THE $3 \mathrm{x}+1$ CONJUGACY MAP OVER A STURMIAN WORD

Josefina López
Santiago Yosondúa, Oaxaca, México
josefinapedro@hotmail.com
\section*{Peter Stoll}
Santiago Yosondúa, Oaxaca, México
josefinapedro@hotmail.com

Received: 12/1/08, Revised: 2/25/09, Accepted: 3/5/09

Abstract

The $3 x+1$ map T is defined on the 2-adic integers \mathbb{Z}_{2} by $T(x)=x / 2$ for even x and $T(x)=(3 x+1) / 2$ for odd x. Under iteration of T, the sequence $\left(T^{k}(x) \bmod 2\right)_{k=0}^{\infty}$, called the parity vector of $x \in \mathbb{Z}_{2}$, can be interpreted as an infinite word over the alphabet $\{0,1\}$ or as the digits of the 2-adic integer $\Phi^{-1}(x)=\sum_{k=0}^{\infty}\left(T^{k}(x) \bmod 2\right)$. 2^{k}. For any $v \in \mathbb{Z}_{2}$ (or equivalently for the infinite word v), the inverse map Φ (called the $3 x+1$ conjugacy map) yields the unique $x \in \mathbb{Z}_{2}$ with parity vector v. It is unknown if there exists any aperiodic v with an eventually periodic $\Phi(v)$. In this paper we compute $\Phi(v)$ for a class of aperiodic infinite words v of minimal complexity, the mechanical words with irrational slope and intercept 0 . Our main result is a generalized continued fraction expansion of $-1 / \Phi(x)$, convergent under the 2 -adic metric of \mathbb{Z}_{2}. The given examples suggest that Φ always maps Sturmian words to infinite words of full complexity.

1. Introduction

Let \mathbb{Z}_{2} denote the ring of 2-adic integers. Each $x \in \mathbb{Z}_{2}$ can be expressed uniquely as an infinite string $x_{0} x_{1} x_{2} \cdots$ of 1 's and 0 's, called the binary representation of x. The x_{k} are the digits of x, written from left to right. For instance, $-1=1111 \cdots$ and $1=1000 \cdots$. The 2-adic norm $|\cdot|_{2}$ in \mathbb{Z}_{2} is given by $|x|_{2}:=2^{-n}$ if $x \neq 0$ and $|x|_{2}:=0$ if $x=0$, where x_{n} is the first nonzero digit of x. The distance is defined by $d(x, y)=|x-y|_{2}$ for all $x, y \in \mathbb{Z}_{2}$. With this metric \mathbb{Z}_{2} is a compact and complete topological space. Let $0 \leq d_{0}<d_{1}<d_{2}<\cdots$ be a finite or infinite sequence of nonnegative integers defined by $d_{i}:=k$ whenever $x_{k}=1$ for a 2 -adic integer $x=x_{0} x_{1} \cdots x_{k} \cdots$. Then x can be written as the finite or infinite sum $x=2^{d_{0}}+2^{d_{1}}+2^{d_{2}}+\cdots$.

The $3 x+1$ map T is defined on the 2-adic integers \mathbb{Z}_{2} by $T(x)=x / 2$ for even x and $T(x)=(3 x+1) / 2$ for odd x. The 2 -adic shift map S is defined on the 2 -adic integers \mathbb{Z}_{2} by $S(x)=x / 2$ for even x and $S(x)=(x-1) / 2$ for odd x.

The maps T and S are conjugates (Bernstein, Lagarias [2]). There exists a unique homeomorphism $\Phi: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ (the $3 x+1$ conjugacy map) with $\Phi(0)=0$ and

$$
\begin{equation*}
\Phi \circ S \circ \Phi^{-1}=T . \tag{1}
\end{equation*}
$$

There are explicit formulas for Φ and Φ^{-1} :

$$
\begin{equation*}
\Phi\left(2^{d_{0}}+2^{d_{1}}+2^{d_{2}}+\cdots\right)=-\sum_{i} \frac{1}{3^{i+1}} 2^{d_{i}} \tag{2}
\end{equation*}
$$

(see [1]) and

$$
\begin{equation*}
\Phi^{-1}(x)=\sum_{k=0}^{\infty}\left(T^{k}(x) \bmod 2\right) \cdot 2^{k} \tag{3}
\end{equation*}
$$

(see $([2])$, where $T^{k}(x)$ denotes the k-th iterate of T and $T^{0}(x):=x$.
Also, Φ is a 2 -adic isometry ([2]):

$$
\begin{equation*}
|\Phi(x)-\Phi(y)|_{2}=|x-y|_{2} \quad \text { for all } x, y \in \mathbb{Z}_{2} \tag{4}
\end{equation*}
$$

Moreover ([2]),

$$
\begin{equation*}
\Phi(x) \equiv x \quad(\bmod 2) \quad \text { for all } x \in \mathbb{Z}_{2} \tag{5}
\end{equation*}
$$

The sequence

$$
\begin{equation*}
\left(T^{k}(x) \bmod 2\right)_{k=0}^{\infty} \tag{6}
\end{equation*}
$$

is called the parity vector of $x \in \mathbb{Z}_{2}$ (Lagarias [6]). Its elements are the digits of the 2 -adic integer $\Phi^{-1}(x)$. The concatenation of these digits is an infinite word v over the alphabet $\{0,1\}$, written from left to right:

$$
v=x_{0} x_{1} x_{2} \cdots, \quad \text { where } x_{k} \equiv T^{k}(x) \quad(\bmod 2)
$$

We define $d_{i}:=k$ whenever $x_{k}=1$. Then we can define $\Phi(v):=\Phi\left(2^{d_{0}}+2^{d_{1}}+\right.$ $\left.2^{d_{2}}+\cdots\right)$ and refer to Φ, whether it is a 2-adic integer or an infinite word.

Let $\mathbb{A}^{\mathbb{N}_{0}}$ be the set of (right) infinite words over the alphabet $\mathbb{A}=\{0,1\}$:

$$
\mathbb{A}^{\mathbb{N}_{0}}:=\left\{x_{0} x_{1} x_{2} \cdots: x_{k} \in \mathbb{A}, k=0,1,2, \ldots\right\}
$$

The set $\mathbb{A}^{\mathbb{N}_{0}}$ is equipped with a distance defined as follows:

$$
\begin{aligned}
& \text { for } x, y \in \mathbb{A}^{\mathbb{N}_{0}}, \quad d(x, y):=2^{-n} \\
& \text { with } n=\min \left\{k \geq 0: x_{k} \neq y_{k}\right\}
\end{aligned}
$$

and the convention that $d(x, y):=0$ if and only if $x=y$. With this metric (essentially the same as the metric of $\left.\mathbb{Z}_{2}\right) \mathbb{A}^{\mathbb{N}_{0}}$ is a compact and complete topological space (Lothaire [8], Chapter 1).

Note that $\mathbb{A}^{\mathbb{N}_{0}}$ and \mathbb{Z}_{2} are homeomorphic spaces: both are homeomorphic to the Cantor space. A sequence of words in $\mathbb{A}^{\mathbb{N}_{0}}$ converges to a limit $x \in \mathbb{A}^{\mathbb{N}_{0}}$ if and only if the corresponding sequence of 2-adic integers converges to $y \in \mathbb{Z}_{2}$, and such that y is the 2 -adic integer corresponding to the word x. This fact simplifies the redaction and the notation: If our interest is the digits structure of an $x \in \mathbb{Z}_{2}$, we use the language
of words. We even use the same symbols for words and 2 -adic integers when there is no confusion in the context.

