ON THE β-EXPANSION OF AN ALGEBRAIC NUMBER IN AN ALGEBRAIC BASE β

Yann Bugeaud
Université Louis Pasteur, U. F. R. de mathématiques,Strasbourg, France
bugeaud@math.u-strasbg.fr

Received: 7/1/08, Accepted: 1/26/09

Abstract

Let α in $(0,1]$ and $\beta>1$ be algebraic numbers. We study the asymptotic behaviour of the function that counts the number of digit changes in the β-expansion of α.

1. Introduction

Let $\beta>1$ be a real number. The β-transformation T_{β} is defined on $[0,1]$ by $T_{\beta}: x \longmapsto \beta x \bmod 1$. In 1957, Rényi [12] introduced the β-expansion of a real x in $[0,1]$, denoted by $d_{\beta}(x)$ and defined by

$$
d_{\beta}(x)=0 . x_{1} x_{2} \ldots x_{k} \ldots,
$$

where $x_{k}=\left\lfloor\beta T_{\beta}^{k-1}(x)\right\rfloor$ for $k \geq 1$, except when β is an integer and $x=1$, in which case $d_{\beta}(1):=0 .(\beta-1) \ldots(\beta-1) \ldots$ Here and throughout the present paper, $\lfloor\cdot\rfloor$ denotes the integer part function. Clearly, we have

$$
x=\sum_{k \geq 1} \frac{x_{k}}{\beta^{k}}
$$

For $x<1$, this expansion coincides with the representation of x computed by the 'greedy algorithm'. If β is an integer b, then the digits x_{i} of x lie in the set $\{0,1, \ldots, b-1\}$ and, if $x<1$, then $d_{b}(x)$ corresponds to the b-ary expansion of x. If β is not an integer, then the digits x_{i} lie in the set $\{0,1, \ldots,\lfloor\beta\rfloor\}$. We direct the reader to [2] and to the references quoted therein for more on β-expansions. Throughout this note, we say that $d_{\beta}(x)$ is finite (resp. infinite) if there are only finitely many (resp. there are infinitely many) non-zero digits in the β-expansion of x.

We stress that the β-expansion of 1 has been extensively studied, for it yields a lot of information on the β-shift. In particular, Blanchard [5] proposed a classification of the β-shifts according to the properties of the (finite or infinite) word given by $d_{\beta}(1)$, see Section 4 of [2]. The occurrences of consecutive 0 's in $d_{\beta}(1)$ play a crucial role in Blanchard's classification of the β-shifts. This motivates the following problem first investigated in [17].

Let $\beta>1$ be a real number such that $d_{\beta}(1)$ is infinite and let $\left(a_{k}\right)_{k \geq 1}$ be the β-expansion of 1. Assume that there exist a sequence of positive integers $\left(r_{n}\right)_{n \geq 1}$ and an increasing sequence of positive integers $\left(s_{n}\right)_{n \geq 1}$ such that

$$
a_{s_{n}+1}=a_{s_{n}+2}=\cdots=a_{s_{n}+r_{n}}=0, \quad a_{s_{n}+r_{n}+1} \neq 0
$$

and $s_{n+1}>s_{n}+r_{n}$ for every positive integer n. The problem is then to estimate the gaps between two consecutive non-zero digits in $d_{\beta}(1)$, that is, to estimate the asymptotic behaviour of the ratio r_{n} / s_{n}.

The main result of [17], quoted as Theorem VG below, mainly shows that $d_{\beta}(1)$ cannot be 'too lacunary' when β is an algebraic number. Recall that the Mahler measure of a real algebraic number θ, denoted by $M(\theta)$, is, by definition, equal to the product

$$
M(\theta):=a \prod_{i=1}^{d} \max \left\{1,\left|\theta_{i}\right|\right\}
$$

where $\theta=\theta_{1}, \theta_{2}, \ldots, \theta_{d}$ are the complex conjugates of θ and a is the leading coefficient of the minimal defining polynomial of θ over the integers.

Theorem VG. Let $\beta>1$ be a real algebraic number. Then, with the above notation, we have

$$
\limsup _{n \rightarrow \infty} \frac{r_{n}}{s_{n}} \leq \frac{\log M(\beta)}{\log \beta}-1
$$

Theorem VG was extended in [2], where, roughly speaking, repetitions of arbitrary (finite) blocks in the β-expansion of an algebraic number (where $\beta>1$ is algebraic) are studied, see Theorem 2 from [2] for a precise statement.

