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Abstract
Recently, Lovejoy introduced the construct of overpartition pairs which are a natural
generalization of overpartitions. Here we generalize that idea to overpartition k-
tuples and prove several congruences related to them. We denote the number of
overpartition k-tuples of a positive integer n by pk(n) and prove, for example, that
for all n ≥ 0, pt−1(tn + r) ≡ 0 (mod t) where t is prime and r is a quadratic
nonresidue mod t.

1. Introduction

As defined by Corteel and Lovejoy [5], an overpartition of a positive integer n is a
non-increasing sequence of natural numbers whose sum is n in which the first oc-
currence of a part may be overlined. For example, the overpartitions of the integer
3 are

3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1, 1 + 1 + 1.

The number of overpartitions of a positive integer n is denoted by p(n), with
p(0) = 1 by definition. Thus p(3) = 8 from the above example. As noted in Corteel
and Lovejoy [5], the generating function for overpartitions is

∞∑

n=0

p(n)qn =
∞∏

n=1

1 + qn

1− qn
.

As the topic of overpartitions has already been examined rather thoroughly [3,
4, 5, 6, 7, 8, 10, 11], we look to new constructions. One such construction is that
of an overpartition pair of a positive integer n, defined by Lovejoy [9] as a pair of
overpartitions wherein the sum of all listed parts is n. For example, the overpartition
pairs of 2 are

(2 ; ∅), (2 ; ∅), (∅ ; 2), (∅ ; 2), (1 + 1 ; ∅), (1 + 1 ; ∅), (∅ ; 1 + 1), (∅ ; 1 + 1),

(1 ; 1), (1 ; 1), (1 ; 1), (1 ; 1).
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Lovejoy denoted the number of overpartition pairs of a positive integer n by pp(n),
with pp(0) = 1 by definition. Thus pp(2) = 12 from the above example. Following
lines similar to that for overpartitions, the generating function for overpartition
pairs is

∞∑

n=0

pp(n)qn =
∞∏

n=1

(
1 + qn

1− qn

)2

.

Several arithmetic properties of both overpartitions and their pairs have appeared
in the literature. Since our interest here is primarily on congruence properties, there
are a few theorems that are especially noteworthy. The first one is straightforward
and proven intuitively.

Theorem 1. For all n > 0, p(n) ≡ 0 (mod 2).

Next we have a theorem easily proven using results of Mahlburg [10].

Theorem 2. For all n > 0,

p(n) ≡
{

2 (mod 4) if n is a square,
0 (mod 4) otherwise.

Several other congruences in arithmetic progressions were proven by Hirschhorn
and Sellers. For example, the following were proven in [7].

Theorem 3. For all n ≥ 0,

p(5n + 2) ≡ 0 (mod 4),

p(5n + 3) ≡ 0 (mod 4),

p(4n + 3) ≡ 0 (mod 8),

and p(8n + 7) ≡ 0 (mod 64).

Also, Hirschhorn and Sellers [6] proved that p(n) satisfies congruences modulo
non-powers of 2 by proving the following:

Theorem 4. For all n ≥ 0 and all α ≥ 0, p (9α(27n + 18)) ≡ 0 (mod 12).

Finally, we note a theorem proven by Bringmann and Lovejoy [2]. This result
provides much inspiration for the main result in the next section.

Theorem 5. For all n ≥ 0, pp(3n + 2) ≡ 0 (mod 3).

We now introduce a generalization of overpartition pairs. An overpartition k-tuple
of a positive integer n is a k-tuple of overpartitions wherein all listed parts sum to
n. We denote the number of overpartition k-tuples of n by pk(n), with pk(0) = 1 by
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definition. Consequently, the number of overpartition pairs of n is denoted as p2(n).
The generating function for pk(n) is easily seen to be

∑

n≥0

pk(n)qn =
∞∏

n=1

(
1 + qn

1− qn

)k

.

The aim of this note is to prove several congruence properties for families of
overpartition k-tuples. In the process, we will prove several natural generalizations
of results quoted above.

2. Results for Overpartition k-Tuples

Our first theorem of this section provides a natural generalization of Bringmann and
Lovejoy’s Theorem 5 above. Moreover, the proof technique is extremely elementary,
making this a very satisfying result.

Theorem 6. For all n ≥ 0, pt−1(tn+ r) ≡ 0 (mod t), where t is an odd prime and
r is a quadratic nonresidue mod t.

Remarks. First, note that the t = 3 case of this theorem is exactly Theorem 5.
Secondly, note that, for each odd prime t, this theorem provides t−1

2 congruence
properties for pt−1(n).