Let $\mathbb{Q}_{\text {odd }}{ }^{1}$ denote the ring of rational numbers, having an odd denominator in reduced fraction form. We know that $\mathbb{Q}_{\text {odd }}$ is isomorphic to the subring $\mathbb{Q}_{2} \subset \mathbb{Z}_{2}$ of eventually periodic 2 -adic integers (i.e., their word of digits is eventually periodic). This isomorphism enables us to do arithmetic within $\mathbb{Q}_{\text {odd }}$ instead of struggling with the cumbersome elements of \mathbb{Q}_{2}. We take care that no fractions with even denominator arise. The elements $a / b \in \mathbb{Q}_{\text {odd }}$ (and also $a / b \in \mathbb{Q}$) have a 2 -adic norm given by

$$
\left|\frac{a}{b}\right|_{2}:=2^{-\operatorname{val}_{2}\left(\frac{a}{b}\right)} \text { where } \operatorname{val}_{2}\left(\frac{a}{b}\right):=\max \left\{r: 2^{r} \text { divides } \frac{a}{b}\right\} \geq 0 ; \operatorname{val}_{2}(0):=\infty
$$

If the parity vector (6) of some $x \in \mathbb{Z}_{2}$ is an eventually periodic infinite word v, then $x=\Phi(v)$ is also eventually periodic. This follows from (2) by computing the corresponding geometric series. Thus $\Phi\left(\mathbb{Q}_{\text {odd }}\right) \subset \mathbb{Q}_{\text {odd }}$. The periodicity conjecture, concerning the famous $3 x+1$ problem, states that $\Phi\left(\mathbb{Q}_{\text {odd }}\right)=\mathbb{Q}_{\text {odd }}$ (Bernstein, Lagarias [2]). If this conjecture is true, Φ maps each aperiodic parity vector v onto an aperiodic 2-adic integer: $\Phi(v) \notin \mathbb{Q}_{\text {odd }}$.

The "nicest" aperiodic infinite words are the Sturmian words: infinite words over the alphabet $\{0,1\}$ which have exactly $(n+1)$ different factors ${ }^{2}$ of length n for each $n \geq 0$. Indeed, Sturmian words are aperiodic infinite words of minimal complexity (see [8]). They can even be described explicitly in arithmetic form, known as lower and upper mechanical words (see [8]):

$$
\lfloor(j+1) \alpha+\rho\rfloor-\lfloor j \alpha+\rho\rfloor \quad \text { or } \quad\lceil(j+1) \alpha+\rho\rceil-\lceil j \alpha+\rho\rceil \quad \text { for } j=0,1,2, \ldots
$$

where $\alpha \in(0,1)$ is an irrational number (the slope) and $\rho \in[0,1)$ (the intercept).
In this paper, we compute $\Phi(v)$ for mechanical words v with intercept 0 . A special word

$$
c_{\alpha}:=\lfloor(j+1) \alpha\rfloor-\lfloor j \alpha\rfloor=\lceil(j+1) \alpha\rceil-\lceil j \alpha\rceil \quad \text { for } j=1,2,3, \ldots
$$

is called the characteristic word. Note that here $j \neq 0$. Then

$$
0 c_{\alpha}=\lfloor(j+1) \alpha\rfloor-\lfloor j \alpha\rfloor \quad \text { and } 1 c_{\alpha}=\lceil(j+1) \alpha\rceil-\lceil j \alpha\rceil \text { for } j=0,1,2, \ldots
$$

Let $\alpha=\left[0 ; a_{1}, a_{2}, \ldots\right]$ be the simple continued fraction expansion of the irrational number α with partial denominators $\left(a_{k}\right)_{k \geq 0}$,

$$
\alpha=\frac{1}{a_{1}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots}}}
$$

[^0]and convergents $\left(p_{k} / q_{k}\right)_{k \geq 0}$ defined by
\[

$$
\begin{aligned}
p_{-2} & :=0, \quad q_{-2}:=1, \\
p_{-1} & :=1, \quad q_{-1}:=0, \\
p_{k} & =a_{k} p_{k-1}+p_{k-2}, \\
q_{k} & =a_{k} q_{k-1}+q_{k-2} .
\end{aligned}
$$
\]

Then always

$$
\begin{array}{ll}
p_{0}=0, & q_{0}=1 \\
p_{1}=1, & q_{1}=a_{1}
\end{array}
$$

For any irrational $\alpha \in(0,1)$ given as a simple continued fraction, we obtain a 2 -adic convergent series expansion in terms of p_{k} 's and q_{k} 's for $\Phi\left(1 c_{\alpha}\right) \in \mathbb{Z}_{2}$ (Theorem 1). From $\Phi\left(1 c_{\alpha}\right)$ one easily gets by (1) and (5):

$$
\Phi\left(c_{\alpha}\right)=\frac{3 \Phi\left(1 c_{\alpha}\right)+1}{2} \quad \text { and } \quad \Phi\left(0 c_{\alpha}\right)=3 \Phi\left(1 c_{\alpha}\right)+1
$$

As main result we get a convergent generalized continued fraction expansion of $-1 / \Phi\left(1 c_{\alpha}\right)$ in \mathbb{Z}_{2}, formally with rational integers as partial denominators and numerators (Corollary 2).

In Section 2 we summarize our results without proof. We give several examples of $\Phi\left(1 c_{\alpha}\right)$'s for different α-values. The examples suggest the full complexity of the infinite words, i.e., they have 2^{n} different factors of length n for every $n \geq 0$. We show the exact number of digits, necessary for checking the claimed complexity up to the bound $n \leq 5$.

The proof of the main result, concerning 2-adic integers, is in Section 3. In Section 4 we prove that an associated real-valued function $\Phi_{\mathbb{R}}\left(1 c_{\alpha}\right)$ is a devil's staircase. This function with the same series expansion explains the underlying idea when computing $\Phi\left(1 c_{\alpha}\right)$.

2. Results

Theorem 1. Let $\alpha=\left[0 ; a_{1}, a_{2}, \ldots\right]$ be the simple continued fraction expansion of the irrational number α with convergents $\left(p_{k} / q_{k}\right), 1 c_{\alpha}=\lceil(j+1) \alpha\rceil-\lceil j \alpha\rceil$ for $j=0,1,2, \ldots$ and $1 c_{\alpha} \in \mathbb{Z}_{2}$. Then it holds in \mathbb{Z}_{2} :

$$
\Phi\left(1 c_{\alpha}\right)=-\frac{1}{3}-\sum_{j=0}^{\infty}(-1)^{j+1} \frac{2^{q_{j+1}+q_{j}-1}}{3\left(3^{p_{j+1}}-2^{q_{j+1}}\right)\left(3^{p_{j}}-2^{q_{j}}\right)}
$$

Corollary 2. Let $\alpha,\left(p_{k} / q_{k}\right)$ and $1 c_{\alpha}$ be as in Theorem 1. Then it holds in \mathbb{Z}_{2} :

$$
-\frac{1}{\Phi\left(1 c_{\alpha}\right)}=B_{0}+\frac{A_{1}}{B_{1}+\frac{A_{2}}{B_{2}+\frac{A_{3}}{B_{3}+\cdots}}},
$$

where

$$
\begin{array}{rlrl}
B_{0} & =3, & \\
B_{1} & =-1, & A_{1} & =2^{q_{1}}=2^{a_{1}}, \\
B_{k+1} & =3^{(-1)^{k+1}} \cdot 3^{p_{k-1}} \cdot c_{k}, & A_{k+1} & =2^{q_{k+1}-q_{k-1}}, \\
\text { and } \quad c_{k} & =\frac{3^{p_{k} a_{k+1}}-2^{q_{k} a_{k+1}}}{3^{p_{k}}-2^{q_{k}}} & \text { for } k & =1,2,3, \ldots .
\end{array}
$$