The purpose of the present note is to study the β-expansion of an algebraic number α from another point of view, introduced in [8]. We aim at estimating the asymptotic behaviour of the number of digit changes in $d_{\beta}(\alpha)$. For α in $(0,1]$, write

$$
d_{\beta}(\alpha)=0 . a_{1} a_{2} \ldots
$$

and define the function $\operatorname{nbdc}_{\beta}$, 'number of digit changes in the β-expansion', by

$$
\operatorname{nbdc}_{\beta}(n, \alpha)=\operatorname{Card}\left\{1 \leq k \leq n: a_{k} \neq a_{k+1}\right\}
$$

for any positive integer n. This function was first studied in [8] when β is an integer, see also [9] for an improvement of the main result of [8]. The short Section 6 of [8] is devoted to the study of $\operatorname{nbdc}_{\beta}$ for β algebraic, but it contains some little mistakes (see below) and its main result can be strengthened (see Theorem 2 below).

The present note is organized as follows. Our results on the behaviour of the function $\operatorname{nbdc}_{\beta}$ when β is an algebraic number are stated in Section 2 and proved in Section 4. New results on values of lacunary series at algebraic points are discussed in Section 3.

2. Results

We begin by stating a consequence of Theorem 2 from [2], that can also be obtained with the tools used in [17].

Theorem 1. Let $\beta>1$ be a real algebraic number. Let α be an algebraic number in $(0,1]$. If $d_{\beta}(\alpha)$ is infinite, then

$$
\begin{equation*}
\liminf _{n \rightarrow+\infty} \frac{\operatorname{nbdc}_{\beta}(n, \alpha)}{\log n} \geq\left(\log \left(\frac{\log M(\beta)}{\log \beta}\right)\right)^{-1} \tag{1}
\end{equation*}
$$

For the sake of completeness, Theorem 1 is established in Section 4 along with the proof of Theorem 2 .

A Pisot (resp. Salem) number is an algebraic integer greater than 1 whose conjugates are of modulus less than 1 (resp. less than or equal to 1 , with at least one conjugate on the unit circle). In particular, an algebraic number $\beta>1$ is a Pisot or a Salem number if, and only if, $M(\beta)=\beta$. In that case, Theorem 1 implies that

$$
\begin{equation*}
\frac{\operatorname{nbdc}_{\beta}(n, \alpha)}{\log n} \underset{n \rightarrow+\infty}{\longrightarrow}+\infty \tag{2}
\end{equation*}
$$

The main purpose of the present note is to show how the use of a suitable version of the Quantitative Subspace Theorem allows us to strengthen (2.2).

Theorem 2. Let β be a Pisot or a Salem number. Let α be an algebraic number in $(0,1]$ such that $d_{\beta}(\alpha)$ is infinite and write

$$
d_{\beta}(\alpha)=0 . a_{1} a_{2} \ldots a_{k} \ldots
$$

Then, there exists an effectively computable constant $c(\alpha, \beta)$, depending only on α and β, such that

$$
\begin{equation*}
\operatorname{nbdc}_{\beta}(n, \alpha) \geq c(\alpha, \beta)(\log n)^{3 / 2} \cdot(\log \log n)^{-1 / 2} \tag{3}
\end{equation*}
$$

for every positive integer n.
We stress that the exponent of $(\log n)$ in (3) is independent of β, unlike in Theorem 3 of [8]. This is a consequence of the use of the Parametric Subspace Theorem, exactly as in Theorem 3.1 of [9]. Note that Theorem 3 of [8] is not correctly stated: indeed, it claims a result valid for all expansions, whereas in the proof we are led to construct good algebraic approximations to α and to use one property of the β-expansion (see (4.14) below) to ensure that, roughly speaking, all these approximations are different.

We display two immediate corollaries of Theorem 2. A first one is concerned with the number of non-zero digits in the β-expansion of an algebraic number for β being a Pisot or a Salem number.

