difference from G−

β is that we use the function ϕ instead of ϕ, which is defined as
follows: Let d∗(rβ ,−β) = (c∗1, c∗2, . . . , c∗q+1). The map ϕ : {0, 1, 2, . . . , q +1}×Aβ →
{0, 1, 2, . . . , q + 1} is defined by

ϕ(i, d) =






i + 1, 1 ≤ i < q + 1 and d = c∗i ,

1, i = q + 1 and d = c∗q+1,

1, i )= 0 and (−1)i(c∗i − d) > 0,
0, otherwise.

Now the graph Gβ can be constructed by a standard procedure called the label
product (see e.g. [10, Definition 3.4.8]). The set of vertices of G′

β is V(G−
β )×V(G+

β )
where V(G) denotes the vertices of a graph G. There is an edge from (U,U ′) to
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(V, V ′) labeled by d ∈ Aβ if and only if there are two edges labeled d, one from U to
V in G−

β and the other from U ′ to V ′ in G+
β . Let Gβ be the connected component

of G′
β which contains the vertex ({1}, {1}).

Conversely assume S−β is a sofic shift presented by a right resolving labeled
graph G, and for the sake of contradiction, assume d(lβ ,−β) is not eventually
periodic. Then there is a bi-infinite path ξ = . . . e−1e0e1e2 . . . in G such that
(L(e1),L(e2), . . .) = d(lβ ,−β). By Theorem 11, we have

(−1)iL(ei) = min
{
(−1)iL(e) | e ∈ E(G), i(e) = i(ei)

}
. (16)

Since the number of the vertices of G is finite, there is some vertex U through which
the path ξ0 = e1e2 . . . passes infinitely many times. So ξ0 contains some finite path
en, en+1, · · · , en+l−1 with l even starting and ending at the vertex i(en). Therefore,
by (16) we have ei = ei+l for all i ≥ n, which contradicts our assumption that
d(lβ ,−β) is not eventually periodic.

Example 13. Let β be the minimal Pisot number, i.e., the real root of X3−X−1 =
0. Let us construct the graph Gβ as described in the proof of Theorem 12. We have
d(lβ ,−β) = (1, 0, 0, 1) and therefore p = 3 and l = 2. The following table describes
the function ϕ(i, d) for i ∈ {1, 2, . . . , 5} and d ∈ Aβ = {0, 1}.

i\d 0 1
1 1 2
2 3 1
3 4 0
4 0 5
5 1 4
0 0 0

The graph Gβ is shown in Figure 3, where the fail state F is omitted.

Figure 3: A graph which represents the (−β)-shift with minimal Pisot β.
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Example 14. When β = 2, d(lβ ,−β) = (2, 2, 2, . . .) and therefore d∗(rβ ,−β) =
(0, 1, 0, 1, 0, 1, . . .). The values of functions ϕ and ϕ are shown in Table 2. The
graphs G−

β , G+
β and Gβ are shown in Figure 4.

i\d 0 1 2
1 1 1 2
2 0 0 1

i\d 0 1 2
1 2 1 1
2 1 1 0

Table 2: ϕ (left) and ϕ (right) for β = 2.

Figure 4: G−
β , G+

β and Gβ for β = 2.

Example 15. Let β > 1 be a quadratic Pisot number which is a zero of the poly-
nomial of the form

X2 − aX − b ∈ Z[X].

Then, as we have shown in Example 4, we have

d(lβ ,−β) =

{
(a, a− b, a− b, a− b, . . .), a > b > 0,
(a− 1,−b, a− 1,−b, a− 1,−b, . . .), −a + 1 < b < 0.

The (−β)-shift S−β is represented by the graph shown in the left side of Figure 5,
where the fail state F is omitted.
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Figure 5: Gβ with quadratic Pisot β which satisfies β2 − aβ − b = 0: a > b > 0
(top), −a + 1 < b < 0 (bottom).

4. Invariant Measures

This section considers the frequency of digits in (−β)-expansions. By applying the
theorem of Li and Yorke [9], it can be easily confirmed that Tβ has unique invariant
measure absolutely continuous with respect to the Lebesgue measure and hence is
ergodic.

Theorem 16. Let h−β : Iβ → R be defined by

h−β(x) =
∑

n≥0

dn(x)
(−β)n

where dn(x) =
{

1, x ≥ Tn
β (lβ),

0, otherwise.