Example 3. (see also Example 7). Let $\left(F_{k}\right)_{k=0}^{\infty}$ be the Fibonacci Sequence defined by $F_{0}:=0, F_{1}:=1$ and $F_{k}=F_{k-1}+F_{k-2}$ for $k \geq 2$. Let γ denote the golden ratio: $\gamma=\frac{1+\sqrt{5}}{2}$. For the irrational $1 / \gamma=0.6180 \cdots$, the following holds in \mathbb{Z}_{2} :

$$
\begin{aligned}
-\frac{1}{\Phi\left(1 c_{(1 / \gamma)}\right)} & =-\frac{1}{\sum_{i} \frac{2^{\lfloor i \gamma\rfloor}}{3^{1+i}}} \\
& =3+\frac{2^{F_{1}}}{-1+\frac{2^{F_{2}}}{3^{F_{0}+1}+\frac{2^{F_{3}}}{3^{F_{1}-1}+\frac{2^{F_{4}}}{3^{F_{2}+1}+\frac{2^{F_{5}}}{3^{F_{3}-1}+\frac{2^{F_{6}}}{3^{F_{4}+1}+\cdots}}}} .} .} .
\end{aligned}
$$

This expansion is a new member of the family of remarkable sequences related to the golden ratio, but now in the 2 -adic world. For instance, there is the famous expansion of the Rabbit Constant $\sum_{i=1}^{\infty} \frac{1}{2^{\lfloor i \gamma\rfloor}}=\left[0 ; 2^{F_{0}}, 2^{F_{1}}, 2^{F_{2}}, 2^{F_{3}}, \ldots\right]=$ $0.70980344 \cdots$ (Davison [4]). Our expansion converges in \mathbb{Z}_{2} but diverges in \mathbb{R}. However, the divergence is acceptable: it diverges by oscillation between two distinct irrational limit points ζ and $(\zeta-1 / 6)$; the odd convergents approach $\zeta=$ $10.37012714 \cdots$ and the even approach $(\zeta-1 / 6)$. Defining a new map Φ^{*} which is dual to Φ, we get the following expansion, convergent in \mathbb{R}, which proves the irra-
tionality of ζ (relation (23)).

$$
\begin{aligned}
\Phi_{\mathbb{R}}^{*}\left(1 c_{(1 / \gamma)}\right) & =\zeta \\
& =\frac{-3^{F_{0}}}{2^{F_{0}+1}+\frac{-3^{F_{1}}}{2^{F_{1}-1}+\frac{3^{F_{2}}}{2^{F_{2}+1}+\frac{3^{F_{3}}}{2^{F_{3}-1}+\frac{3^{F_{4}}}{2^{F_{4}+1}+\frac{3^{F_{5}}}{2^{F_{5}-1}+\frac{3^{F_{6}}}{2^{F_{6}+1}+\cdots}}}}}} .} .
\end{aligned}
$$

An infinite word w has full complexity if there are 2^{n} different factors of length n for every $n>0$. Let $D(n)$ denote the minimal number of digits such that the prefix of w with length $D(n)$ has 2^{n} different factors of length n. In the following examples we use prefixes of length $D(5)$, i.e., $D(5)$ digits are needed for finding all of the $2^{5}=32$ different factors of length 5 in $\Phi\left(1 c_{\alpha}\right)$.

Example 4.

$$
\begin{aligned}
\alpha= & \frac{\ln (3)}{27}=[0 ; 24,1,1,2,1,3,2,1, \ldots]=0.0406 \cdots \\
\left(p_{k} / q_{k}\right)_{k=0}^{\infty}= & (0,1 / 24,1 / 25,2 / 49,5 / 123,7 / 172,26 / 639,59 / 1450,85 / 2089, \ldots) \\
\left(A_{k}\right)_{k=1}^{\infty}= & (16777216,16777216,33554432 \\
\left(B_{k}\right)_{k=0}^{\infty}= & (316912650057057350374175801344, \ldots), \\
1 c_{\alpha}= & 10000000000000000000000010000000000000000000000001 \\
& 000000000000000000000000100000000000000000000000010 \\
& 00000000000000000000001000000000000000000000000100 \\
& 000000000000000000000001000000000000000000000001000 \\
& 000000000000000, \\
\Phi\left(1 c_{\alpha}\right)= & 10101010101010101010101000111000111000111000111001 \\
& 10111101001000010110111001011101101011001111110010 \\
& 00111110011100110010100100011000010100101010111100 \\
& 00111010001000100001011111111010011001010001100110 \\
& 110111001100000
\end{aligned}
$$

Example 5.

$$
\begin{aligned}
\alpha= & \frac{\pi}{6}=[0 ; 1,1,10,10,1,1,1, \ldots]=0.5235 \cdots \\
\left(p_{k} / q_{k}\right)_{k=0}^{\infty}= & (0,1,1 / 2,11 / 21,111 / 212,122 / 233,233 / 445,355 / 678, \ldots) ; \\
\left(A_{k}\right)_{k=1}^{\infty}= & (2,2,1048576,1645504557321206042154969182557350504982 \\
\left(B_{k}\right)_{k=0}^{\infty}= & (3,-1,35865633579863348609024, \ldots), \\
& 767865841972358429555,59049, \ldots), \\
1 c_{\alpha}= & 11010101010101010101011010101010101010101011010101 \\
& 01010101010101101010101010101010101101010101010101 \\
& 01010110101, \\
\Phi\left(1 c_{\alpha}\right)= & 11010101010101010101011001100110101100100100011100 \\
& 01011000011011111110100111001100110100101110111100 \\
& 11100100000, \\
D(5)= & 111 .
\end{aligned}
$$

Example 6.

$$
\begin{aligned}
\alpha= & \frac{1}{\ln (3)}=[0 ; 1,10,7,9,2,2, \ldots]=0.9102 \cdots \\
\left(p_{k} / q_{k}\right)_{k=0}^{\infty}= & (0,1,10 / 11,71 / 78,649 / 713,1369 / 1504,3387 / 3721, \ldots) \\
\left(A_{k}\right)_{k=1}^{\infty}= & (2,1024,151115727451828646838272, \ldots) \\
\left(B_{k}\right)_{k=0}^{\infty}= & (3,-1,174075,43914238431643758422900358577, \ldots) \\
1 c_{\alpha}= & 11111111111011111111110111111111101111111111011111 \\
& 11111011111111110111111111101111111111101111111111 \\
& 0111111111101111111111011111111110 \\
\Phi\left(1 c_{\alpha}\right)= & 11111111111001100110001001111101001100101100111001 \\
& 00100101011100100010010101001111000001110011111100 \\
& 1011100001101001001101001010011011
\end{aligned}
$$

Example 7.

$$
\begin{aligned}
& \alpha=\frac{2}{1+\sqrt{5}}=[0 ; 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, \ldots]=0.6180 \cdots, \\
& \left(p_{k} / q_{k}\right)_{k=0}^{\infty}=(0,1,1 / 2,2 / 3,3 / 5,5 / 8,8 / 13,13 / 21,21 / 34,34 / 55,55 / 89, \\
& \text { 89/144, 144/233, 233/377, 377/610, 610/987, ...); } \\
& \left(A_{k}\right)_{k=1}^{\infty}=\quad(2,2,4,8,32,256,8192,2097152,17179869184, \\
& 36028797018963968,618970019642690137449562112, \ldots), \\
& \left(B_{k}\right)_{k=0}^{\infty}=\quad(3,-1,3,1,9,3,81,81,19683,531441,31381059609, \\
& 5559060566555523,523347633027360537213511521, \ldots), \\
& 1 c_{\alpha}=11011010110110101101011011010110110101101011011010 \\
& 11010110110101101101011010110110101101101011010110 \\
& \text { 110101, } \\
& \Phi\left(1 c_{\alpha}\right)=11011110111001000110011110100010010111011101011000 \\
& 10000011011111110000100100111000001001011010001011 \\
& \text { 101010, } \\
& D(5)=106 .
\end{aligned}
$$

