NEITHER $\prod_{k=1}^{n}\left(4 k^{2}+1\right)$ NOR $\prod_{k=1}^{n}(2 k(k-1)+1)$ IS A PERFECT SQUARE

Jin-Hui Fang ${ }^{1}$
Department of Mathematics, Nanjing Normal University, Nanjing 210097, P. R. China
fangjinhui1114@163.com

Received: 8/8/08, Revised: 2/12/09, Accepted: 3/2/09
Abstract
In this paper, by employing Cilleruelo's method, we prove that neither $\prod_{k=1}^{n}\left(4 k^{2}+1\right)$ nor $\prod_{k=1}^{n}(2 k(k-1)+1)$ is a perfect square for all $n>1$, which confirms a conjecture of Amdeberhan, Medina, and Moll.

1. Introduction

Recently, there has been a renewed interest in investigating whether or not certain product sequences contain perfect squares. Amdeberhan, Medina and Moll [1] proposed several conjectures in this direction. Soon after, J. Cilleruelo [2] proved that the number

$$
\prod_{k=1}^{n}\left(k^{2}+1\right)
$$

is not a perfect square provided $n>3$, which settles Conjecture 5.1 in [1]. Amdeberhan, Medina and Moll [1] also proposed the following conjecture.

Conjecture 1 ([1, Conjecture 7.1]). The even and odd parts of $\prod_{k=1}^{n}\left(k^{2}+1\right)$ are defined by

$$
t_{n}:=\prod_{k=1}^{n}(1+2 k(k-1)), \text { and } s_{n}:=\prod_{k=1}^{n}\left(1+4 k^{2}\right)
$$

These products involve the triangular and square numbers respectively. Neither of them is a perfect square.

In this paper, by employing Cilleruelo's method, we confirm this conjecture.
Theorem 2. Neither $\prod_{k=1}^{n}\left(4 k^{2}+1\right)$ nor $\prod_{k=1}^{n}(2 k(k-1)+1)$ is a perfect square for all $n>1$.

[^0]
2. Proof of Theorem 2

Proof. In this paper, p always denotes a rational prime.
Let $P_{n}=\prod_{k=1}^{n}\left(4 k^{2}+1\right)$. Assume that P_{n} is a perfect square for some $n>1$. Let p be a prime with $p \mid P_{n}$. Then $p^{2} \mid P_{n}$ and $p \equiv 1(\bmod 4)$. If there exists a positive integer $k \leq n$ with $p^{2} \mid 4 k^{2}+1$, then $p \leq \sqrt{4 n^{2}+1}<2 n+1$. Thus $p<2 n$. If there exist $i, j, 1 \leq i<j \leq n$ with $p \mid 4 i^{2}+1$ and $p \mid 4 j^{2}+1$, then $p \mid 4(j-i)(j+i)$. Thus either $p \mid j-i$ or $p \mid j+i$. So $p \leq j+i<2 n$.
Hence

$$
P_{n}=\prod_{\substack{p<2 n \\ p \equiv 1(\bmod 4)}} p^{\alpha_{p}} .
$$

Let $n!=\prod_{p \leq n} p^{\beta_{p}}$. Since $4^{n} n!^{2}<P_{n}$, we have

$$
\begin{equation*}
\sum_{p \leq n} \beta_{p} \log p<\frac{1}{2} \sum_{\substack{p<2 n \\ p \equiv 1(\bmod 4)}} \alpha_{p} \log p-n \log 2 \tag{1}
\end{equation*}
$$

Since each interval of length p^{j} contains at most two solutions of $4 x^{2}+1 \equiv 0$ $\left(\bmod p^{j}\right)$, we have

$$
\begin{equation*}
\alpha_{p}=\sum_{j \leq \log \left(4 n^{2}+1\right) / \log p} \#\left\{k \leq n: p^{j} \mid 4 k^{2}+1\right\} \leq \sum_{j \leq \log \left(4 n^{2}+1\right) / \log p} 2\left\lceil n / p^{j}\right\rceil \tag{2}
\end{equation*}
$$

On the other hand

$$
\begin{equation*}
\beta_{p}=\sum_{j \leq \log n / \log p} \#\left\{k \leq n: p^{j} \mid k\right\}=\sum_{j \leq \log n / \log p}\left\lfloor n / p^{j}\right\rfloor \tag{3}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
\alpha_{p} / 2-\beta_{p} & \leq \sum_{j \leq \log \left(4 n^{2}+1\right) / \log p}\left\lceil n / p^{j}\right\rceil-\sum_{j \leq \log n / \log p}\left\lfloor n / p^{j}\right\rfloor \\
& =\sum_{j \leq \log n / \log p}\left(\left\lceil n / p^{j}\right\rceil-\left\lfloor n / p^{j}\right\rfloor\right)+\sum_{\log n / \log p<j \leq \log \left(4 n^{2}+1\right) / \log p}\left\lceil n / p^{j}\right\rceil \\
& \leq \frac{\log \left(4 n^{2}+1\right)}{\log p} \tag{4}
\end{align*}
$$

By (1) and (4) we have

$$
\begin{align*}
\sum_{\substack{p \leq n \\
p \neq 1(\bmod 4)}} \beta_{p} \log p & =\sum_{p \leq n} \beta_{p} \log p-\sum_{\substack{p \leq n \\
p \equiv 1(\bmod 4)}} \beta_{p} \log p \\
& \leq \frac{1}{2} \sum_{n<p<2 n} \alpha_{p} \log p-n \log 2+\log \left(4 n^{2}+1\right) \pi(n ; 1,4) \tag{5}
\end{align*}
$$

where $\pi(n ; 1,4)$ denotes the number of primes which are less than or equal to n and congruent to 1 modulo 4.