Then the measure dµ = h−βdλ is invariant under the transformation Tβ, where dλ
denotes the Lebesgue measure.

Proof. Let d(lβ ,−β) = (b1, b2, . . .). It suffices to show that

h−β(x) =
1
β

∑

y∈T−1
β (x)

h−β(y)
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holds for almost every x ∈ Iβ , that is, h−β is invariant under the Perron–Frobenius
operator. We have

∑

y∈T−1
β (x)

dn(y) =
% β2

β+1−x&∑

i=0

dn

(
x + i

−β

)

= &

{
i ∈ {0, 1, . . . , #β$}

∣∣∣ Tn
β (lβ) ≤ x + i

−β

}

=
{

bn+1 + 1 x ≤ Tn+1
β (lβ)

bn+1 otherwise
= bn+1 + 1− dn+1(x),

for all n ≥ 0.
Since d0(x) = 1 for all x ∈ Iβ

1
β

∑

x=Tβ(y)

h−β(y) =
1
β

% β2
β+1−x&∑

i=0

h−β

(
x + i

−β

)
=

1
β

% β2
β+1−x&∑

i=0

∑

n≥0

dn

(
x+i
−β

)

(−β)n

=
1
β

∑

n≥0

∑% β2
β+1−x&

i=0 dn

(
x+i
−β

)

(−β)n

=
1
β

∑

n≥0

bn+1 + 1− dn+1(x)
(−β)n

= −
∑

n≥1

bn

(−β)n
−

∑

n≥1

1
(−β)n

+
∑

n≥1

dn(x)
(−β)n

=
β

β + 1
+ rβ +




∑

n≥0

dn(x)
(−β)n

− d0(x)





= h−β(x).

Example 17. Let β be the golden mean 1+
√

5
2 . Then Tn

β (lβ) = 0 for n ≥ 1 and
hence

h−β(x) =

{
1, x < 0,
1
β , x ≥ 0.

Example 18. Let β ≈ 1.1347241384 · · · be a root of X6 − X − 1 = 0 and put
si = T i

β(lβ) for i ≥ 0. Then lβ = s0 < s5 < s3 < s4 < s6 < s1 < s2 < s7 < rβ , and
si+3 = si for all i ≥ 5. The calculation of h−β is summarized in the following table.
The support of h−β consists of three disjoint intervals.
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s0 ∼ s5 ∼ s3 ∼ s4 ∼ s6 ∼ s1 ∼ s2 ∼ s7 ∼
1

√ √ √ √ √ √ √ √

− 1
β

√ √ √
1

β2

√ √

− 1
β3

√ √ √ √ √ √
1

β4

√ √ √ √ √

− 1
β5

√ √ √ √ √ √ √
1

β6

√ √ √ √

− 1
β7

√
1

β8

√ √ √ √ √ √ √

...
...

...
...

...
...

...
...

...
h−β 1 1

β3 0 1
β4

1
β 0 1

β2
1

β5

5. Concluding Remarks

We summarize our main results in Table 3 showing the differences and the similar-
ities between (−β)-expansions and β-expansions, where I is the interval on which
the transformation T is defined and h is the density function of the invariant mea-
sure of Tβ absolutely continuous to the Lebesgue measure. The row “admissible” in
Table 3 shows the conditions for an integer sequence (x1, x2, . . .) to be admissible,
and ≺lex stands for the lexicographic order. For the definition of d∗(1,β) and Tn(1),
see, e.g., [4].

β-expansion (−β)-expansion

I = [l, r) [0, 1)
[
− β

β+1 , 1
β+1

)

T {βx} = {βx− 0}+ 0 {−βx− l}+ l

h
∑

n≥0

dn(x)
βn

∑

n≥0

dn(x)
(−β)n

dn(x)

{
1 x ≤ Tn(1),
0 otherwise.

{
1 x ≥ Tn(l),
0 otherwise.

admissible ∀n:(xn, xn+1, . . .) ≺lex d∗(1,β) ∀n:d(l,−β) ' (xn, xn+1, . . .) ≺ d∗(r,β)

sofic iff d∗(1,β) is eventually periodic d∗(lβ ,−β) is eventually periodic

Table 3: Summary
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We can consider many problems considered in β-expansions (e.g. [6, 1, 13, 2]),
which are not treated in this paper and should be explored in the future.
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