THE NUMBER OF RELATIVELY PRIME SUBSETS OF $\{1,2, \ldots, N\}$

Mohamed Ayad
Lab. de Math. Pures et Appliquées, Université du Littoral, Calais, F6228 France
Mohamed.Ayad@lmpa.univ-littoral.fr
Omar Kihel ${ }^{1}$
Department of Mathematics, Brock University, St. Catharines, Ontario, CANADA L2S 3A1 okihel@brocku.ca

Received: 7/11/08, Revised: 2/27/09, Accepted: 3/11/09

Abstract

A nonempty subset $A \subseteq\{1,2 \ldots, n\}$ is relatively prime if $\operatorname{gcd}(A)=1$. Let $f(n)$ denote the number of relatively prime subsets of $\{1,2 \ldots, n\}$. The sequence given by the values of $f(n)$ is sequence A085945 in Sloane's On-Line Encyclopedia of Integer Sequences. In this article we show that $f(n)$ is never a square if $n \geq 2$. Moreover, we show that reducing the terms of this sequence modulo any prime $l \neq 3$ leads to a sequence which is not periodic modulo l.

1. Introduction

Nathanson defined a nonempty subset A of $\{1,2 \ldots, n\}$ to be relatively prime if $\operatorname{gcd}(A)=1$. Let $f(n)$ and $\Phi(n)$ denote respectively the number of relatively prime subsets of $\{1,2 \ldots, n\}$ and the number of nonempty subsets A of $\{1,2 \ldots, n\}$ such that $\operatorname{gcd}(A)$ is relatively prime to n. Exact formulas and asymptotic estimates are given by M. B. Nathanson in [5]. Generalizations may be found in [1], [2], [3], [4] and [6]. Let $[x]$ denote the greatest integer less than or equal to x and $\mu(n)$ the Mobius function. Nathanson [5] proved the following theorem.

Theorem 1. The following hold:
(i) For all positive integers n,

$$
\begin{equation*}
f(n)=\sum_{d=1}^{n} \mu(d)\left(2^{[n / d]}-1\right) . \tag{1}
\end{equation*}
$$

(ii) For all integers $n \geq 2$,

$$
\begin{equation*}
\Phi(n)=\sum_{d \mid n} \mu(d) 2^{n / d} \tag{2}
\end{equation*}
$$

It is worth mentioning that from formula (2), we see that $\Phi(n)$ is equal to the number of primitive elements of the field $\mathbb{F}_{2^{n}}$ over \mathbb{F}_{2}. In $[1]$, a new function $\Psi(n, p)$

[^0]generalizing Φ is defined such that $\Psi(n, p)$ represents the number of primitive elements of $\mathbb{F}_{p^{n}}$ over \mathbb{F}_{p}, where p is any prime number. In $[7$, Example 1, p. 62], the function $\Phi(n)$ is defined as the number of primitive $0-1$ strings of length n.

The first result of this paper is the following:

Theorem 2. $f(n)$ is never a square if $n \geq 2$.
Question Is there any perfect power other than $f(1)=1$?
Indeed we were unable to prove that there is no term of the sequence which is a cube other than the first term.

Our second result concerns the study of the sequence $f(n)$ if one reduces its terms modulo a fixed prime. Let l be a prime number. We say that the sequence $f(n)$ is periodic modulo l, starting from some integer $N=N(l)$, if there exists an integer $T \geq 1$ such that $f(n+T) \equiv f(n)(\bmod l)$ for any $n \geq N$. Lemma 2 below shows that $f(n)$ is periodic modulo 3 starting from $N=2$.

Theorem 3. Let l be a prime such that $l \neq 3$. Then $f(n)$ is not periodic modulo l.

2. Proof of Theorem 2

For the proof of Theorem 2 we need two lemmas.

Lemma 1. For any integer $n \geq 1$, we have

$$
\begin{equation*}
f(n+1)-f(n)=\frac{1}{2} \Phi(n+1) \tag{3}
\end{equation*}
$$

Proof. Let $E(n+1)$ be the set consisting of the nonempty subsets A of $\{1,2, \ldots, n+$ $1\}$ such that $\operatorname{gcd}(A)$ is coprime to $n+1$. Let $E_{0}(n+1)$ and $E_{1}(n+1)$ be two sets that partition $E(n+1)$ such that an element A of $E(n+1)$ belongs to $E_{1}(n+1)$ if it contains $n+1$. It is easy to see that $E_{0}(n+1)$ and $E_{1}(n+1)$ are of the same size. Moreover, by the very definition of $f(n), f(n+1)-f(n)$ represents the cardinality of $E_{1}(n+1)$ and the result follows.

Lemma 2. For any $n \geq 3, \Phi(n) \equiv 0(\bmod 3)$.
Proof. If n is odd then for any $d \mid n, 2^{n / d} \equiv-1(\bmod 3)$; hence (2) yields

$$
\Phi(n) \equiv-\sum_{d \mid n} \mu(d)
$$

It is well-known that $\sum_{d \mid n} \mu(d)=0$ if $n \geq 2$; hence the result follows in the case n is odd. Suppose now that the integer n is even and write it in the form $n=2^{k} n^{\prime}$,
where $k \geq 1$ and n^{\prime} is odd. We suppose that $n^{\prime} \geq 3$. Equation (2) may be written in the form

$$
\begin{equation*}
\Phi(n)=\sum_{d \mid n^{\prime}} \mu(d) 2^{2^{k} n^{\prime} / d}+\sum_{d \mid n^{\prime}} \mu(2 d) 2^{2^{k} n^{\prime} / 2 d}+\cdots+\sum_{d \mid n^{\prime}} \mu\left(2^{k} d\right) 2^{2^{k} n^{\prime} / 2^{k} d} \tag{4}
\end{equation*}
$$