Proof. Consider the following generating function manipulations:

∞∑

n=0

pt−1(n)qn =
∞∏

i=1

(
1 + qi

1− qi

)t−1

=

[ ∞∏

i=1

1 + qi

1− qi

]t−1

=

[ ∞∏

i=1

1 + qi

1− qi

]t [ ∞∏

i=1

1− qi

1 + qi

]

≡
[ ∞∏

i=1

1 + qti

1− qti

][ ∞∏

i=1

1− qi

1 + qi

]
(mod t) since t is prime

=
∞∑

m=0

p(m)qtm

[ ∞∏

i=1

1− qi

1 + qi

]

=
∞∑

m=0

p(m)qtm
∞∑

s=−∞
(−1)sqs2

thanks to Gauss [1, Cor. 2.10].
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But note that tn+r can never be represented as tm+s2 for some integers m and
s if r is a quadratic nonresidue mod t. This implies that pt−1(tn + r) ≡ 0 (mod t)
for all n ≥ 0. !

The next theorem is a broad generalization of Theorem 1. It is found with proof
in [12], but is included here for the sake of completeness. We require a brief technical
lemma.

Lemma 7. Let m be a nonnegative integer. For all 1 ≤ n ≤ 2m,
(

2m

n

)
2n ≡ 0 (mod 2m+1).

Proof. Let ord2(N) be the exponent of the highest power of 2 dividing N. Thus,
for example, ord2(8) = 3 while ord2(80) = 4. To prove Lemma 7, we need to prove
that

ord2

((
2m

n

)
2n

)
≥ m + 1. (1)

Note that

ord2

((
2m

n

)
2n

)
= ord2

(
2m(2m − 1)(2m − 2) · · · (2m − (n− 1))

n!
· 2n

)

≥ ord2

(
2m+n

n!

)

= m + n− ord2(n!)

= m + n−
(⌊n

2

⌋
+

⌊n

4

⌋
+

⌊n

8

⌋
+ · · ·

)

where &x' is the floor function of x.

Now assume n = c020 + c121 + · · · + ct2t where each ci ∈ {0, 1}. Then
⌊n

2

⌋
+

⌊n

4

⌋
+

⌊n

8

⌋
+ · · · = c120 + c221 + · · · ct2t−1

+ c220 + c321 + · · · ct2t−2

+ c320 + c421 + · · · ct2t−3

...
+ ct20

= (2− 1)c1 + (22 − 1)c2 + (23 − 1)c3 + · · · + (2t − 1)ct

= n− (c0 + c1 + c2 + · · · + ct)
≤ n− 1
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since at least one of the ci must equal 1. Therefore,

ord2

((
2m

n

)
2n

)
≥ m + n−

(⌊n

2

⌋
+

⌊n

4

⌋
+

⌊n

8

⌋
+ · · ·

)

≥ m + n− (n− 1)
= m + 1.

This is the desired result as noted in (1) above. !

We are now in a position to prove the following theorem:

Theorem 8. Let k=(2m) r, where m is a nonnegative integer and r is odd. Then,
for all positive integers n, we have pk(n) ≡ 0 (mod 2m+1).

Proof.

∞∑

n=0

pk(n)qn =
∞∏

i=1

[
1 + qi

1− qi

]k

=
∞∏

i=1

[
1 + qi

1− qi

](2m)r

=

( ∞∏

i=1

[
1 + qi

1− qi

]2m)r

=

( ∞∏

i=1

[
1 +

2qi

1− qi

]2m)r

=

( ∞∏

i=1

[
1 +

2m∑

n=1

(
2m

n

)
2n

(
qi

1− qi

)n
])r

≡ 1 (mod 2m+1) by Lemma 7. !

The following theorem is inspired by Theorem 2. As with Theorem 8, it primarily
hinges upon the use of the binomial theorem.

Theorem 9. Let k=(2m) r, m > 0 and r is odd. Then, for all n ≥ 1,

pk(n) ≡
{

2m+1 (mod 2m+2) if n is a square or twice a square,
0 (mod 2m+2) otherwise.
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Proof. We prove this result by induction on m.
Basis Step. Let m = 1. We must show that

p2r(n) ≡
{

4 (mod 8) if n is a square or twice a square,
0 (mod 8) otherwise.