Corollary 3. Let ε be a positive real number. Let β be a Pisot or a Salem number. Let α be an algebraic number in $(0,1]$ whose β-expansion is infinite. Then, for n large enough, there are at least

$$
(\log n)^{3 / 2} \cdot(\log \log n)^{-1 / 2-\varepsilon}
$$

non-zero digits among the first n digits of the β-ary expansion of α.
For $\beta=2$, Corollary 3 gives a much weaker result than the one obtained by Bailey, Borwein, Crandall, and Pomerance [3], who proved that, among the first n digits of the binary expansion of a real irrational algebraic number ξ of degree d, there are at least $c(\xi) n^{1 / d}$ occurrences of the digit 1 , where $c(\xi)$ is a suitable positive constant (see also Rivoal [14]).

Recall that β is called a Parry number if $d_{\beta}(1)$ is finite or eventually periodic. Every Pisot number is a Parry number [15, 4] and K. Schmidt [15] conjectured that all Salem numbers are Parry numbers. This was proved for all Salem numbers of degree 4 by Boyd [6], who gave in [7] a heuristic suggesting the existence of Salem numbers of degree 8 that are not Parry numbers.

We highlight the special case of the β-expansion of 1 in a base β that is a Salem number.

Corollary 4. Let ε be a positive real number. Let β be a Salem number. Assume that $d_{\beta}(1)$ is infinite and write

$$
d_{\beta}(1)=0 . a_{1} a_{2} \ldots
$$

For any sufficiently large integer n, we have

$$
a_{1}+\ldots+a_{n}>(\log n)^{3 / 2} \cdot(\log \log n)^{-1 / 2-\varepsilon}
$$

and there are at least $(\log n)^{3 / 2}(\log \log n)^{-1 / 2-\varepsilon}$ indices j with $1 \leq j \leq n$ and $a_{j} \neq 0$.

In view of Theorem 2, our Corollaries 3 and 4 can be (very) slightly improved.

3. On Values of Lacunary Series at Algebraic Points

The following problem was posed in Section 7 of [8].
Problem 5. Let $\mathbf{n}=\left(n_{j}\right)_{j \geq 1}$ be a strictly increasing sequence of positive integers and set

$$
\begin{equation*}
f_{\mathbf{n}}(z)=\sum_{j \geq 1} z^{n_{j}} \tag{4}
\end{equation*}
$$

If the sequence \mathbf{n} increases sufficiently rapidly, then the function $f_{\mathbf{n}}$ takes transcendental values at every non-zero algebraic point in the open unit disc.

By a clever use of the Schmidt Subspace Theorem, Corvaja and Zannier [10] proved that the conclusion of Problem 5 holds for $f_{\mathbf{n}}$ given by (3.1) when the strictly increasing sequence \mathbf{n} is lacunary, that is, satisfies

$$
\liminf _{j \rightarrow+\infty} \frac{n_{j+1}}{n_{j}}>1
$$

Under the weaker assumption that

$$
\limsup _{j \rightarrow+\infty} \frac{n_{j+1}}{n_{j}}>1
$$

it follows from the Ridout Theorem that the function $f_{\mathbf{n}}$ given by (3.1) takes transcendental values at every point $1 / b$, where $b \geq 2$ is an integer (see, e.g., Satz 7 from Schneider's monograph [16]), and even at every point $1 / \beta$, where β is a Pisot or a Salem number [1] (see also Theorem 3 of [10]).

The latter result can be improved with the methods of the present paper. Namely, we extend Corollary 4 of [8] and Corollary 3.2 of [9] as follows.

Corollary 6. Let β be a Pisot or a Salem number. For any real number $\eta>2 / 3$, the sum of the series

$$
\begin{equation*}
\sum_{j \geq 1} \beta^{-n_{j}}, \quad \text { where } n_{j}=2^{\left\lfloor j^{\eta}\right\rfloor} \text { for } j \geq 1 \tag{5}
\end{equation*}
$$

is transcendental.
The growth of the sequence $\left(n_{j}\right)_{j \geq 1}$ defined in (5) shows that our Corollary 6 is not a consequence of the results of [10].

To establish Corollary 6 , it is enough to check that, for any positive integer N, the number of positive integers j such that $2\left\lfloor j^{\eta}\right\rfloor \leq N$ is less than some absolute constant times $(\log N)^{1 / \eta}$, and to apply Theorem 2 .

To be precise, to establish Corollary 3, we prove that any real number α having an expansion in base β given by (5) is transcendental. We do not need to assume (or to prove) that (5) is the β-expansion of α. Namely, this assumption is used in the proof to guarantee that the approximants α_{j} constructed in the proof of Theorem 2 are (essentially) all different. Under the assumption of Corollary 3, this condition is automatically satisfied.

