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Abstract
The Levinson–Durbin recursion is used to construct the coefficients which define
the minimum mean square error predictor of a new observation for a discrete time,
second-order stationary stochastic process. As the sample size varies, the coefficients
determine what is called a Levinson–Durbin sequence. A generalized Levinson–
Durbin sequence is also defined, and we note that binomial coefficients constitute
a special case of such a sequence. Generalized Levinson–Durbin sequences obey
formulas which generalize relations satisfied by binomial coefficients. Some of these
results are extended to vector stationary processes.

1. Introduction

The Levinson–Durbin recursion is well-known and widely used in time series anal-
ysis. Suppose {yt} is a discrete time, second-order stationary stochastic process.
Given y1, . . . , yn, for any n ≥ 1, the recursion obtains simply the coefficients αj, n

of the best linear predictor of yn+1, ŷn+1 = −α1, nyn − · · · − αn, ny1, best in the
sense of minimizing expected square error. Levinson [9] devised the recursion in
connection with Norbert Wiener’s work on prediction. His paper was reprinted as
an appendix in Wiener’s monograph on time series [17]. Wiener’s work had origi-
nally been presented in February 1942 in a classified U.S. government report (see
[7], p. 159, for some historical details).

Levinson presented his recursion for a stationary process with known structure.
His result was rediscovered in the context of statistical estimation by Bartlett [1,
pp. 264-265], Daniels [5, p. 183] and Durbin [6].

What is not well-known, and has not been described until recently, is a connec-
tion between binomial coefficients and sequences defined by Levinson’s recursion.
These sequences obey many formulas which are generalizations of those satisfied by
binomial coefficients. The purpose of this paper is to describe this connection and
present some formulas satisfied by the sequences.

In Section 2 we define the Levinson–Durbin and generalized Levinson–Durbin seq-
uences, we note that binomial coefficients constitute a generalized Levinson–Durbin
sequence, and we describe properties of the sequences. Formulas satisfied by the se-
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quences are presented in Section 3, examples are given in Section 4, Section 5 gives
an extension for vector-valued processes, and concluding remarks are in Section 6.

2. Definitions and Properties

Definition 1. The sequence αj, n, j = 1, . . . , n, n = 1, 2, . . . , is a Levinson–Durbin
sequence if the elements, all real-valued, satisfy

αj, n = αj, n−1 + αn, nαn−j, n−1, j = 1, . . . , n− 1, n = 2, 3, . . . , (1)

and
|αn, n| < 1, n = 1, 2, . . . . (2)

If (1) holds and the αn, n are not subject to (2), the αj, n are said to form a gener-
alized Levinson–Durbin sequence.

The definition shows that Levinson–Durbin and generalized Levinson–Durbin se-
quences are completely determined by just the αn, nvalues. If we choose αn, n =1 for
all n, then (1) generates the binomial coefficients. In Levinson’s formulation the val-
ues−αn, n, n = 1, 2, . . . , are taken to be the partial autocorrelations of the process to
be predicted. Furthermore, if the values −αn, n, n = 1, 2, . . . , are arbitrarily chosen
subject to (2), they constitute the partial autocorrelation sequence of some second-
order stationary process. If Γn denotes the n×n covariance matrix of (y1, . . . , yn)′,
then αj, k, j = 1, . . . , k, k = 1, . . . , n− 1, can be used to form the lower triangular
matrix in a Cholesky factorization of the inverse of Γn (see, e. g., [2], p. 491).

For {αj, n} a generalized Levinson–Durbin sequence, define the polynomials

An(z) =
n∑

j=0

αj, nzn−j , n = 1, 2, . . . , (3)

with α0, n = 1 for all n. From (1) it follows that

An(z) = zAn−1(z) + αn, nzn−1An−1(z−1), n = 2, 3, . . . . (4)

Proposition 2. Let {αj, n} be a Levinson–Durbin sequence. Then for n = 1, 2, . . .
all the zeros of An(z) lie strictly inside the circle | z| = 1.

This result is well-known. A proof using induction on n follows from (2), (4),
and Rouché’s theorem.