Example 8.

$$
\begin{aligned}
& \alpha= \frac{\ln (2)}{\ln (3)}=[0 ; 1,1,1,2,2,3,1,5,2, \ldots]=0.6309 \cdots \\
&\left(p_{k} / q_{k}\right)_{k=0}^{\infty}=(0,1,1 / 2,2 / 3,5 / 8,12 / 19,41 / 65,53 / 84,306 / 485,665 / 1054, \ldots) ; \\
&\left(A_{k}\right)_{k=1}^{\infty}=(2,2,4,64,65536,144115188075855872 \\
&36893488147419103232, \ldots), \\
&\left(B_{k}\right)_{k=0}^{\infty}=(3,-1,3,1,153,1497,609397039593657,177147, \ldots), \\
& 1 c_{\alpha}= 11011011010110110101101101101011011010110110110101 \\
& 1011010110110110101101101011011010110110110101101, \\
& \Phi\left(1 c_{\alpha}\right)= 11011111110110100111110110010011110101010000001010 \\
& 0000001011010101111111001011101100010100001000110
\end{aligned}
$$

Example 9.

$$
\begin{aligned}
& \alpha= \ln (2)=[0 ; 1,2,3,1,6,3,1,1,2, \ldots]=0.6931 \cdots, \\
&\left(p_{k} / q_{k}\right)_{k=0}^{\infty}=(0,1,2 / 3,7 / 10,9 / 13,61 / 88,192 / 277,253 / 365 \\
&445 / 642,1143 / 1649, \ldots) ; \\
&\left(A_{k}\right)_{k=1}^{\infty}=\quad(2,4,512,1024,302231454903657293676544, \ldots), \\
&\left(B_{k}\right)_{k=0}^{\infty}=\quad(3,-1,15,217,27,3669900926341609724758875, \ldots), \\
& 1 c_{\alpha}= 11101101101110110110110111011011011011101101101101 \\
& 11011011011011101101101101110110110110111011011011 \\
& 10110110110111011011011011101101101101110110110110 \\
& 1110110110110111011011011011, \\
& \Phi\left(1 c_{\alpha}\right)= 11100101010111010000101010000111110000011001110011 \\
& 10010001110100100010010100101110101110011010011100 \\
& 10000010010011111111001101001000111000000100011001 \\
& 1101110101001110100000110110 \\
& D(5)= 178 .
\end{aligned}
$$

Here are some additional values of the function $D(n)$:

n	$\frac{\ln (3)}{27}$	$\frac{\pi}{6}$	$\frac{1}{\ln (3)}$	$\frac{2}{1+\sqrt{5}}$	$\frac{\ln (2)}{\ln (3)}$	$\ln (2)$
	$0.0406 \ldots$	$0.5235 \ldots$	$0.9102 \ldots$	$0.6180 \ldots$	$0.6309 \ldots$	$0.6931 \ldots$
1	2	3	12	3	3	4
2	28	25	14	13	17	6
3	30	48	32	17	43	19
4	65	66	86	55	47	42
5	215	111	134	106	99	178
6	252	335	263	211	304	448
7	715	629	896	909	614	553
8	1105	1615	1832	1644	1579	1806

3. Proofs of Theorem 1 and Corollary 2

In this section, if not otherwise stated, p / q denotes any rational number in reduced fraction form with $0<p / q \leq 1$ (the denominator can be even), α denotes any irrational number with $0<\alpha<1$, and p_{k} / q_{k} are its convergents. We denote by \mathbb{A}^{*} the set of finite words over \mathbb{A}, by ε the empty word, by $\ell(w)$ the length of the word w, and by $h(w)$ its height, i.e., the number of 1 's in w. A word (finite or infinite) is
called balanced if the height of any two factors of the same length differ by at most 1. Sturmian words are aperiodic, balanced, infinite words (see [8]).

Definition 10. Let M_{2} denote the set of the 2-adic integers having a rational or irrational upper mechanical word as digits structure:
$M_{2}:=\left\{m_{x} \in \mathbb{Z}_{2}: m_{x}=\lceil(j+1) x\rceil-\lceil j x\rceil\right.$ for $j=0,1,2, \ldots$ and $\left.0<x \leq 1\right\}$.
If $x=\alpha$, then $m_{\alpha}=1 c_{\alpha}$. We have to compute $\Phi\left(m_{\alpha}\right)$ in terms of convergents p_{k} / q_{k}. Note that $x \neq 0$ because $\Phi(0):=0$ (an infinite word of 0 's).

If $x=p / q$, then $m_{p / q}$ is a purely periodic balanced infinite word. The period $\bar{m}_{p / q}$, a finite word, has length q and height p. This word is known as the Christoffel word ([8]). It always starts with 1 and ends with 0 , and thus $\bar{m}_{p / q}=1 z 0$. The central word z is a palindromic word with $\ell(z)=q-2$ and $h(z)=p-1$. For example, $m_{5 / 7}=111011011101101110110111011011101 \cdots$ and $\bar{m}_{5 / 7}=1110110$.

Lemma 11. For all $x \in M_{2}$,

$$
d_{i}=\left\lfloor\frac{i}{x}\right\rfloor \quad(i=0,1,2, \ldots) .
$$

Proof. The d_{i} are those $j \in \mathbb{N}_{0}$ for which $\lceil(j+1) x\rceil-\lceil j x\rceil=1$.
a) Let $0<x<1$. Fix any $i \in \mathbb{N}_{0}$. There exists a j such that $j x \leq i<(j+1) x$; thus $j \leq i / x<j+1$. So $j=\left\lfloor\frac{i}{x}\right\rfloor$.
b) If $x=1$, then $j=d_{i}=i$.

Lemma 12. For all $m_{p / q} \in M_{2}$,

$$
\Phi\left(m_{p / q}\right)=\frac{3^{p}}{2^{q}-3^{p}} \sum_{i=0}^{p-1} \frac{1}{3^{1+i}} \cdot 2^{\left\lfloor i \cdot \frac{q}{p}\right\rfloor}
$$

Proof. Let $i=r+n p$ and $0 \leq r<p$. Then by (2) and Lemma 11,

$$
\begin{aligned}
\Phi\left(m_{p / q}\right) & =-\sum_{i=0}^{\infty} \frac{1}{3^{1+i}} \cdot 2^{\left\lfloor i \cdot \frac{q}{p}\right\rfloor}=-\sum_{n=0}^{\infty} \frac{2^{n q}}{3^{n p}} \sum_{r=0}^{p-1} \frac{2^{\left\lfloor r \cdot \frac{q}{p}\right\rfloor}}{3^{1+r}} \\
& =\frac{3^{p}}{\left(2^{q}-3^{p}\right)} \sum_{r=0}^{p-1} \frac{1}{3^{1+r}} \cdot 2^{\left\lfloor r \cdot \frac{q}{p}\right\rfloor}
\end{aligned}
$$

since $\left|\frac{2^{q}}{3^{p}}\right|_{2}<1$.