4. Proofs

The proof of Theorem 2 follows the same lines as that of Theorem 1 of [8]. For convenience, we first explain the case where β is an integer $b \geq 2$. Then, we point out which changes have to be made to treat the case of a real algebraic number $\beta>1$.

The key point for our argument is the following result of Ridout [13].
For a prime number ℓ and a non-zero rational number x, we set $|x|_{\ell}:=\ell^{-u}$, where u is the exponent of ℓ in the prime decomposition of x. Furthermore, we set $|0|_{\ell}=0$. With this notation, the main result of [13] reads as follows.

Theorem (Ridout, 1957) Let S_{1} and S_{2} be disjoint finite sets of prime numbers. Let θ be a real algebraic number. Let ε be a positive real number. Then there are only finitely many rational numbers p / q with $q \geq 1$ such that

$$
\begin{equation*}
0<\left|\theta-\frac{p}{q}\right| \cdot \prod_{\ell \in S_{1}}|p|_{\ell} \cdot \prod_{\ell \in S_{2}}|q|_{\ell}<\frac{1}{q^{2+\varepsilon}} \tag{6}
\end{equation*}
$$

More precisely, we need a quantitative version of Ridout's theorem, namely an explicit upper bound for the number of solutions to (6). In this direction, Locher [11] proved that, if $\varepsilon<1 / 4$, the degree of θ is at most d and its Mahler measure at most H, then (6) has at most

$$
\begin{equation*}
\mathcal{N}_{1}(\varepsilon):=c_{1}(d) e^{7 s} \varepsilon^{-s-4} \log \left(\varepsilon^{-1}\right) \tag{7}
\end{equation*}
$$

solutions p / q with $q \geq \max \left\{H, 4^{4 / \varepsilon}\right\}$, where s denotes the cardinality of the set $S_{1} \cup S_{2}$, and $c_{1}(d)$ depends only on d.

Actually, as will be apparent below, in the present application of the quantitative Ridout's theorem, S_{1} is the empty set and we have actually to estimate the total number of solutions to the system of inequalities

$$
\begin{equation*}
0<\left|\theta-\frac{p}{q}\right|<\frac{c}{q^{1+\varepsilon}}, \quad \prod_{\ell \in S_{2}}|q|_{\ell}<\frac{c}{q} \tag{8}
\end{equation*}
$$

where c is a positive integer. Every solution to (8) with q large is a solution to (6), with ε replaced by 2ε, but the converse does not hold. Furthermore, the best known upper bound for the total number of large solutions to (8) does not depend on the set S_{2}. Namely, if $\varepsilon<1 / 4$, then there exists an explicit number $c_{2}(d)$, depending only on the degree d of θ, such that (8) has at most

$$
\begin{equation*}
\mathcal{N}_{2}(\varepsilon):=c_{2}(d) \varepsilon^{-3} \log \left(\varepsilon^{-1}\right) \tag{9}
\end{equation*}
$$

solutions p / q with $q \geq \max \left\{2 H, 4^{4 / \varepsilon}\right\}$; see Corollary 5.2 of [9]. Since there is no dependence on s in (9), unlike in (4.2), this explains the improvement obtained in [9] on the result from [8].

After these preliminary remarks, let us explain the method of the proof. Let α be an irrational (otherwise, the result is clearly true) real number in $(0,1)$ and write

$$
\alpha=\sum_{k \geq 1} \frac{a_{k}}{b^{k}}=0 . a_{1} a_{2} \ldots
$$

Define the increasing sequence of positive integers $\left(n_{j}\right)_{j \geq 1}$ by $a_{1}=\ldots=a_{n_{1}}$, $a_{n_{1}} \neq a_{n_{1}+1}$ and $a_{n_{j}+1}=\ldots=a_{n_{j+1}}, a_{n_{j+1}} \neq a_{n_{j+1}+1}$ for every $j \geq 1$. Observe that

$$
\begin{equation*}
\operatorname{nbdc}_{b}(n, \alpha)=\max \left\{j: n_{j} \leq n\right\} \tag{10}
\end{equation*}
$$

for $n \geq n_{1}$, and that $n_{j} \geq j$ for $j \geq 1$. To construct good rational approximations to α, we simply truncate its b-ary expansion at rank $a_{n_{j}+1}$ and then complete with repeating the digit $a_{n_{j}+1}$. Precisely, for $j \geq 1$, we define the rational number

$$
\alpha_{j}=\sum_{k=1}^{n_{j}} \frac{a_{k}}{b^{k}}+\sum_{k=n_{j}+1}^{+\infty} \frac{a_{n_{j}+1}}{b^{k}}=\sum_{k=1}^{n_{j}} \frac{a_{k}}{b^{k}}+\frac{a_{n_{j}+1}}{b^{n_{j}}(b-1)}=: \frac{p_{j}}{b^{n_{j}}(b-1)} .
$$