The following proposition notes that a symmetric generalized Levinson–Durbin
sequence has trivial structure if none of the αn, n is equal to 1.

Proposition 3. Suppose {αj, n} is a generalized Levinson–Durbin sequence for
which αj, n = αn−j, n, j = 1, . . . , n − 1, n = 2, 3, . . . . If αn, n $= 1, then αj, n =
α1, 1/(1− (n− 1)α1, 1), j = 1, . . . , n, n = 2, 3, . . . , for any choice of α1, 1 not equal
to 1/k, k = 1, 2, . . . .
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Proof. By (1) αj, n+1 = αj, n + αn+1, n+1αn+1−j, n and αn+1−j, n+1 = αn+1−j, n +
αn+1, n+1αj, n, j = 1, . . . , n. If αj, n+1 = αn+1−j, n+1, then (1 − αn+1, n+1)αj, n =
(1− αn+1, n+1)αn+1−j, n, j = 1, . . . , n, and if αn+1, n+1 $= 1, αj, n = αn+1−j, n, j =
1, . . . , n. This implies α1, n = · · · = αn, n, n = 2, 3, . . . , and the proposition follows
by employing (1) for n = 2, 3, . . . in succession. !

3. Formulas

The results presented in this section hold for all generalized Levinson–Durbin se-
quences, and they all reduce to familiar binomial formulas when αn, n = 1, n =
1, 2, . . . . The proofs of Theorems 4 and 5 use induction arguments and are given in
[11].

Theorem 4. If {αj, n} is a generalized Levinson–Durbin sequence,

n∑

j=0

αj, n =
n∏

j=1

(1 + αj, j), n = 1, 2, . . . , (5)

n∑

j=0

(−1)jαj, n =
n∏

j=1

(1 + (−1)jαj, j), n = 1, 2, . . . . (6)

Equation (5) appears in [5, p. 184]. The theorem implies that
∑n

j=0 αj, n > 0 and∑n
j=0(−1)jαj, n > 0 are necessary conditions for {αj, n} to be a Levinson–Durbin

sequence.

Theorem 5. If {αj, n} is a generalized Levinson–Durbin sequence,

n∑

j=1

j αj, n =
n∑

l=1

l−1∏

j=1

(1 + αj, j)lαl, l

n∏

k=l+1

(1− αk, k), n = 1, 2, . . . , (7)

n∑

j=1

(−1)j−1j αj, n =
n∑

l=1

l−1∏

j=1

(1 + (−1)jαj, j)(−1)l−1 l αl, l

×
n∏

k=l+1

(1− (−1)kαk, k), n = 1, 2, . . . ,
(8)

where
∏0

1(·) =
∏n

n+1(·) = 1.

The next theorem follows from repeated application of (1).

Theorem 6. If {αj, n} is a generalized Levinson–Durbin sequence, and α0, n = 1,



INTEGERS: 9 (2009) 170

n ≥ 0, then

αj, n =
n∑

k=j

αk, k αk−j, k−1, n > j ≥ 1. (9)

We now turn to generalizations of binomial coefficient summations such as(n
0

)
+

(n
2

)
+

(n
4

)
+ · · · and

(n
0

)
+

(n
3

)
+

(n
6

)
+ · · · . Define

S(k)
i, n = αi−1, n + αi+k−1, n + αi+2k−1, n + · · · , i = 1, . . . , k, k = 2, 3, . . . ,

n = 1, 2, . . . ,

where α0, n = 1, n ≥ 0, and αj, n = 0 if j > n.

Theorem 7. If {αj, n} is a generalized Levinson–Durbin sequence, then

S(k)
i, n+1 = S(k)

i, n + αn+1, n+1 S(k)
li, n, li = mod(n + 2 + k − i, k) + 1, (10)

i = 1, . . . , k, k = 2, 3, . . . , n = 1, 2, . . . .