Definition 13. (Halbeisen, Hungerbühler [5]). The function $\varphi: \mathbb{A}^{*} \rightarrow \mathbb{N}_{0}$ is defined recursively by

$$
\begin{aligned}
\varphi(\varepsilon) & =0 \\
\varphi(w 0) & =\varphi(w) \\
\varphi(w 1) & =3 \varphi(w)+2^{\ell(w)}
\end{aligned}
$$

Using the pointer notation d_{i}, we get ([5])

$$
\begin{equation*}
\varphi(w)=\sum_{i=0}^{h(w)-1} 3^{h(w)-1-i} 2^{d_{i}} \tag{7}
\end{equation*}
$$

Further ([5]), for all $u, v \in \mathbb{A}^{*}$,

$$
\begin{equation*}
\varphi(u v)=3^{h(v)} \varphi(u)+2^{\ell(u)} \varphi(v) \tag{8}
\end{equation*}
$$

Lemma 14. For all $m_{p / q} \in M_{2}$,

$$
\Phi\left(m_{p / q}\right)=\frac{\varphi\left(\bar{m}_{p / q}\right)}{2^{q}-3^{p}} \cdot{ }^{3}
$$

Proof. Apply Lemma 12 and (7).
Clearly $\Phi\left(m_{p / q}\right) \in \mathbb{Q}_{\text {odd }}$.
It is a main fact in the theory of words that the Christoffel words $\bar{m}_{p_{k} / q_{k}}\left(p_{k} / q_{k}\right.$ are the convergents of α) converge to the word $1 c_{\alpha}$:

Lemma 15. Let $v_{k}:=\bar{m}_{p_{k} / q_{k}}$ for $k \geq 2$ and $v_{0}:=0, v_{1}:=1(0)^{a_{1}-1} .{ }^{4}$
Then $m_{\alpha}=1 c_{\alpha}=\lim _{k \rightarrow \infty} v_{k}$. In addition, for $k \geq 1$,

$$
v_{k+1}= \begin{cases}v_{k}^{a_{k+1}} v_{k-1} & \text { if } k \text { odd } \\ v_{k-1} v_{k}^{a_{k+1}} & \text { if } k \text { even } .\end{cases}
$$

Proof. The statement is part of Exercise 2.2.10 in Lothaire [8].
If $v_{k} \rightarrow m_{\alpha}$ then we have $\Phi\left(v_{k}\right) \rightarrow \Phi\left(m_{\alpha}\right)$. We now construct a new sequence $\left(-P_{k} / Q_{k}\right)_{k=0}^{\infty}$, slightly different from $\Phi\left(v_{k}\right)$, but with the same property: $\left(-P_{k} / Q_{k}\right) \rightarrow \Phi\left(m_{\alpha}\right)$.

The following function g has its origin in a devil's staircase (see Section 4).

[^1]Definition 16. (The function "right-gap"). Let $g:=\mathbb{Q} \cap[0,1] \rightarrow \mathbb{Q}_{\text {odd }}$ be defined by

$$
g\left(\frac{p}{q}\right):=\frac{1}{3} \cdot \frac{2^{q-1}}{3^{p}-2^{q}} .
$$

If $p_{k} / q_{k} \rightarrow \alpha$, then $q_{k} \rightarrow \infty$. Thus $g\left(p_{k} / q_{k}\right)$ converges to 0 since $\left|g\left(p_{k} / q_{k}\right)\right|_{2}=$ $2^{1-q_{k}}$. Consequently, the sequence

$$
\begin{align*}
\Phi\left(v_{0}\right)+g\left(\frac{p_{0}}{q_{0}}\right), \quad \Phi\left(v_{1}\right), & \Phi\left(v_{2}\right)+g\left(\frac{p_{2}}{q_{2}}\right), \tag{9}\\
& \Phi\left(v_{3}\right), \\
& \Phi\left(v_{4}\right)+g\left(\frac{p_{4}}{q_{4}}\right),
\end{align*} \quad \Phi\left(v_{5}\right), \cdots .
$$

converges to $\Phi\left(m_{\alpha}\right)$. The terms are

$$
\begin{align*}
-\frac{3 \varphi\left(v_{0}\right)-2^{q_{0}-1}}{3\left(3^{p_{0}}-2^{q_{0}}\right)}, & -\frac{\varphi\left(v_{1}\right)}{3^{p_{1}}-2^{q_{1}}},-\frac{3 \varphi\left(v_{2}\right)-2^{q_{2}-1}}{3\left(3^{p_{2}}-2^{q_{2}}\right)} \tag{10}\\
& -\frac{\varphi\left(v_{3}\right)}{3^{p_{3}}-2^{q_{3}}},-\frac{3 \varphi\left(v_{4}\right)-2^{q_{4}-1}}{3\left(3^{p_{4}}-2^{q_{4}}\right)}, \ldots
\end{align*}
$$

We write P_{k} for the numerators and Q_{k} for the denominators; the "-" sign remains:

$$
-\frac{P_{0}}{Q_{0}}=-\frac{-1}{-3}, \quad-\frac{P_{1}}{Q_{1}}=-\frac{1}{3-2^{q_{1}}}, \quad-\frac{P_{2}}{Q_{2}},-\frac{P_{3}}{Q_{3}},-\frac{P_{4}}{Q_{4}}, \ldots
$$

In conclusion, we have the following lemma.

Lemma 17.

$$
\lim _{k \rightarrow \infty} \Phi\left(v_{k}\right)=-\lim _{k \rightarrow \infty} \frac{P_{k}}{Q_{k}}=\Phi\left(m_{\alpha}\right)
$$

Proof. The statement follows from (9).
Lemma 18. For $k \geq 1$,

$$
\begin{aligned}
P_{k+1} & =3^{(-1)^{k+1}} 3^{p_{k-1}} c_{k} P_{k}+2^{q_{k+1}-q_{k-1}} P_{k-1} \\
Q_{k+1} & =3^{(-1)^{k+1}} 3^{p_{k-1}} c_{k} Q_{k}+2^{q_{k+1}-q_{k-1}} Q_{k-1} \\
\text { where } c_{k} & :=\frac{3^{p_{k} a_{k+1}}-2^{q_{k} a_{k+1}}}{3^{p_{k}}-2^{q_{k}}}
\end{aligned}
$$

Proof. We divide the proof in four parts.
(a) The relation for Q_{k+1} follows from the identity

$$
3^{p_{k+1}}-2^{q_{k+1}}=3^{p_{k-1}}\left(3^{p_{k} a_{k+1}}-2^{q_{k} a_{k+1}}\right)+2^{q_{k} a_{k+1}}\left(3^{p_{k-1}}-2^{q_{k-1}}\right)
$$

Recall that $p_{k+1}=a_{k+1} p_{k}+p_{k-1}$ and $q_{k+1}=a_{k+1} q_{k}+q_{k-1}$.
(b) By induction from (8),

$$
\varphi\left(v_{k}^{a_{k+1}}\right)=c_{k} \varphi\left(v_{k}\right)
$$

(c) Let k be odd.

$$
\varphi\left(v_{k+1}\right)=\varphi\left(v_{k}^{a_{k+1}} v_{k-1}\right)=3^{p_{k-1}} c_{k} \varphi\left(v_{k}\right)+2^{q_{k} a_{k+1}} \varphi\left(v_{k-1}\right)
$$

Then

$$
\begin{aligned}
P_{k+1} & =3 \varphi\left(v_{k+1}\right)-2^{q_{k+1}-1} \\
& =3 \cdot 3^{p_{k-1}} c_{k} \varphi\left(v_{k}\right)+2^{q_{k} a_{k+1}}\left(3 \varphi\left(v_{k-1}\right)-2^{q_{k-1}-1}\right)
\end{aligned}
$$

