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Abstract
In 1836 E. Midy published in France an article where he showed that if p is a prime

number, such that the smallest repeating sequence of digits in the decimal expansion of 1
p

has an even length, when this sequence is broken into two halves of equal length if these

parts are added then the result is a string of 9s. Later, J. Lewittes and H. W. Martin

generalized this statement when the length of the smallest repeating sequence of digits

is e = kd and the sequence is broken into d blocks of equal length and the expansion is

over any number base; that fact was named Midy’s property. We will give necessary and

sufficient conditions (that are easy to check) for the integer N to satisfy Midy’s property.

1. Introduction

By period we mean the smallest repeating sequence of digits in the decimal expansion
of 1

N , with N a positive integer. According to [2], E. Midy published in France, in
1836, a paper where he showed that if p is a prime number, such that the decimal
expansion of 1

p has a period of even length, when the period is broken into two
halves of equal length if these parts are added then we get a string of 9′s; this result
is called the property of nines. For instance, 1/7 = 0.142857, the bar indicating the
period, if the period is broken into halves of equal length and then added we get
142 + 857 = 999. We have a similar situation for 1/19 = 0.052631578947368421
with period length 18 and the halves are 052631578 and 947368421.

The property of nines has gained interest over the last few years, as it is shown
by the papers of Gupta and Sury [1], J. Lewittes [2] and the work of H. W. Martin
[3]. These last two works generalized this property when the period length is any
positive integer e, the period is broken into d blocks, where d is a divisor of e and
the expansion of 1/N is over any number base.

Let us fix some notation. Let B be an integer greater than 1, B is the number
base, and N a positive integer relatively prime to B. We denote by e = oN (B) the
order of B in the multiplicative group UN , where this group is the set of positive
integers less than N and relatively prime to it, and the multiplication is the product
modulo N .

We know that e is the period length of x/N , where x ∈ UN (see [2]). Assume
e = kd for some integers k and d. Then x

N = 0.a1a2 · · · ae and the period a1a2 · · · ae
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can be broken into d blocks of equal length k. Let Aj be the number represented
by the base B numeral consisting of the jth block of k B-digits in the period. We
denote by Sd(x) =

∑d
j=1 Aj .

With the above notation, if for all x ∈ UN the sum Sd(x) is a multiple of Bk − 1
then we say that N has the Midy’s property for the base B and the divisor d of e,
the period length; in that case we write N ∈ Md(B).

We denote by DB(N) the number represented by the base B numeral consisting
of the e B-digits of the period of the fraction 1

N . It is easy to prove that NDB(N) =
Be − 1.

Using similar methods to those in [1], we shall prove the following characteriza-
tions of Midy’s property.

Theorem 1. With the above notation: N ∈ Md(B) if and only if DB(N) ≡ 0
(mod Bk − 1). Furthermore, if N ∈ Md(B) and Be−1

Bk−1 = Nt for some integer t,

then DB(N) = (Bk − 1)t.

Theorem 2. Let N , B, e = kd = oN (B) be as above and pt be the highest power of
p that divide N . Then, N ∈ Md(B) if and only if for every prime factor p of N ,
the following is true: if op(B) | k then pt | d.

Furthermore, if N ∈ Md(B) and
∑d

i=1(B
ik mod N) = rN for some integer r,

then
∑d

j=1 Aj = (Bk − 1)r.

Theorem 3. Under the same conditions of Theorem 2, N ∈ Md(B) if and only if
for every prime divisor p of gcd(Bk − 1, N), we have pt | d.

2. Previous Results

Theorem 2 of [2] or Theorem 1 of [3], can be written with our notation in the
following way.

Theorem 4. The following are equivalent:

1. N ∈ Md(B).

2. For some x ∈ UN , Sd(x) ≡ 0 (mod Bk − 1).

3. Be−1
Bk−1 ≡ 0 (mod N).

Furthermore, if Bk − 1 and N are relatively prime, then N ∈ Md(B).

It is clear from part three of this theorem that d cannot be 1, so we always assume
e = kd with d > 1.

The following result extends Theorem 3 of [3].
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Theorem 5. Let N be a positive integer relatively prime to the number base B and
e = kd the period length of 1/N . If for every prime factor p of N the integer k is
not a multiple of the period length of 1/p then N ∈ Md(B).

Proof. From our assumption, if p is a prime factor of N, then gcd(p,Bk − 1) = 1
and therefore gcd(ps, Bk − 1) = 1, for every integer s. Thus, gcd(N, Bk − 1) = 1
and the result is a consequence of Theorem 4.