The proof follows immediately from (1). Some patterns may be deduced from
the theorem. For example, if k is odd, there is a single value of i for which (10)
holds for each n, i = mod(1 + (n− 1)(k + 1)/2, k) + 1. However, if k is even, there
are two values of i for which (10) holds for each odd value of n, i = mod(1 + (n−
1)(k + 2)/4 + jk/2, k) + 1, j = 0, 1, and there is no value of i for which (10) holds
for an even value of n. Tables 1 and 2 illustrate the results implied by Theorem 7
for the case of the binomial coefficients.

i
n 1 2 3 4
3 1 3 3 1
4 2 4 6 4
5 6 6 10 10
6 16 12 16 20
7 36 28 28 36
8 72 64 56 64
9 136 136 120 120

10 256 272 256 240

Table 1: Values of S(4)
i, n for binomial coefficients.

The next theorem gives closed form expressions for the sums S(2)
i, n, i = 1, 2.
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Theorem 8. Suppose {αj, n} is a generalized Levinson–Durbin sequence and let
ij = 0 or 1, j = 1, . . . , n, and [x] denote the integer part of x. Then

S(2)
1, n =

[ 12 n]∏

j=1

(1 + α2j, 2j)
∑

(even)

[ 12 (n+1)]∏

k=1

α
i2k−1
2k−1, 2k−1, n = 1, 2, . . . , (11)

where the summation extends over all products for which i1 + i3 + · · ·+ i2[(n+1)/2]−1

is even; the expression for S(2)
2, n is the same except that the summation extends over

all products for which i1 + i3 + · · · + i2[(n+1)/2]−1 is odd.

For the proof see [11].

i
n 1 2 3 4 5
4 1 4 6 4 1
5 2 5 10 10 5
6 7 7 15 20 15
7 22 14 22 35 35
8 57 36 36 57 70
9 127 93 72 93 127

10 254 220 165 165 220
11 474 474 385 330 385

Table 2. Values of S(5)
i, n for binomial coefficients.

4. Examples

Levinson–Durbin sequences arise in the context of prediction and parameter esti-
mation for an autoregressive process of order p, defined as the stationary solution
of

p∑

j=0

αj (yt − µ) = εt, t = 0,±1,±2, . . . ,

where α0 = 1, µ = E(yt), {εt} is a sequence of independent, identically distributed
random variables, each with mean 0 and variance σ2, and the zeros of Ap(z) defined
at (3) lie strictly inside |z| = 1. For such a process the best linear predictor of yn+1,
given y1, . . . , yn, yields a Levinson–Durbin sequence with αj, p = αj , j = 1, . . . , p,
and for all n > p, αj, n = αj , j = 1, . . . , p, and αj, n = 0, j = p + 1, . . . , n. All
of the examples which follow arise in the context of estimation of the autoregres-
sive coefficients α1, . . . ,αp, given observed data y1, . . . , yT and assuming p is known.
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Yule–Walker estimation. To obtain the Yule–Walker estimator one minimizes
with

respect to α1, . . . ,αp the expression E
(∑p

j=0 αj(yt − µ)
)2

. Then in the resulting p

linear equations one replaces the covariances E(yt−j−µ)(yt−k−µ) by the estimates
(1/T )

∑T−|j−k|
t=1 (yt − ȳ)(yt+|j−k| − ȳ), j = 1, . . . , p, k = 0, 1, . . . , p, where ȳ is the

sample mean. One can also treat the case where the process mean is a polynomial
time trend, µ(t) =

∑m−1
j=0 βjtj , t = 1, . . . , T. For this case one replaces ȳ by the

least squares estimator of µ(t). The value m = 0 is used to designate a known mean
value. For each m, as p varies, the Yule–Walker autoregressive coefficient estimators
combine to form a Levinson–Durbin sequence. This estimator is rather widely em-
ployed. It is appealing because it is easy to calculate, and because by Proposition
2 it produces an estimated model that is causal. However, the Yule–Walker esti-
mator can have substantial bias [15]. The bias can be reduced by applying a data
taper (see [4]). The tapered Yule–Walker estimator also yields a Levinson–Durbin
sequence.