Set $q_{j}:=b^{n_{j}}(b-1)$ and take for S_{2} the set of prime divisors of b. Observe that

$$
\begin{equation*}
0<\left|\alpha-\alpha_{j}\right|<\frac{1}{b^{n_{j+1}}}, \quad \prod_{\ell \in S_{2}}\left|q_{j}\right|_{\ell}=\frac{b-1}{q_{j}} \tag{11}
\end{equation*}
$$

On the other hand, the Liouville inequality as stated by Waldschmidt [18], p. 84 , asserts that there exists a positive constant c, depending only on α, such that

$$
\left|\alpha-\frac{p}{q}\right| \geq \frac{c}{q^{d}}, \quad \text { for all positive integers } p, q
$$

where d is the degree of α. Consequently, we have

$$
\begin{equation*}
n_{j+1} \leq 2 d n_{j} \tag{12}
\end{equation*}
$$

for every sufficiently large integer j, say for $j \geq j_{0}$.
It then follows from (11) and (12) that

$$
\begin{equation*}
0<\left|\alpha-\frac{p_{j}}{q_{j}}\right|<\frac{(b-1)^{2 d}}{q_{j}^{n_{j+1} / n_{j}}}, \quad \prod_{\ell \in S_{2}}\left|q_{j}\right|_{\ell}=\frac{b-1}{q_{j}} \tag{13}
\end{equation*}
$$

Note that all the p_{j} / q_{j} 's are different. We are in position to apply the quantitative form of the Ridout Theorem to (4.8). Let ε be a real number with $0<\varepsilon<1 / 4$. Let $J>j_{0}$ be a large positive integer. It follows from Corollary 5.2 of [9] that there exist at most $\mathcal{N}_{2}(\varepsilon)$ positive integers $j>J$ such that $n_{j+1} \geq(1+\varepsilon) n_{j}$. Consequently, we infer from (9) and (12) that

$$
\frac{n_{J}}{n_{j_{0}}}=\frac{n_{J}}{n_{J-1}} \times \ldots \times \frac{n_{j_{0}+1}}{n_{j_{0}}} \leq(1+\varepsilon)^{J}(2 d)^{\mathcal{N}_{2}(\varepsilon)}
$$

and

$$
\log n_{J} \ll J \varepsilon+\varepsilon^{-4}
$$

where the numerical constant implied in \ll depends only on α. Selecting $\varepsilon=J^{-1 / 5}$, we get that

$$
\begin{equation*}
\log n_{J} \ll J^{4 / 5} \tag{14}
\end{equation*}
$$

By (10), this implies a lower bound for $\operatorname{nbdc}_{b}(n, \alpha)$. Here, to get (14), we have used a rather crude upper bound for $\mathcal{N}_{2}(\varepsilon)$. A further refinement can be obtained by means of the trick that allowed us to prove Theorem 3.1 of [9], which is similar to Theorem 2 for $\beta=b$.

Replacing b by an algebraic number $\beta>1$, everything goes along the same lines, except that we have to apply a suitable extension of Ridout's theorem, and several technical difficulties arise.

We proceed exactly as above, keep the same notation, and set

$$
\begin{equation*}
\alpha_{j}=\sum_{k=1}^{n_{j}} \frac{a_{k}}{\beta^{k}}+\sum_{k=n_{j}+1}^{+\infty} \frac{a_{n_{j}+1}}{\beta^{k}}=\sum_{k=1}^{n_{j}} \frac{a_{k}}{\beta^{k}}+\frac{a_{n_{j}+1}}{\beta^{n_{j}}(\beta-1)}=: \frac{p_{j}}{\beta^{n_{j}}(\beta-1)} \tag{15}
\end{equation*}
$$

Here, p_{j} is an element of the number field generated by β. We have to prove that α_{j} is distinct from α : unlike when β is an integer, this is not straightforward.