3. Main Results

Proof of Theorem 1. According to Theorem 4, N ∈ Md(B) if and only if Be−1
Bk−1 ≡

0 (mod N). But NDB(N) = Be − 1 and we get the result of the theorem.

From Theorem 1 we conclude immediately that if B−1 is not a divisor of DB(N)
then N has not the Midy’s property for any factor d of the order e of B modulo N .

Now, we will give some previous results for the proof of Theorem 2.
Let 1

N = 0.a1a2 · · · ae be a rational number, where the period is a1a2 · · · ae. We
denote this number by 1

N = 0.A1 ! A2 ! · · · ! Ad , where the period was broken
into d blocks of equal length k, that is, e = kd. So, as we said above, Aj be the
number represented by the base B numeral consisting of the jth block of k B-digits
of the period. And Ai ! Aj denotes the integer represented by the base B numeral
formed by the juxtaposition of the digits of Ai and Aj , for 1 ≤ i, j ≤ d.

Theorem 6. Let p and t be positive numbers with p a prime number such that B %≡ 1
mod p. Suppose that e = opt(B) = kd. If

1
pt

= 0.A1 ! A2 ! · · · ! Ad,

then

d∑

j=1

Aj =






(Bk−1)(pt−pi+2)
2pi if there is i, 1 ≤ i ≤ t− 1, such that d = pt−i,

0 mod Bk − 1 in other case.

Proof. We have the following:
1
pt

= 0.A1 ! A2 ! · · · ! Ad,

Bk

pt
= A1.A2 ! A3 ! · · · ! Ad ! A1,

B2k

pt
= A1 ! A2.A3 ! A4 ! · · · ! A1 ! A2, (1)

...

B(d−1)k

pt
= A1 ! A2 ! · · · ! Ad−1.Ad ! A1 ! · · · ! Ad−1.
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Adding all these equations we get:

Be − 1
pt(Bk − 1)

= A1 + A1 ! A2 + · · · + A1 ! A2 ! · · · ! Ad−1

+ 0.A1 ! A2 ! · · · ! Ad + 0.A2 ! A3 ! · · · ! Ad ! A1 (2)
+ · · · + 0.Ad ! A1 ! · · · ! Ad−1.

Notice that on the right side of the last equation, the sum of the values smaller than
1 is,

A1 + A2 + · · · + Ad

Bk − 1
.

On the other hand,

A1 ! A2 ! · · · ! Ai =
⌊

Bik

pt

⌋
,

where &x' is the floor function of x. But Bik = pt
⌊

Bik

pt

⌋
+ ri with ri ≡ Bik mod

pt, from Equation 2 we have

Be − 1
pt(Bk − 1)

=
d−1∑

i=0

Bik − ri

pt
+

A1 + A2 + · · · + Ad

Bk − 1

and therefore
A1 + A2 + · · · + Ad

Bk − 1
=

∑d−1
i=0 ri

pt
,

so that
d∑

j=1

Aj =
(Bk − 1)

∑d−1
i=0 ri

pt
. (3)

Hence ri ≡ Bik mod pt, so the set {ri | i = 0, 1, · · · d− 1} is a subgroup of Upt ,
and the result of the theorem follows from the next lemma.

Lemma 7. Let p and t be positive integers with p an odd prime. Let d be a factor
of pt−1(p− 1) and let U(p, t, d) be the unique subgroup of order d of Upt . Then d is
a power of p, d = pt−i, if and only if, for all a ∈ U(p, t, d) we have a ≡ 1 mod p.
Furthermore

∑

g∈U(p,t,d)

g =






pt−i(pt−pi+2)
2 if d = pt−i

0 mod pt otherwise
.

Proof. If d = pt−i, we have

U(p, t, pt−i) =
{
1, 1 + pi, 1 + 2pi, . . . , 1 + (pt−i − 1)pi

}
.
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Because this set is closed under the product modulo pt, we are done. If d ! pt−1, then
there exists a ∈ U(p, t, d) such that a %= 1 and opt(a) | p− 1 so that a /∈ U(p, t, pt−1)
and hence a %≡ 1 mod p. We have {ag | g ∈ U(p, t, d)} = U(p, t, d), so in the group
Upt ,

∑

g∈U(p,t,d)

ag =
∑

g∈U(p,t,d)

g.

Therefore, (a−1)
∑

g∈U(p,t,d)

g = 0, but a %≡ 1 mod p, and then
∑

g∈U(p,t,d)

g ≡ 0 mod pt.

