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Abstract
A nonempty subset A ⊆ {1, 2 . . . , n} is relatively prime if gcd(A) = 1. Let f(n)
denote the number of relatively prime subsets of {1, 2 . . . , n}. The sequence given by
the values of f(n) is sequence A085945 in Sloane’s On-Line Encyclopedia of Integer
Sequences. In this article we show that f(n) is never a square if n ≥ 2. Moreover,
we show that reducing the terms of this sequence modulo any prime l #= 3 leads to
a sequence which is not periodic modulo l.

1. Introduction

Nathanson defined a nonempty subset A of {1, 2 . . . , n} to be relatively prime if
gcd(A) = 1. Let f(n) and Φ(n) denote respectively the number of relatively prime
subsets of {1, 2 . . . , n} and the number of nonempty subsets A of {1, 2 . . . , n} such
that gcd(A) is relatively prime to n. Exact formulas and asymptotic estimates are
given by M. B. Nathanson in [5]. Generalizations may be found in [1], [2], [3], [4]
and [6]. Let [x] denote the greatest integer less than or equal to x and µ(n) the
Mobius function. Nathanson [5] proved the following theorem.

Theorem 1. The following hold:

(i) For all positive integers n,

f(n) =
n∑

d=1

µ(d)
(
2[n/d] − 1

)
. (1)

(ii) For all integers n ≥ 2,
Φ(n) =

∑

d|n

µ(d)2n/d. (2)

It is worth mentioning that from formula (2), we see that Φ(n) is equal to the
number of primitive elements of the field F2n over F2. In [1], a new functionΨ(n, p)
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generalizing Φ is defined such that Ψ(n, p) represents the number of primitive ele-
ments of Fpn over Fp, where p is any prime number. In [7, Example 1, p. 62], the
function Φ(n) is defined as the number of primitive 0− 1 strings of length n.

The first result of this paper is the following:

Theorem 2. f(n) is never a square if n ≥ 2.

Question Is there any perfect power other than f(1) = 1?
Indeed we were unable to prove that there is no term of the sequence which is a

cube other than the first term.
Our second result concerns the study of the sequence f(n) if one reduces its terms

modulo a fixed prime. Let l be a prime number. We say that the sequence f(n) is
periodic modulo l, starting from some integer N = N(l), if there exists an integer
T ≥ 1 such that f(n + T ) ≡ f(n) (mod l) for any n ≥ N . Lemma 2 below shows
that f(n) is periodic modulo 3 starting from N = 2.

Theorem 3. Let l be a prime such that l #= 3. Then f(n) is not periodic modulo l.

2. Proof of Theorem 2

For the proof of Theorem 2 we need two lemmas.

Lemma 1. For any integer n ≥ 1, we have

f(n + 1)− f(n) =
1
2
Φ(n + 1). (3)

Proof. Let E(n+1) be the set consisting of the nonempty subsets A of {1, 2, . . . , n+
1} such that gcd(A) is coprime to n + 1. Let E0(n + 1) and E1(n + 1) be two sets
that partition E(n + 1) such that an element A of E(n + 1) belongs to E1(n + 1) if
it contains n+1. It is easy to see that E0(n+1) and E1(n+1) are of the same size.
Moreover, by the very definition of f(n), f(n + 1)− f(n) represents the cardinality
of E1(n + 1) and the result follows.

Lemma 2. For any n ≥ 3, Φ(n) ≡ 0 (mod 3).

Proof. If n is odd then for any d | n, 2n/d ≡ −1 (mod 3); hence (2) yields

Φ(n) ≡ −
∑

d|n

µ(d).

It is well-known that
∑

d|n µ(d) = 0 if n ≥ 2; hence the result follows in the case n

is odd. Suppose now that the integer n is even and write it in the form n = 2kn′,
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where k ≥ 1 and n′ is odd. We suppose that n′ ≥ 3. Equation (2) may be written
in the form

Φ(n) =
∑

d|n′
µ(d)22kn′/d +

∑

d|n′
µ(2d)22kn′/2d + · · · +

∑

d|n′
µ(2kd)22kn′/2kd. (4)

It is clear that all the sums in (4) but the first two are 0. For any d | n′ we have
22kn′/d ≡ 1 (mod 3); hence

∑
d|n′ µ(d)22kn′/d ≡ 0 (mod 3). We have 22k−1n′/d ≡

1 (mod 3) if k ≥ 2 and 22k−1n′/d ≡ −1 (mod 3) if k = 1. We deduce that∑
d|n′ µ(2d)22kn′/2d ≡ ±

∑
d|n′ µ(2d) ≡ ∓

∑
d|n′ µ(d) ≡ 0 (mod 3) and the result

follows in the case n is even and n′ ≥ 3.
The case n′ = 1 may be proved similarly.

Second Proof. Recall from [5] the following formula:
∑

d|n

Φ(d) = 2n − 1.

Suppose that the lemma is true for any 3 ≤ m < n. If n is even, then 2n − 1 ≡
Φ(1) + Φ(2) + Φ(n) (mod 3) and the result follows since Φ(1) = 1, Φ(2) = 2 and
2n − 1 ≡ 0 (mod 3). A similar argument applies when n is odd.

Proof of Theorem 2 Lemmas 1 and 2 show that f(n + 1) ≡ f(n) (mod 3). Since
f(2) = 2, we conclude by induction that for any n ≥ 2, f(n) ≡ 2 (mod 3); hence
f(n) is never a square if n ≥ 2.

3. Proof of Theorem 3

Suppose first that l ≥ 5 and that the sequence f(n) is periodic starting from some
integer N and denote by T one of its periods. It is clear, by (3), that the sequence
Φ(n) is also periodic and T is also a period for this sequence. Select two large prime
numbers p and q such that p ≡ 1 (mod (l − 1)T ) and q ≡ −1 (mod (l − 1)T ). It
is easy to see that Φ(p) = 2p − 2, Φ(q) = 2q − 2 and Φ(pq) = 2pq − 2p − 2q + 2,
by (2). Hence, Φ(p) ≡ 0 (mod l), Φ(q) ≡ 2−1 − 2 (mod l) and Φ(pq) ≡ 0 (mod l).
But pq ≡ q (mod T ); hence Φ(pq) ≡ 2−1 − 2 (mod l). It follows that 2−1 − 2 ≡ 0
(mod l), thus l = 3, which contradicts our hypothesis and the proof is complete
when l ≥ 5.

Suppose now that l = 2 and that f(n) is periodic modulo 2 with period T starting
from the integer N . Using (1), we see that f(n) ≡

∑n
d=1 µ(d) (mod 2) and f(n +

T ) ≡
∑n+T

d=1 µ(d) (mod 2). We deduce that, for n ≥ N ,
∑n

d=1 µ(d) ≡
∑n+T

d=1 µ(d)
(mod 2). Then

∑n+T
d=n+1 µ(d) ≡ 0 (mod 2), whereupon µ(n + 1) ≡ µ(n + T + 1)

(mod 2); i.e. µ(n) ≡ µ(n + mT ) (mod 2) for every n ≥ N and m any positive
integer. Choose a large square-free integer n0 and a prime p such that p ! T .
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It is clear that there exists a positive integer m such that n0 + mT ≡ 0 (mod p2);
hence n0 + mT is not square-free. Then, µ(n0) ≡ 1 (mod 2) and µ(n0 + mT ) ≡ 0
(mod 2), which is a contradiction and the proof is complete.
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