It is clear that all the sums in (4) but the first two are 0 . For any $d \mid n^{\prime}$ we have $2^{2^{k} n^{\prime} / d} \equiv 1(\bmod 3) ;$ hence $\sum_{d \mid n^{\prime}} \mu(d) 2^{2^{k} n^{\prime} / d} \equiv 0(\bmod 3)$. We have $2^{2^{k-1} n^{\prime} / d} \equiv$ $1(\bmod 3)$ if $k \geq 2$ and $2^{2^{k-1} n^{\prime} / d} \equiv-1(\bmod 3)$ if $k=1$. We deduce that $\sum_{d \mid n^{\prime}} \mu(2 d) 2^{2^{k} n^{\prime} / 2 d} \equiv \pm \sum_{d \mid n^{\prime}} \mu(2 d) \equiv \mp \sum_{d \mid n^{\prime}} \mu(d) \equiv 0(\bmod 3)$ and the result follows in the case n is even and $n^{\prime} \geq 3$.

The case $n^{\prime}=1$ may be proved similarly.
Second Proof. Recall from [5] the following formula:

$$
\sum_{d \mid n} \Phi(d)=2^{n}-1
$$

Suppose that the lemma is true for any $3 \leq m<n$. If n is even, then $2^{n}-1 \equiv$ $\Phi(1)+\Phi(2)+\Phi(n)(\bmod 3)$ and the result follows since $\Phi(1)=1, \Phi(2)=2$ and $2^{n}-1 \equiv 0(\bmod 3)$. A similar argument applies when n is odd.

Proof of Theorem 2 Lemmas 1 and 2 show that $f(n+1) \equiv f(n)(\bmod 3)$. Since $f(2)=2$, we conclude by induction that for any $n \geq 2, f(n) \equiv 2(\bmod 3)$; hence $f(n)$ is never a square if $n \geq 2$.

3. Proof of Theorem 3

Suppose first that $l \geq 5$ and that the sequence $f(n)$ is periodic starting from some integer N and denote by T one of its periods. It is clear, by (3), that the sequence $\Phi(n)$ is also periodic and T is also a period for this sequence. Select two large prime numbers p and q such that $p \equiv 1(\bmod (l-1) T)$ and $q \equiv-1(\bmod (l-1) T)$. It is easy to see that $\Phi(p)=2^{p}-2, \Phi(q)=2^{q}-2$ and $\Phi(p q)=2^{p q}-2^{p}-2^{q}+2$, by (2). Hence, $\Phi(p) \equiv 0(\bmod l), \Phi(q) \equiv 2^{-1}-2(\bmod l)$ and $\Phi(p q) \equiv 0(\bmod l)$. But $p q \equiv q(\bmod T)$; hence $\Phi(p q) \equiv 2^{-1}-2(\bmod l)$. It follows that $2^{-1}-2 \equiv 0$ $(\bmod l)$, thus $l=3$, which contradicts our hypothesis and the proof is complete when $l \geq 5$.

Suppose now that $l=2$ and that $f(n)$ is periodic modulo 2 with period T starting from the integer N. Using (1), we see that $f(n) \equiv \sum_{d=1}^{n} \mu(d)(\bmod 2)$ and $f(n+$ $T) \equiv \sum_{d=1}^{n+T} \mu(d)(\bmod 2)$. We deduce that, for $n \geq N, \sum_{d=1}^{n} \mu(d) \equiv \sum_{d=1}^{n+T} \mu(d)$ $(\bmod 2)$. Then $\sum_{d=n+1}^{n+T} \mu(d) \equiv 0(\bmod 2)$, whereupon $\mu(n+1) \equiv \mu(n+T+1)$ $(\bmod 2)$; i.e. $\mu(n) \equiv \mu(n+m T)(\bmod 2)$ for every $n \geq N$ and m any positive integer. Choose a large square-free integer n_{0} and a prime p such that $p \nmid T$.

It is clear that there exists a positive integer m such that $n_{0}+m T \equiv 0\left(\bmod p^{2}\right)$; hence $n_{0}+m T$ is not square-free. Then, $\mu\left(n_{0}\right) \equiv 1(\bmod 2)$ and $\mu\left(n_{0}+m T\right) \equiv 0$ $(\bmod 2)$, which is a contradiction and the proof is complete.

Acknowlegement. We thank the referee for suggesting some corrections and for pointing us to reference [7].

References

[1] M. Ayad, O. Kihel, On relatively prime sets, preprint 2008.
[2] M. Ayad, O. Kihel, On the Number of Subsets Relatively Prime to an Integer, J. Integer Sequences 11 (2008), 08.5.5.
[3] M. El Bachraoui, The number of relatively prime subsets and Phi functions for $\{m, m+1 \ldots, n\}$, Integers 7 (2007), A43.
[4] M. El Bachraoui. On the number of Subsets of $[1, m]$ Relatively Prime to n and Asymptotic Estimates, Integers 8 (2008), A41.
[5] M. B. Nathanson. Affine invariants, relatively prime sets, and a Phi function for subsets of $\{1,2, \ldots, n\}$, Integers 7 (2007), A01.
[6] M. B. Nathanson, B. Orosz. Asymptotic estimates for phi functions for subsets of $\{M+1, M+$ $2, \ldots, N\}$, Integers 7 (2007), A54.
[7] H. S. Wilf. generatingfunctionology. Academic Press, 1994.

[^0]: ${ }^{1}$ Research partially supported by NSERC.