If $p>n$, then

$$
\frac{\log \left(4 n^{2}+1\right)}{\log p}<\frac{\log (n+1)^{3}}{\log (n+1)}=3
$$

By (2) we have $\alpha_{p} \leq 4$.
If $p \leq n$, then by (3) we have

$$
\begin{aligned}
\beta_{p} & \geq \sum_{j \leq \log n / \log p}\left(\frac{n}{p^{j}}-1\right)=n\left(\frac{1-p^{-1-\lfloor\log n / \log p\rfloor}}{1-1 / p}-1\right)-\lfloor\log n / \log p\rfloor \\
& \geq n\left(\frac{1-1 / n}{1-1 / p}-1\right)-\lfloor\log n / \log p\rfloor=\frac{n-p}{p-1}-\lfloor\log n / \log p\rfloor \\
& \geq \frac{n-1}{p-1}-\frac{\log \left(4 n^{2}+1\right)}{\log p}
\end{aligned}
$$

where the last inequality is based on the fact $p \leq n$.
Thus, by (5) we have

$$
(n-1) \sum_{\substack{p \leq n \\ p \neq 1(\bmod 4)}} \frac{\log p}{p-1}<\log \left(4 n^{2}+1\right) \pi(n)+2 \sum_{n<p<2 n} \log p-n \log 2
$$

where $\pi(n)$ denotes the number of primes which are less than or equal to n.
Now we use the Chebyshev's estimates

$$
\sum_{p \leq n} \log p \leq 2 n \log 2, \quad \sum_{n<p<2 n} \log p \leq 2 n \log 2
$$

and (see [3])

$$
\pi(x) \leq \frac{x}{\log x}\left(1+\frac{1.2762}{\log x}\right) \quad(x>1)
$$

to obtain

$$
\sum_{\substack{p \leq n \\ p \neq 1(\bmod 4)}} \frac{\log p}{p-1}<\frac{\log \left(4 n^{2}+1\right)}{n-1}\left(\frac{n}{\log n}+\frac{1.2762 n}{\log ^{2} n}\right)+\frac{3 n}{n-1} \log 2
$$

We know that the right-hand side is monotonic decreasing. Actually, that quantity is less than 7.14 for $n \geq 702007$.

For $n \geq 702007$, we have

$$
\sum_{\substack{p \leq n \\ p \neq 1(\bmod 4)}} \frac{\log p}{p-1} \geq \sum_{\substack{p \leq 702007 \\ p \neq 1(\bmod 4)}} \frac{\log p}{p-1}>7.14
$$

which proves the theorem for $n \geq 702007$.

Finally we have to check that P_{n} is not a square for $2 \leq n<702007$.

- $17=4 \times 2^{2}+1$. The next time that the prime 17 divides $4 k^{2}+1$ is for $k=17-2=15$. Hence P_{n} is not a square for $2 \leq n \leq 14$.
- $101=4 \times 5^{2}+1$. The next time that the prime 101 divides $4 k^{2}+1$ is for $k=101-5=96$. Hence P_{n} is not a square for $5 \leq n \leq 95$.
- $1297=4 \times 18^{2}+1$. The next time that the prime 1297 divides $4 k^{2}+1$ is for $k=1297-18=1279$. Hence P_{n} is not a square for $18 \leq n \leq 1278$.
- $739601=4 \times 430^{2}+1$. The next time that the prime 739601 divides $4 k^{2}+1$ is for $k=739601-430=739171$. Hence P_{n} is not a square for $430 \leq n \leq$ 739170.

Therefore $\prod_{k=1}^{n}\left(4 k^{2}+1\right)$ is not a perfect square. The proof that $\prod_{k=1}^{n}(2 k(k-$ $1)+1)$ is not a perfect square is completely similar. This completes the proof of Theorem 2.

Acknowledgements I sincerely thank my supervisor Professor Yong-Gao Chen for his valuable suggestions and useful discussions. I am also grateful to the referee for his/her valuable comments.

References

[1] T.Amdeberhan, L.A.Medina, and V.H.Moll, Arithmetical properties of a sequence arising from an arctangent sum, J. Number Theory 128(6) (2008), 1807-1846.
[2] J. Cilleruelo, Square in $\left(1^{2}+1\right) \cdots\left(n^{2}+1\right)$, J. Number Theory 128(8) (2008), 2488-2491.
[3] P.Dusart, The k th prime is greater than $k(\ln k+\ln \ln k-1)$ for $k \geq 2$, Math.Comp. 68 (1999), 411-415.

[^0]: ${ }^{1}$ Supported by the National Natural Science Foundation of China, Grant No. 10771103 and the Outstanding Graduate Dissertation program of Nanjing Normal University No. 181200000213.