Recall that $a_{n_{j}+1}=\ldots=a_{n_{j+1}}$ and $a_{n_{j+1}} \neq a_{n_{j+1}+1}$. Assume first that

$$
\begin{equation*}
a_{n_{j}+1}>a_{n_{j+1}+1} \tag{16}
\end{equation*}
$$

Then, using (15), we have

$$
\begin{equation*}
\alpha_{j}-\sum_{k=1}^{n_{j+1}} \frac{a_{k}}{\beta^{k}} \geq \frac{a_{n_{j}+1}}{\beta^{n_{j+1}+1}}+\frac{a_{n_{j}+1}}{\beta^{n_{j+1}+2}} \tag{17}
\end{equation*}
$$

while

$$
\begin{equation*}
\alpha-\sum_{k=1}^{n_{j+1}} \frac{a_{k}}{\beta^{k}} \leq \frac{a_{n_{j+1}+1}}{\beta^{n_{j+1}+1}}+\frac{1}{\beta^{n_{j+1}+1}} \leq \frac{a_{n_{j}+1}}{\beta^{n_{j+1}+1}} \tag{18}
\end{equation*}
$$

since, by the property of the β-expansion,

$$
\begin{equation*}
\sum_{k \geq r+1} \frac{a_{k}}{\beta^{k}} \leq \frac{1}{\beta^{r}}, \quad \text { for every } r \geq 0 \tag{19}
\end{equation*}
$$

Note that $a_{n_{j}+1} \geq 1$, by (16). Combining this with (17) and (18), we get that

$$
\begin{equation*}
\alpha_{j}-\alpha \geq \frac{1}{\beta^{n_{j+1}+2}} \tag{20}
\end{equation*}
$$

Assume now that

$$
\begin{equation*}
a_{n_{j}+1}<a_{n_{j+1}+1} . \tag{21}
\end{equation*}
$$

Then, we have

$$
\begin{equation*}
\alpha_{j}-\sum_{k=1}^{n_{j+1}} \frac{a_{k}}{\beta^{k}}=\frac{a_{n_{j}+1}}{\beta^{n_{j+1}}(\beta-1)} \tag{22}
\end{equation*}
$$

while

$$
\begin{equation*}
\alpha-\sum_{k=1}^{n_{j+1}} \frac{a_{k}}{\beta^{k}}>\frac{a_{n_{j+1}+1}}{\beta^{n_{j+1}+1}} \geq \frac{a_{n_{j}+1}+1}{\beta^{n_{j+1}+1}} \tag{23}
\end{equation*}
$$

by (21). Since $a_{n_{j}+1}<\beta-1$, we infer from (22) that

$$
\alpha_{j}-\sum_{k=1}^{n_{j+1}} \frac{a_{k}}{\beta^{k}}<\frac{1}{\beta^{n_{j+1}+1}}
$$

and then from (23) that

$$
\alpha-\alpha_{j}>0 .
$$

Note also that, by (23), at least one of the following statements holds:

$$
\begin{equation*}
n_{j+2}=n_{j+1}+1 \quad \text { and } \quad 0=a_{n_{j+2}+1}<a_{n_{j+1}+1} \tag{24}
\end{equation*}
$$

or

$$
\begin{equation*}
\alpha-\alpha_{j}>\frac{1}{\beta^{n_{j+1}+2}} . \tag{25}
\end{equation*}
$$

On the other hand, we check that

$$
\begin{equation*}
\left|\alpha-\alpha_{j}\right| \ll \frac{1}{\beta^{n_{j+1}}}, \quad \text { for } j \geq 1 \tag{26}
\end{equation*}
$$

Here, and throughout the end of the paper, the constants implied by \ll depend only on α and β. Disregarding the indices j for which we are in case (24) (and this concerns at most one index in every pair $(j, j+1)$), we infer from (20), (25), and (26) that the number of occurrences of a given element in the sequence $\left(\alpha_{j}\right)_{j \geq 1}$ is bounded by an absolute constant.

Now, we apply the extension to number fields of the aforementioned results of Ridout and Locher. We keep the notation from Section 6 of [2], noticing that the r_{n} (resp. s_{n}) in that paper corresponds to our n_{j} (resp. to 1). In particular, the height function H is defined as in [2].