(d) Let k be even. The word z_{k} in $v_{k}=1 z_{k} 0$ is central and, by (Proposition 2.2.15, Lothaire [8]), the words $s_{k}:=z_{k} 10$ and $s_{k}^{\prime}=z_{k} 01$ are standard words. The standard sequence is defined by $s_{-1}:=1, s_{0}:=0$ and $s_{n}=s_{n-1}^{t_{n}} s_{n-2}$ for $n \geq 1$ (Lothaire [8]), where $\alpha=\left[0 ; 1+t_{1}, t_{2}, \ldots\right]$ is the continued fraction expansion. ${ }^{5}$ For k even, there are the bijections

$$
\begin{aligned}
& v_{k}=1 z_{k} 0 \longleftrightarrow \quad s_{k}=z_{k} 10 \\
& v_{k+1}=1 z_{k+1} 0 \longleftrightarrow \\
& s_{k+1}=z_{k+1} 01
\end{aligned}
$$

So we get

$$
\begin{aligned}
v_{k}=1 z_{k} 0 & \longrightarrow \quad s_{k}
\end{aligned} \begin{aligned}
& =z_{k} 10 \\
& \Downarrow \\
v_{k+1}=1\left(z_{k} 10\right)^{a_{k+1}} z_{k-1} 0 & \longleftarrow \quad s_{k+1}
\end{aligned}=\left(z_{k} 10\right)^{a_{k+1}} z_{k-1} 01, ~ \$
$$

and

$$
\begin{aligned}
P_{k+1} & =\varphi\left(v_{k+1}\right)=\varphi\left(1\left(z_{k} 10\right)^{a_{k+1}} z_{k-1} 0\right)=3^{p_{k+1}-1}+2 \varphi\left(\left(z_{k} 10\right)^{a_{k+1}} z_{k-1}\right) \\
& =2 \cdot 3^{p_{k-1}-1} c_{k}\left(3 \varphi\left(z_{k}\right)+2^{q_{k}-2}\right)+2^{q_{k} a_{k+1}+1} \varphi\left(z_{k-1}\right)+3^{p_{k+1}-1}
\end{aligned}
$$

But $\varphi\left(v_{k}\right)=\varphi\left(1 z_{k} 0\right)=3^{p_{k}-1}+2 \varphi\left(z_{k}\right)$, thus

$$
\begin{aligned}
3 \varphi\left(z_{k}\right) & =2^{-1} \cdot 3 \varphi\left(v_{k}\right)-2^{-1} \cdot 3^{p_{k}} \\
2 \varphi\left(z_{k-1}\right) & =\varphi\left(v_{k-1}\right)-3^{p_{k-1}-1}
\end{aligned}
$$

Hence,

$$
\begin{array}{r}
P_{k+1}=3^{p_{k-1}-1} c_{k}\left(3 \varphi\left(v_{k}\right)+2^{q_{k}-1}\right)+2^{q_{k} a_{k+1}} \varphi\left(v_{k-1}\right)-3^{p_{k-1}-1} c_{k} 3^{p_{k}} \\
-2^{q_{k} a_{k+1}} 3^{p_{k-1}-1}+3^{p_{k+1}-1}
\end{array}
$$

Using the obvious identity $3^{p_{k-1}-1} c_{k} 2^{q_{k}-1}=3^{p_{k-1}-1} c_{k} 2^{q_{k}}-3^{p_{k-1}-1} c_{k} 2^{q_{k}-1}$, we get $P_{k+1}=3^{p_{k-1}-1} c_{k}\left(3 \varphi\left(v_{k}\right)-2^{q_{k}-1}\right)+2^{q_{k+1}-q_{k-1}} \varphi\left(v_{k-1}\right)=3^{(-1)^{k+1}} 3^{p_{k-1}} c_{k} P_{k}$ $+2^{q_{k+1}-q_{k-1}} P_{k-1}$.

[^2]For $k \geq 1$, let

$$
\begin{equation*}
B_{k+1}:=3^{(-1)^{k+1}} 3^{p_{k-1}} c_{k} \quad \text { and } \quad A_{k+1}:=2^{q_{k+1}-q_{k-1}} \tag{11}
\end{equation*}
$$

so Lemma 18 can be written as

$$
\begin{align*}
P_{k+1} & =B_{k+1} P_{k}+A_{k+1} P_{k-1} \\
Q_{k+1} & =B_{k+1} Q_{k}+A_{k+1} Q_{k-1} \tag{12}
\end{align*}
$$

Lemma 19.

$$
P_{k+1} Q_{k}-P_{k} Q_{k+1}=(-1)^{k+1} 2^{q_{k+1}+q_{k}-1} \quad(k \geq 0)
$$

Proof. (a) For $k=0: \quad P_{1} Q_{0}-P_{0} Q_{1}=-2^{q_{1}}=(-1)^{0+1} 2^{q_{1}+q_{0}-1}$.
(b) For $k \geq 1$: $\quad P_{k+1} Q_{k}-P_{k} Q_{k+1}=-A_{k+1}\left(P_{k} Q_{k-1}-P_{k-1} Q_{k}\right)$ by (12).

Therefore, $P_{2} Q_{1}-P_{1} Q_{2}=-A_{2}\left(P_{1} Q_{0}-P_{0} Q_{1}\right)=-2^{q_{2}-q_{0}}\left(-2^{q_{1}}\right)=2^{q_{2}+q_{1}-1}$,

$$
P_{3} Q_{2}-P_{2} Q_{3}=-A_{3}\left(P_{2} Q_{1}-P_{1} Q_{2}\right)=-2^{q_{3}-q_{1}} 2^{q_{2}+q_{1}-1}=-2^{q_{3}+q_{2}-1}
$$

We omit the induction.

Lemma 20.

$$
\frac{P_{k+1}}{Q_{k+1}}=\frac{P_{0}}{Q_{0}}+\sum_{j=0}^{k}(-1)^{j+1} \frac{2^{q_{j+1}+q_{j}-1}}{3\left(3^{p_{j+1}}-2^{q_{j+1}}\right)\left(3^{p_{j}}-2^{q_{j}}\right)} \quad(k \geq 0)
$$

Proof. By Lemma 19, the difference between consecutive terms is

$$
\frac{P_{k+1}}{Q_{k+1}}-\frac{P_{k}}{Q_{k}}=(-1)^{k+1} \frac{2^{q_{k+1}+q_{k}-1}}{Q_{k+1} Q_{k}} \quad(k \geq 0)
$$

We now complete the proof of Theorem 1.
Proof of Theorem 1. For $k \rightarrow \infty$ the sum in Lemma 20 converges, since the terms added have 2 -adic norm $2^{1-q_{j+1}-q_{j}}$ which converges to 0 for increasing j. This fact is sufficient to guarantee the convergence of a series in \mathbb{Z}_{2}. The statement of Theorem 1 follows immediately from Lemma 17.

Lemma 21. For $k \geq 0$, there holds

$$
\Phi\left(m_{\alpha}\right)=-\frac{P_{k}}{Q_{k}}-(-1)^{k} \sum_{j=0}^{\infty}(-1)^{j+1} \frac{2^{q_{k+j+1}+q_{k+j}-1}}{3\left(3^{p_{k+j+1}}-2^{q_{k+j+1}}\right)\left(3^{p_{k+j}}-2^{q_{k+j}}\right)}
$$

Proof. The statement follows from Lemma 20 and Lemma 17.

