

NEITHER $\prod_{k=1}^{n} (4k^2 + 1)$ NOR $\prod_{k=1}^{n} (2k(k-1) + 1)$ IS A PERFECT SQUARE

Jin-Hui Fang¹

Department of Mathematics, Nanjing Normal University, Nanjing 210097, P. R. China fangjinhui1114@163.com

Received: 8/8/08, Revised: 2/12/09, Accepted: 3/2/09

Abstract

In this paper, by employing Cilleruelo's method, we prove that neither $\prod_{k=1}^{n} (4k^2+1)$ nor $\prod_{k=1}^{n} (2k(k-1)+1)$ is a perfect square for all n > 1, which confirms a conjecture of Amdeberhan, Medina, and Moll.

1. Introduction

Recently, there has been a renewed interest in investigating whether or not certain product sequences contain perfect squares. Amdeberhan, Medina and Moll [1] proposed several conjectures in this direction. Soon after, J. Cilleruelo [2] proved that the number

$$\prod_{k=1}^{n} (k^2 + 1)$$

is not a perfect square provided n > 3, which settles Conjecture 5.1 in [1]. Amdeberhan, Medina and Moll [1] also proposed the following conjecture.

Conjecture 1 ([1, Conjecture 7.1]). The even and odd parts of $\prod_{k=1}^{n} (k^2 + 1)$ are

 $defined \ by$

$$t_n := \prod_{k=1}^n (1 + 2k(k-1)), and s_n := \prod_{k=1}^n (1 + 4k^2).$$

These products involve the triangular and square numbers respectively. Neither of them is a perfect square.

In this paper, by employing Cilleruelo's method, we confirm this conjecture.

Theorem 2. Neither $\prod_{k=1}^{n} (4k^2 + 1)$ nor $\prod_{k=1}^{n} (2k(k-1) + 1)$ is a perfect square for all n > 1.

¹Supported by the National Natural Science Foundation of China, Grant No.10771103 and the Outstanding Graduate Dissertation program of Nanjing Normal University No.181200000213.

2. Proof of Theorem 2

Proof. In this paper, p always denotes a rational prime.

Let $P_n = \prod_{k=1}^n (4k^2 + 1)$. Assume that P_n is a perfect square for some n > 1. Let p be a prime with $p|P_n$. Then $p^2|P_n$ and $p \equiv 1 \pmod{4}$. If there exists a positive integer $k \leq n$ with $p^2|4k^2 + 1$, then $p \leq \sqrt{4n^2 + 1} < 2n + 1$. Thus p < 2n. If there exist $i, j, 1 \leq i < j \leq n$ with $p|4i^2 + 1$ and $p|4j^2 + 1$, then p|4(j-i)(j+i). Thus either p|j-i or p|j+i. So $p \leq j+i < 2n$. Hence

$$P_n = \prod_{\substack{p < 2n \\ p \equiv 1 \pmod{4}}} p^{\alpha_p}.$$

Let $n! = \prod_{p \le n} p^{\beta_p}$. Since $4^n n!^2 < P_n$, we have

$$\sum_{p \le n} \beta_p \log p < \frac{1}{2} \sum_{\substack{p < 2n \\ p \equiv 1 \pmod{4}}} \alpha_p \log p - n \log 2.$$

$$\tag{1}$$

Since each interval of length p^j contains at most two solutions of $4x^2 + 1 \equiv 0 \pmod{p^j}$, we have

$$\alpha_p = \sum_{j \le \log(4n^2 + 1)/\log p} \#\{k \le n : p^j | 4k^2 + 1\} \le \sum_{j \le \log(4n^2 + 1)/\log p} 2\lceil n/p^j \rceil.$$
(2)

On the other hand

$$\beta_p = \sum_{j \le \log n / \log p} \#\{k \le n : p^j | k\} = \sum_{j \le \log n / \log p} \lfloor n/p^j \rfloor.$$
(3)

Thus we have

$$\begin{aligned} \alpha_p/2 - \beta_p &\leq \sum_{\substack{j \leq \log(4n^2 + 1)/\log p}} \lceil n/p^j \rceil - \sum_{\substack{j \leq \log n/\log p}} \lfloor n/p^j \rfloor \\ &= \sum_{\substack{j \leq \log n/\log p}} (\lceil n/p^j \rceil - \lfloor n/p^j \rfloor) + \sum_{\log n/\log p < j \leq \log(4n^2 + 1)/\log p} \lceil n/p^j \rceil \\ &\leq \frac{\log(4n^2 + 1)}{\log p}. \end{aligned}$$

$$(4)$$

By (1) and (4) we have

$$\sum_{\substack{p \le n \\ p \not\equiv 1 \pmod{4}}} \beta_p \log p = \sum_{p \le n} \beta_p \log p - \sum_{\substack{p \le n \\ p \equiv 1 \pmod{4}}} \beta_p \log p$$
$$\leq \frac{1}{2} \sum_{n$$

where $\pi(n; 1, 4)$ denotes the number of primes which are less than or equal to n and congruent to 1 modulo 4.