Let \mathbf{K} be the number field generated by α and β and denote by D its degree. We consider the following linear forms, in two variables and with algebraic coefficients. For the place v_{0} corresponding to the embedding of \mathbf{K} defined by $\beta \hookrightarrow \beta$, set $L_{1, v_{0}}(x, y)=x$ and $L_{2, v_{0}}(x, y)=\alpha(\beta-1) x+y$. It follows from (15) and (26) that

$$
\left|L_{2, v_{0}}\left(\beta^{n_{j}},-p_{j}\right)\right|_{v_{0}} \ll \frac{1}{\beta^{\left(n_{j+1}-n_{j}\right) / D}}
$$

where we have chosen the continuation of $|\cdot|_{v_{0}}$ to $\overline{\mathbf{Q}}$ defined by $|x|_{v_{0}}=|x|^{1 / D}$.

Denote by S_{∞}^{\prime} the set of all other infinite places on \mathbf{K} and by S_{0} the set of all finite places v on \mathbf{K} for which $|\beta|_{v} \neq 1$. For any v in $S_{0} \cup S_{\infty}^{\prime}$, set $L_{1, v}(x, y)=x$ and $L_{2, v}(x, y)=y$. Denote by S the union of S_{0} and the infinite places on K. Clearly, for any v in S, the linear forms $L_{1, v}$ and $L_{2, v}$ are linearly independent.

To simplify the exposition, set

$$
\mathbf{x}_{j}=\left(\beta^{n_{j}},-p_{j}\right)
$$

We wish to estimate the product

$$
\Pi_{j}:=\prod_{v \in S} \prod_{i=1}^{2} \frac{\left|L_{i, v}\left(\mathbf{x}_{j}\right)\right|_{v}}{\left|\mathbf{x}_{j}\right|_{v}}
$$

from above. Arguing exactly as in [2], we get that

$$
\begin{align*}
\Pi_{j} & \ll n_{j}^{D} \beta^{-n_{j+1} / D} M(\beta)^{n_{j} / D} \prod_{v \in S}\left|\mathbf{x}_{j}\right|_{v}^{-2} \\
& \ll n_{j}^{D} \beta^{-n_{j+1} / D} M(\beta)^{n_{j} / D} H\left(\mathbf{x}_{j}\right)^{-2} \tag{27}
\end{align*}
$$

since $\left|\mathbf{x}_{j}\right|_{v}=1$ if v does not belong to S.
Note that

$$
\begin{equation*}
\beta^{n_{j}} \ll H\left(\mathbf{x}_{j}\right) \ll n_{j}^{D} M(\beta)^{n_{j}} \tag{28}
\end{equation*}
$$

Let ρ denote a positive real number that is strictly smaller than the right-hand side of (2.1). Assume that there are arbitrarily large integers n such that

$$
\operatorname{nbdc}_{\beta}(n, \alpha) \leq \rho \log n
$$

Consequently, there must be infinitely many indices j with

$$
n_{j+1} \geq \exp \left\{\rho^{-1}\right\} n_{j}
$$

It then follows from (4.22) and (4.23) that there are a positive real number ε and arbitrarily large integers j such that

$$
\Pi_{j} \ll H\left(\mathbf{x}_{j}\right)^{-2-\varepsilon}
$$

We then get infinitely many indices j such that $p_{j} / \beta^{n_{j}}$ takes the same value. This contradicts the fact that the number of occurrences of a given element in the sequence $\left(\alpha_{j}\right)_{j \geq 1}$ is bounded by an absolute constant, and proves Theorem 1.

From now on, we assume that $M(\beta)=\beta$. We infer from (4.22) and (4.23) that

$$
\Pi_{j} \ll H\left(\mathbf{x}_{j}\right)^{-2-\left(n_{j+1} / n_{j}-1\right) /(2 D)}
$$

as soon as j is sufficiently large.