∞∑

n=0

p2r(n)qn =
∞∏

i=1

(
1 + qi

1− qi

)2r

=




[ ∞∑

n=0

p(n)qn

]2



r

=







1 +
∑

n>0
square

p(n)qn +
∑

n>0
not square

p(n)qn





2



r

=



1 + 2




∑

n>0
square

p(n)qn



 +




∑

n>0
square

p(n)qn





2

+ 2




∑

n>0
square

p(n)qn








∑

n>0
not square

p(n)qn





+ 2




∑

n>0
not square

p(n)qn



 +




∑

n>0
not square

p(n)qn





2



r

From Theorem 2, we know that p(n) ≡ 2 or 6 (mod 8) when n is a square and
p(n) ≡ 0 or 4 (mod 8) otherwise. Since 2× 0, 2× 4, 6× 0, 6× 4, 0× 0, 0× 4, and
4× 4 are all congruent to 0 (mod 8),

2




∑

n>0
square

p(n)qn








∑

n>0
not square

p(n)qn



 ≡ 0 (mod 8),

2




∑

n>0
not square

p(n)qn



 ≡ 0 (mod 8),

and




∑

n>0
not square

p(n)qn





2

≡ 0 (mod 8).
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This gives

∞∑

n=0

p2r(n)qn ≡



1 + 2

( ∞∑

n=1

p(n2)qn2

)
+

( ∞∑

n=1

p(n2)qn2

)2



r

(mod 8)

≡



1 + 4

( ∞∑

n=1

qn2

)
+ 4

( ∞∑

n=1

qn2

)2



r

(mod 8)

again thanks to Theorem 2.
Given that (qn1 + qn2 + · · · )2 =

(
q2n1 + q2n2 + · · ·

)
+ 2 (qn1+n2 + · · · ), we then

have

∞∑

n=0

p2r(n)qn ≡



1 + 4

( ∞∑

n=1

qn2

)
+ 4




∞∑

n=1

q2n2
+ 2

∑

n1,n2>0
n1 $=n2

qn2
1+n2

2









r

(mod 8)

≡
[
1 + 4

( ∞∑

m=1

qm2
+
∞∑

n=1

q2n2

)]r

(mod 8)

=
∞∑

j=0

(
r

j

)
4j

( ∞∑

m=1

qm2
+
∞∑

n=1

q2n2

)j

≡ 1 + 4

( ∞∑

m=1

qm2
+
∞∑

n=1

q2n2

)
(mod 8) since r is odd.

This proves the result needed for the basis step.

Induction Step. Assume that

p(2m)r(n) ≡
{

2m+1 (mod 2m+2) if n is a square or twice a square,
0 (mod 2m+2) otherwise.

We must show that

p(2m+1)r(n) ≡
{

2m+2 (mod 2m+3) if n is a square or twice a square,
0 (mod 2m+3) otherwise.

Consider the generating function for p2m+1(n):
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∞∑

n=0

p(2m+1)r(n)qn =
∞∏

i=1

(
1 + qi

1− qi

)(2m+1)r

=

( ∞∏

i=1

(
1 + qi

1− qi

)2mr
)2

=

( ∞∑

n=0

p(2m)r(n)qn

)2

=

(
1 +

∑

n>0
not sq.
and not
twice sq.

p(2m)r(n)qn +
∑

n>0
square or
twice sq.

p(2m)r(n)qn

)2

= 1 + 2

(
∑

n>0
square or
twice sq.

p(2m)r(n)qn

)
+

(
∑

n>0
square or
twice sq.

p(2m)r(n)qn

)2

+ 2

(
∑

n>0
square or
twice sq.

p(2m)r(n)qn

)(
∑

n>0
not sq.
and not
twice sq.

p(2m)r(n)qn

)

+ 2

(
∑

n>0
not sq.
and not
twice sq.

p(2m)r(n)qn

)
+

(
∑

n>0
not sq.
and not
twice sq.

p(2m)r(n)qn

)2

.

Using a very similar argument about the coefficients to that of the basis step, we
use the induction hypothesis to conclude that

∞∑

n=0

p(2m+1)r(n)qn ≡ 1 + 2
∞∑

n=1

p(2m)r(n
2)qn2

+
∞∑

s=1

p(2m)r(2s
2)q2s2

+

( ∞∑

n=1

p(2m)r(n
2)qn2

+
∞∑

s=1

p(2m)r(2s
2)q2s2

)2

(mod 2m+3)

≡ 1 + 2

( ∞∑

n=1

p(2m)r(n
2)qn2

+
∞∑

s=1

p(2m)r(2s
2)q2s2

)
(mod 2m+3).



INTEGERS: 9 (2009) 189

We know that all coefficients of the last term are congruent to 2m+1 or 2m+1 +
2m+2 (mod 2m+3) from the induction hypothesis. But the last term is multiplied
by 2. So then all coefficients are congruent to 2m+2 (mod 2m+3) or 2m+2 +2m+3 ≡
2m+2 (mod 2m+3), which implies

∞∑

n=0

p(2m+1)r(n)qn ≡ 1 + 2m+2

( ∞∑

n=1

qn2
+
∞∑

s=1

q2s2

)
(mod 2m+3).

This completes the induction and proves the theorem. !
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