Proof of Corollary 2. We show that $\frac{Q_{0}}{P_{0}}, \frac{Q_{1}}{P_{1}}, \frac{Q_{2}}{P_{2}}, \frac{Q_{3}}{P_{3}}, \ldots$ are the convergents of a generalized continued fraction expansion for $\frac{-1}{\Phi\left(m_{\alpha}\right)}$. Indeed, Lemma 19 is the determinant formula for this expansion. A_{k}, B_{k} are defined for $k \geq 2$ in (11). We define $\frac{Q_{0}}{P_{0}}:=B_{0}$, so $B_{0}=3$. From Lemma 19 we get $P_{1} Q_{0}-P_{0} Q_{1}=-2^{q_{1}}=-A_{1}$, so $A_{1}=2^{q_{1}}$. Finally, $\frac{Q_{1}}{P_{1}}=\frac{B_{1} B_{0}+A_{1}}{B_{1}}$ and $\frac{Q_{1}}{P_{1}}=3-2^{q_{1}}$ yield $B_{1}=-1$.

4. A Devil's Staircase

In this section we leave the 2-adic world and consider Φ as a real-valued function, now called $\Phi_{\mathbb{R}}$. It is in this context where the right-gap function actually appears (Definition 16).

Using the absolute value as the norm, the proof of Lemma 12 fails. The series $\sum_{n=0}^{\infty} \frac{2^{n q}}{3^{n p}}$ converges if and only if $\left(2^{q} / 3^{p}\right)<1$ or equivalently, if and only if $\frac{\ln (2)}{\ln (3)}<$ $p / q \leq 1$.

Definition 22. Let $f:=\mathbb{Q} \cap\left(\frac{\ln (2)}{\ln (3)}, 1\right] \rightarrow \mathbb{R}$ be defined by

$$
f\left(\frac{p}{q}\right):=\Phi_{\mathbb{R}}\left(m_{p / q}\right)=\frac{\varphi\left(\bar{m}_{p / q}\right)}{2^{q}-3^{p}} \quad(p, q \text { coprime }) .
$$

Note that $\Phi_{\mathbb{R}}\left(m_{p / q}\right)=-\sum_{i} \frac{1}{3^{i+1}} 2^{d_{i}}$ is now a negative rational number when calculated over the infinite word $m_{p / q}$.

A plot of the function f reveals the structure of a devil's staircase. There is a gap associated with any rational of the domain.
Lemma 23. For $\frac{p^{\prime}}{q^{\prime}}, \frac{p}{q} \in \mathbb{Q} \cap\left(\frac{\ln (2)}{\ln (3)}, 1\right]$ and g as in Definition 16 ,

$$
\text { if } \quad \frac{p^{\prime}}{q^{\prime}}>\frac{p}{q}, \quad \text { then } \quad f\left(\frac{p^{\prime}}{q^{\prime}}\right)>f\left(\frac{p}{q}\right)+g\left(\frac{p}{q}\right) \text {. }
$$

Proof. Fix $\frac{p}{q}$. We choose a Farey sequence of any order $N \geq q$ and suppose that $\frac{p}{q}$ and $\frac{p^{\prime}}{q^{\prime}}$ are a Farey pair: $\frac{p^{\prime}}{q^{\prime}}$ is the right neighbor of $\frac{p}{q}$. Hence, $p q^{\prime}-p^{\prime} q=-1$. By (2) and Lemma 11, we have

$$
\begin{aligned}
f\left(\frac{p}{q}\right) & =-\sum_{i=0}^{\infty} \frac{1}{3^{1+i}} 2^{\left\lfloor i \frac{q}{p}\right\rfloor}=-\sum_{j=1}^{\infty} \frac{1}{3^{1+j p}} 2^{j q}-\sum_{i \neq j p} \frac{1}{3^{1+i}} 2^{\left\lfloor i \frac{q}{p}\right\rfloor} . \\
f\left(\frac{p^{\prime}}{q^{\prime}}\right) & =-\sum_{j=1}^{\infty} \frac{1}{3^{1+j p}} 2^{\left\lfloor j p \cdot \frac{q^{\prime}}{p^{\prime}}\right\rfloor}-\sum_{i \neq j p} \frac{1}{3^{1+i}} 2^{\left\lfloor i \frac{q^{\prime}}{p^{\prime}}\right\rfloor}
\end{aligned}
$$

As $\left\lfloor i \frac{q}{p}\right\rfloor \geq\left\lfloor i \frac{q^{\prime}}{p^{\prime}}\right\rfloor$,

$$
f\left(\frac{p^{\prime}}{q^{\prime}}\right)-f\left(\frac{p}{q}\right) \geq \sum_{j=1}^{\infty} \frac{1}{3^{1+j p}}\left(2^{j q}-2^{\left\lfloor j p \cdot \frac{q^{\prime}}{p^{\prime}}\right\rfloor}\right)
$$

Since $p q^{\prime}-p^{\prime} q=-1, \quad j p \cdot \frac{q^{\prime}}{p^{\prime}}=j q-\frac{j}{p^{\prime}}$. Hence,

$$
\begin{aligned}
& \left\lfloor j p \cdot \frac{q^{\prime}}{p^{\prime}}\right\rfloor \leq j q-1 \quad \text { if } \quad j \leq p^{\prime} \\
& \left\lfloor j p \cdot \frac{q^{\prime}}{p^{\prime}}\right\rfloor<j q-1 \text { if } j>p^{\prime}
\end{aligned}
$$

Consequently,

$$
f\left(\frac{p^{\prime}}{q^{\prime}}\right)-f\left(\frac{p}{q}\right)>\frac{1}{2} \sum_{j=1}^{\infty} \frac{1}{3^{1+j p}} 2^{j q}=\frac{1}{3} \cdot \frac{2^{q-1}}{3^{p}-2^{q}}=g\left(\frac{p}{q}\right)
$$

Lemma 23 proves that f is strictly increasing over the rationals.
Lemma 24. Let $\left(x_{i}\right)_{i=0}^{\infty}$ be a sequence of rationals converging to α, and let g be as in Definition 16. Then

$$
\lim _{i \rightarrow \infty} g\left(x_{i}\right)=0
$$

Proof. We have $\alpha>\frac{\ln (2)}{\ln (3)}$. Let $c \in\left(0, \alpha-\frac{\ln (2)}{\ln (3)}\right)$. There exists an index i_{0} such that $x_{i}>\frac{\ln (2)}{\ln (3)}+c$ for all $i \geq i_{0}$. We assume $i \geq i_{0}$ and $x_{i}:=a_{i} / b_{i}$, written in reduced fraction form. The convergents p_{k} / q_{k} are the best approximation of α :

$$
\text { if }\left|\alpha-\frac{a_{i}}{b_{i}}\right|<\left|\alpha-\frac{p_{k}}{q_{k}}\right| \quad \text { for some } k, \text { then } \quad b_{i} \geq q_{k}
$$

For increasing $k, q_{k} \rightarrow \infty$. So $b_{i} \rightarrow \infty$. Note that $a_{i} / b_{i}>\frac{\ln (2)}{\ln (3)}+c$. Hence $a_{i}>b_{i} \frac{\ln (2)}{\ln (3)}+b_{i} c$. Then

$$
\frac{2^{b_{i}}}{3^{a_{i}}}<\frac{2^{b_{i}}}{3^{b_{i} \cdot \frac{\ln (2)}{\ln (3)}} \cdot \frac{1}{3^{b_{i} c}}=\left(\frac{1}{3^{c}}\right)^{b_{i}}}
$$

Since $b_{i} \rightarrow \infty$ and $1 / 3^{c}<1, \lim _{b_{i} \rightarrow \infty} \frac{2^{b_{i}}}{3^{a_{i}}}=0$. Now,

$$
g\left(\frac{a_{i}}{b_{i}}\right)=\frac{1}{6} \cdot \frac{\frac{2^{b_{i}}}{3^{a_{i}}}}{1-\frac{2^{b_{i}}}{3^{a_{i}}}} \quad \text { and } \quad \lim _{i \rightarrow \infty} g\left(\frac{a_{i}}{b_{i}}\right)=0 \quad \text { as claimed. }
$$