We need a suitable extension of Corollary 5.2 from [9] to conclude (unfortunately, the notations used in [9] differ from ours). Exactly as in the case when β is an integer, we do not have to consider a product of linear forms, but rather a system

$$
\begin{array}{ll}
\left|L_{1, v_{0}}\left(\mathbf{x}_{j}\right)\right|_{v_{0}} \leq \kappa H\left(\mathbf{x}_{j}\right), & \left|L_{2, v_{0}}\left(\mathbf{x}_{j}\right)\right|_{v_{0}} \leq H\left(\mathbf{x}_{j}\right)^{-\delta} \\
\left|L_{1, v}\left(\mathbf{x}_{j}\right)\right|_{v} \leq \kappa H\left(\mathbf{x}_{j}\right)^{-c_{v}}, & \left|L_{2, v}\left(\mathbf{x}_{j}\right)\right|_{v} \leq H\left(\mathbf{x}_{j}\right)^{\eta} \quad\left(v \in S_{\infty}^{\prime}\right), \\
\left|L_{1, v}\left(\mathbf{x}_{j}\right)\right|_{v} \leq \kappa H\left(\mathbf{x}_{j}\right)^{-c_{v}}, & \left|L_{2, v}\left(\mathbf{x}_{j}\right)\right|_{v} \leq 1 \quad\left(v \in S_{0}\right)
\end{array}
$$

Here, κ is a positive real number, the c_{v} are defined by $|\beta|_{v}=\beta^{-c_{v} / D}$ and $\delta=\left(s^{\prime}+1\right) \eta$, where s^{\prime} is the cardinality of S_{∞}^{\prime}. Observe that $\sum_{v \in S_{\infty}^{\prime} \cup S_{0}} c_{v}=1$. We do not work out the technical details. Everything goes along the same lines as in [9]. It remains to note that, by the general form of the Liouville inequality (as in [18], p. 83), we get that

$$
\left|\alpha-\alpha_{j}\right| \gg \beta^{-D n_{j}}
$$

This provides us with the needed extension of (12) and completes the sketch of the proof of Theorem 2.

References

[1] B. Adamczewski, Transcendance «à la Liouville » de certains nombres réels, C. R. Acad. Sci. Paris 338 (2004), 511-514.
[2] B. Adamczewski and Y. Bugeaud, Dynamics for β-shifts and Diophantine approximation, Ergod. Th. \& Dynam. Sys. 27 (2007), 1695-1711.
[3] D. H. Bailey, J. M. Borwein, R. E. Crandall and C. Pomerance, On the binary expansions of algebraic numbers, J. Théor. Nombres Bordeaux 16 (2004), 487-518.
[4] A. Bertrand-Mathis, Développements en base θ, répartition modulo un de la suite $\left(x \theta^{n}\right)_{n \geq 0}$, langages codés et θ-shift, Bull. Soc. Math. France 114 (1986), 271-323.
[5] F. Blanchard, β-expansions and symbolic dynamics, Theoret. Comput. Sci. 65 (1989), 131-141.
[6] D. Boyd, Salem numbers of degree four have periodic expansions. In: Théorie des nombres (Quebec, PQ, 1987), pp. 57-64, de Gruyter, 1989.
[7] D. Boyd, On the beta expansion for Salem numbers of degree 6, Math. Comp. 65 (1996), 861-875.
[8] Y. Bugeaud, On the b-ary expansion of an algebraic number, Rend. Sem. Mat. Univ. Padova 118 (2007), 217-233.
[9] Y. Bugeaud and J.-H. Evertse, On two notions of complexity of algebraic numbers, Acta Arith. 133 (2008), 221-250.
[10] P. Corvaja and U. Zannier, Some new applications of the subspace theorem, Compositio Math. 131 (2002), 319-340.
[11] H. Locher, On the number of good approximations of algebraic numbers by algebraic numbers of bounded degree, Acta Arith. 89 (1999), 97-122.
[12] A. Rényi, Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hung. 8 (1957), 477-493.
[13] D. Ridout, Rational approximations to algebraic numbers, Mathematika 4 (1957), 125-131.
[14] T. Rivoal, On the bits couting function of real numbers, J. Austral. Math. Soc. $\mathbf{8 5}$ (2008), 95-111.
[15] K. Schmidt, On periodic expansions of Pisot and Salem numbers, Bull. London Math. Soc. 12 (1980), 269-278.
[16] Th. Schneider, Einführung in die transzendenten Zahlen. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957.
[17] J.-L. Verger-Gaugry, On gaps in Rényi β-expansions of unity and β-integers for $\beta>1$ an algebraic number, Ann. Inst. Fourier (Grenoble) 56 (2006), 2565-2579.
[18] M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups. Transcendence properties of the exponential function in several variables. Grundlehren der Mathematischen Wissenschaften 326. Springer-Verlag, Berlin, 2000.