If p > n, then

$$\frac{\log\left(4n^2+1\right)}{\log p} < \frac{\log\left(n+1\right)^3}{\log(n+1)} = 3.$$

By (2) we have $\alpha_p \leq 4$.

If $p \leq n$, then by (3) we have

$$\begin{split} \beta_p &\geq \sum_{j \leq \log n/\log p} \left(\frac{n}{p^j} - 1\right) = n \left(\frac{1 - p^{-1 - \lfloor \log n/\log p \rfloor}}{1 - 1/p} - 1\right) - \lfloor \log n/\log p \rfloor \\ &\geq n \left(\frac{1 - 1/n}{1 - 1/p} - 1\right) - \lfloor \log n/\log p \rfloor = \frac{n - p}{p - 1} - \lfloor \log n/\log p \rfloor \\ &\geq \frac{n - 1}{p - 1} - \frac{\log(4n^2 + 1)}{\log p}, \end{split}$$

where the last inequality is based on the fact $p \leq n$. Thus, by (5) we have

$$(n-1)\sum_{\substack{p \le n \\ p \ne 1 \pmod{4}}} \frac{\log p}{p-1} < \log(4n^2+1)\pi(n) + 2\sum_{n < p < 2n} \log p - n\log 2,$$

where $\pi(n)$ denotes the number of primes which are less than or equal to n. Now we use the Chebyshev's estimates

$$\sum_{p \le n} \log p \le 2n \log 2, \qquad \sum_{n$$

and (see [3])

$$\pi(x) \le \frac{x}{\log x} \left(1 + \frac{1.2762}{\log x} \right) \quad (x > 1)$$

to obtain

$$\sum_{\substack{p \le n \\ p \ne 1 \pmod{4}}} \frac{\log p}{p-1} < \frac{\log(4n^2+1)}{n-1} \left(\frac{n}{\log n} + \frac{1.2762n}{\log^2 n}\right) + \frac{3n}{n-1}\log 2.$$

We know that the right-hand side is monotonic decreasing. Actually, that quantity is less than 7.14 for $n \ge 702007$.

For $n \ge 702007$, we have

$$\sum_{\substack{p \le n \\ p \not\equiv 1 \pmod{4}}} \frac{\log p}{p-1} \ge \sum_{\substack{p \le 702007 \\ p \not\equiv 1 \pmod{4}}} \frac{\log p}{p-1} > 7.14,$$

which proves the theorem for $n \ge 702007$.

Finally we have to check that P_n is not a square for $2 \le n < 702007$.

- $17 = 4 \times 2^2 + 1$. The next time that the prime 17 divides $4k^2 + 1$ is for k = 17 2 = 15. Hence P_n is not a square for $2 \le n \le 14$.
- $101 = 4 \times 5^2 + 1$. The next time that the prime 101 divides $4k^2 + 1$ is for k = 101 5 = 96. Hence P_n is not a square for $5 \le n \le 95$.
- $1297 = 4 \times 18^2 + 1$. The next time that the prime 1297 divides $4k^2 + 1$ is for k = 1297 18 = 1279. Hence P_n is not a square for $18 \le n \le 1278$.
- $739601 = 4 \times 430^2 + 1$. The next time that the prime 739601 divides $4k^2 + 1$ is for k = 739601 430 = 739171. Hence P_n is not a square for $430 \le n \le 739170$.

Therefore $\prod_{k=1}^{n} (4k^2 + 1)$ is not a perfect square. The proof that $\prod_{k=1}^{n} (2k(k-1) + 1)$ is not a perfect square is completely similar. This completes the proof of Theorem 2.

Acknowledgements I sincerely thank my supervisor Professor Yong-Gao Chen for his valuable suggestions and useful discussions. I am also grateful to the referee for his/her valuable comments.

References

[1] T.Amdeberhan, L.A.Medina, and V.H.Moll, Arithmetical properties of a sequence arising from an arctangent sum, J. Number Theory **128**(6) (2008), 1807-1846.

[2] J. Cilleruelo, Square in $(1^2 + 1) \cdots (n^2 + 1)$, J. Number Theory **128**(8) (2008), 2488-2491.

[3] P.Dusart, The kth prime is greater than $k(\ln k + \ln \ln k - 1)$ for $k \geq 2,$ Math.Comp. 68 (1999), 411-415.