Least squares estimation. The least squares estimator is obtained by min-
imizing with respect to α1, . . . ,αp the expression

T∑

t=p+1

(yt − µ(t) + α1(yt−1 − µ(t)) + · · · + αp(yt−p − µ(t)))2 ,

and by substituting for the mean µ(t) its least squares estimator. For each value
of m and for each order p there is a unique autoregressive model for which the
coefficient estimator is unbiased to order 1/T . This model is the fixed point of a
contraction mapping determined by the asymptotic bias expression for the least
squares estimator. For details of the bias expression and the fixed point models
see [15, 13, 10, 14]. Although the least squares estimator does not itself determine
a Levinson–Durbin sequence, for each value of m the fixed point models combine
as the autoregressive order p varies to form a Levinson–Durbin sequence [11]. For
fixed m the sequence is defined, for p = 1, 2, . . ., by

αm
p, p =






m
p+m+1 for p odd,

m+1
p+m+1 for p even.

Note that as m→∞ the coefficients of the fixed point models tend to the binomial
coefficients.

Burg and Kay estimators. Estimators of the autoregressive coefficients pro-
posed by Burg (see [3], p. 147) and Kay [8] are determined by defining the sequence
{αn, n} and employing (1). Thus these estimators form Levinson–Durbin sequences.
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5. Levinson–Durbin–Whittle Sequences

Whittle [16] generalized the Levinson–Durbin recursion for a vector stationary pro-
cess {yt}. Unlike a scalar Gaussian stationary process, a vector-valued Gaussian
stationary process is not in general time-reversible. This creates complications, and
thus Whittle’s generalization of the Levinson–Durbin recursion requires the speci-
fication of two sequences, one for each direction of time. Assume that the process
{yt} has r components.

Definition 9. The r × r matrices Aj, n and Āj, n, j = 1, . . . , n, n = 1, 2, . . . ,
form a Levinson–Durbin–Whittle sequence if they satisfy

Aj, n = Aj, n−1 + An, nĀn−j, n−1,

Āj, n = Āj, n−1 + Ān, nAn−j, n−1, j = 1, . . . , n− 1, n = 2, 3, . . . , (12)

and

the eigenvalues of An, n and of Ān, n are less than 1 in magnitude, n = 1, 2, . . . .
(13)

If (12) holds and (13) does not, the matrices Aj, n and Āj, n form a generalized
Levinson–Durbin–Whittle sequence.

If An, n = Ān, n = I, n = 1, 2, . . . , then (12) generates the binomial sequence

Aj, n = Āj, n =
(

n

j

)
I, j = 1, . . . , n− 1, n = 2, 3, . . . ,

where I is the r × r identity matrix.
Let A0, n = Ā0, n = I, and define the polynomials

An(z) =
n∑

j=0

Aj, n zn−j , Ān(z) =
n∑

j=0

Āj, n zj−n, n = 1, 2, . . . .

Whittle [16] proved that the zeros of |An(z)| (| Ān(z)|) all lie inside (outside) the
unit circle | z| = 1.

Properties of generalized Levinson–Durbin–Whittle sequences are discussed in
[12]. The analogues of Theorems 4, 5, and 8 are given there. The analogue of
Theorem 6 is

Aj, n =
n∑

k=j

Ak, kĀk−j, k−1, Āj, n =
n∑

k=j

Āk, kAk−j, k−1, n > j ≥ 1.

The formulas satisfied by generalized Levinson–Durbin–Whittle sequences simplify
for time-reversible vector processes. These processes, however, are very restrictive.
For example, all of their components are exactly in phase with each other.
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6. Concluding Remarks

In this paper we have examined properties of generalized Levinson–Durbin se-
quences. The sequences are completely determined by the αn, n values, and they
obey formulas which generalize relations satisfied by binomial coefficients. The
correspondence between generalized Levinson–Durbin sequences and binomial coef-
ficients, however, is limited by symmetry considerations. The binomial coefficients
essentially are the only generalized Levinson–Durbin sequence which satisfies the
symmetry condition αj, n = αn−j, n. Many binomial coefficient formulas depend
upon this symmetry condition, and thus the collection of formulas satisfied by all
generalized Levinson–Durbin sequences is less expansive than that for the binomial
coefficients.

Finally, we note that the results of this paper have implications for the numeri-
cal structure of autoregressive coefficient estimates for an estimator which forms a
Levinson–Durbin sequence. Examples of several such estimators are given in Section
4.
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