When p = 2, it is known that the group U2t with t > 2 has two subgroups of
order 2t−i for i = 1, 2, · · · , t− 1. These are,

U1(2, t, 2t−i) =
{
1, 1 + 1 · 2i, 1 + 2 · 2i, 1 + 3 · 2i, . . . , 1 + (2t−i − 1)2i

}

and

U2(2, t, 2t−i) =
{

1, 1 · 2i − 1, 2 · 2i − 1, 3 · 2i − 1, . . . ,
(2t−i − 2)2i − 1, (2t−i − 1)2i − 1

}
.

With this, we get the following proposition.

Proposition 8. With the above notation,

∑

g∈U(2,t,2t−i)

g =






2t−i−1(2t − 2i + 2) if U(2, t, 2t−i) = U1(2, t, 2t−i),

2t−i−1(2t − 2i) if U(2, t, 2t−i) = U2(2, t, 2t−i).

Note that the sum of the elements of the subgroup U1(2, t, 2t−i) is the same as
the first sum of Lemma 7.

From Theorem 6, we get the following statement.

Theorem 9. Let p and t be positive numbers with p prime and not a divisor of
B. Let N = pt and e = oN (B) = kd. Then N ∈ Md(B) if and only if d !
pt−1. Furthermore, if N ∈ Md(B) and

∑
g∈U(p,t,d) g = rpt for some integer r then

∑d
j=1 Aj = (Bk − 1)r.

In a similar way as we get Equation 3, we can prove that if gcd(N, B) = 1,
oN (B) = kd and ri ≡ Bik mod N , then

d∑

j=1

Aj =
(Bk − 1)

∑d
i=1 ri

N
.

Therefore
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∑d
j=1 Aj

(Bk − 1)
=

∑d
i=1 ri

N
. (4)

In others words, the last equation says that to prove that N ∈ Md(B) is equivalent
to asking if the sum

∑d
i=1 ri is a multiple of N . If we have the decomposition of

N in prime factors N = pt1
1 pt2

2 · · · pts
s , it is well known from the Chinese Remainder

Theorem that there is an isomorphism between the groups UN and Up
t1
1
× Up

t2
2
×

· · ·× Upts
s

; for this reason,
∑d

i=1 ri is a multiple of N if and only if it is a multiple
of p

tj

j for all j = 1, 2, . . . , s.

Proof of Theorem 2. Let p be a prime divisor of N and pt the highest power of p
that divides N , and let σ be the canonical projection of UN

∼= Up
t1
1
×Up

t2
2
×· · ·×Upts

s

over Upt . We have oN (B) = e = kd; hence p | Be − 1 and therefore op(B) | e.
Suppose that op(B) ! k. We know op(B) | p − 1, op(B) | e and e = kd, so

we have that d cannot be a power of p and by Lemma 7, we get that
∑d

i=1 ri =∑d
i=1(B

ik mod pt) is divisible by pt.

If op(B) | k then pt | d, and therefore ri ≡ Bik ≡ 1 mod p for i = 1, 2, . . . , d.

Now, the set B =
{
Bik | i = 1, 2, · · · , d

}
is a subgroup of UN so we have that

σ(B) is a subgroup of Upt . By Lemma 7 it has order pt−i, so σ(B) = U(p, t, pt−i).
But,

B =
⋃

g∈U(p,t,pt−i)

σ−1(g),

again by Lemma 7, we have that

d∑

i=1

ri =
d

pt−i
× pt−i(pt − pi + 2)

2

is a multiple of d and therefore of pt.
For any prime p that divides N , we conclude that the sum

∑d
i=1 ri is a multiple

of pt. So we can apply the isomorphism (given by the Chinese Remainder Theorem)
between the groups UN and Up

t1
1

× Up
t2
2
× · · · × Upts

s
, to prove that this sum is

divisible by N ; from Equation 4 we may conclude that
∑d

j=1 Aj is a multiple of
Bk − 1 and finally that N ∈ Md(B).

Reciprocally, let N ∈ Md(B), and p be a prime divisor of N . If op(B) ! k the
result is immediate.

Suppose that op(B) | k. Then ri ≡ Bik ≡ 1 mod p for i = 1, 2, . . . , d. Again,
the set σ

({
Bik | i = 1, 2, . . . , d

})
is a subgroup of Upt of the type U(p, t, pt−i).

Therefore, by Lemma 7,
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d∑

i=1

ri =
d

pt−i
× pt−i(pt − pi + 2)

2
= d

(
pt − pi + 2

2

)
.

We know that N ∈ Md(B) so that pt |
∑d

i=1 ri and therefore, pt | d.

Finally, Theorem 3 is immediate from Theorem 2 and it gives an easy character-
ization of Midy’s Property.
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