We show that the series expansion of Theorem 1 converges also in \mathbb{R}. We see that the series of Theorem 1 can be written formally as

$$
\begin{equation*}
\sum_{j=0}^{\infty}(-1)^{j+1} \frac{2^{q_{j+1}+q_{j}-1}}{3\left(3^{p_{j+1}}-2^{q_{j+1}}\right)\left(3^{p_{j}}-2^{q_{j}}\right)}=\sum_{j=0}^{\infty}(-1)^{j+1} \cdot 6 \cdot g\left(\frac{p_{j}}{q_{j}}\right) g\left(\frac{p_{j+1}}{q_{j+1}}\right) \tag{13}
\end{equation*}
$$

Lemma 25. The following limit exists:

$$
\lim _{k \rightarrow \infty} \sum_{j=0}^{k}(-1)^{j+1} \cdot 6 \cdot g\left(\frac{p_{j}}{q_{j}}\right) g\left(\frac{p_{j+1}}{q_{j+1}}\right)
$$

Proof. The $\frac{p_{j}}{q_{j}}$ are the convergents of $\alpha>\frac{\ln (2)}{\ln (3)}$. There exists an index j_{0} such that $\frac{p_{j}}{q_{j}}>\frac{\ln (2)}{\ln (3)}$ and consequently, $3^{p_{j}}>2^{q_{j}}$ for all $j \geq j_{0}$.
We show that $\lim _{k \rightarrow \infty} \sum_{j=j_{0}}^{k}(-1)^{j+1} g\left(\frac{p_{j}}{q_{j}}\right) g\left(\frac{p_{j+1}}{q_{j+1}}\right)$ exists.
By the criterion of Leibniz for alternating series, it is sufficient that the absolute terms $\left|(-1)^{j+1} g\left(\frac{p_{j}}{q_{j}}\right) g\left(\frac{p_{j+1}}{q_{j+1}}\right)\right|=g\left(\frac{p_{j}}{q_{j}}\right) g\left(\frac{p_{j+1}}{q_{j+1}}\right)$ decrease strictly monotone to 0 . In fact, it is an easy check that for $j \geq j_{0}$:

$$
\begin{equation*}
g\left(\frac{p_{j}}{q_{j}}\right)>g\left(\frac{p_{j+2}}{q_{j+2}}\right) \quad \Longleftrightarrow \quad 2^{q_{j}} 3^{p_{j+2}}>2^{q_{j+2}} 3^{p_{j}} \quad \Longleftrightarrow \quad \frac{p_{j+1}}{q_{j+1}}>\frac{\ln (2)}{\ln (3)} . \tag{14}
\end{equation*}
$$

The last term is equivalent to $3^{p_{j+1}}>2^{q_{j+1}}$.
By Lemma 24, the g_{i} 's approach 0 . The real-valued sequence (9) and $\left(\Phi_{\mathbb{R}}\left(v_{k}\right)\right)_{k=0}^{\infty}$ converge to the same limit $\Phi_{\mathbb{R}}\left(m_{\alpha}\right)$. It follows that Lemma 17 also holds for real numbers. The number $\left(-1 / \Phi_{\mathbb{R}}\left(m_{\alpha}\right)\right)$ can be calculated with the real-valued continued fraction of Corollary 2. So $\Phi_{\mathbb{R}}\left(m_{\alpha}\right)$ is irrational. We extend f to a function F over the whole interval $\left(\frac{\ln (2)}{\ln (3)}, 1\right]$.

Definition 26. Let $F:=\left(\frac{\ln (2)}{\ln (3)}, 1\right] \rightarrow \mathbb{R}$ be defined by

$$
\begin{aligned}
F(x) & :=\Phi_{\mathbb{R}}\left(m_{x}\right)=-\lim _{k \rightarrow \infty} \frac{P_{k}}{Q_{k}} \quad \text { if } x \text { is irrational } ; \\
F(p / q) & :=\Phi_{\mathbb{R}}\left(m_{p / q}\right)=\frac{\varphi\left(\bar{m}_{p / q}\right)}{2^{q}-3^{p}} \quad(p, q \text { coprime }) .
\end{aligned}
$$

Lemma 27. $F(x)$ is a strictly monotone increasing function. Furthermore, $F(x)$ is continuous at $x=\alpha$.

Proof. By Lemma 25 and (13), Lemma 21 holds in \mathbb{R} :

$$
\begin{aligned}
\Phi_{\mathbb{R}}\left(m_{\alpha}\right) & -\left(-\frac{P_{k}}{Q_{k}}\right) \\
& =-(-1)^{k} \sum_{j=0}^{\infty}(-1)^{j+1} \frac{2^{q_{k+j+1}+q_{k+j}-1}}{3\left(3^{p_{k+j+1}}-2^{q_{k+j+1}}\right)\left(3^{p_{k+j}}-2^{q_{k+j}}\right)} \quad(k \geq 0) .
\end{aligned}
$$

By (14), there exists a sufficiently large k_{0} such that $\left(p_{k} / q_{k}\right)>\frac{\ln (2)}{\ln (3)}$ for all $k>k_{0}$. For $k>k_{0}$, the absolute values of the terms added converge strictly monotone to 0 , and $\left(-P_{k} / Q_{k}\right)$ approaches $\Phi_{\mathbb{R}}\left(m_{\alpha}\right)=F(\alpha)$. Therefore, $-P_{2 k} / Q_{2 k}<F(\alpha)<$ $-P_{2 k+1} / Q_{2 k+1}$ for all $2 k>k_{0}$. This inequality and Lemma 23 prove that $F(x)$ is strictly monotone everywhere.

Recall that $-P_{2 k} / Q_{2 k}=F\left(p_{2 k} / q_{2 k}\right)+g\left(p_{2 k} / q_{2 k}\right)$ and $-P_{2 k+1} / Q_{2 k+1}=$ $F\left(p_{2 k+1} / q_{2 k+1}\right)$. Choose p / q such that $p_{2 k} / q_{2 k}<p / q<p_{2 k+2} / q_{2 k+2}$. Then $-P_{2 k} / Q_{2 k}<F(p / q)<F(\alpha)$. Consequently, we have $F\left(\left[p / q, p_{2 k+1} / q_{2 k+1}\right]\right) \subset$ [$\left.-P_{2 k} / Q_{2 k},-P_{2 k+1} / Q_{2 k+1}\right]$. For any given $\epsilon>0$, there is a sufficiently large k such that $\left[-P_{2 k} / Q_{2 k},-P_{2 k+1} / Q_{2 k+1}\right]$ lies entirely inside an ϵ-neighborhood of $F(\alpha)$. This proves the continuity at $x=\alpha$.

The previous lemmas prove that the function $F:=\left(\frac{\ln (2)}{\ln (3)}, 1\right] \rightarrow \mathbb{R}$

- has range $F\left(\left(\frac{\ln (2)}{\ln (3)}, 1\right]\right) \subset(-\infty,-1] ;{ }^{6}$
- is strictly monotone increasing
- maps rationals to rationals;
- maps irrationals to irrationals;
- is discontinuous at every rational;
- is continuous at every irrational.

The function is similar to other devil's staircases. Perhaps the first one of this type was given by Bőhmer [3], proving the transcendence of certain dyadic fractions. It seems that F additionally maps irrationals to transcendental numbers. We have no proof.

$$
\text { What happens when } 0<\alpha<\frac{\ln (2)}{\ln (3)} \text { ? }
$$

First of all, Lemma 12, interpreted in \mathbb{R}, is no longer true. But all is not lost. Let $\left(p_{j} / q_{j}\right)$ be the convergents of α. Then $\frac{p_{j}}{q_{j}}<\frac{\ln (2)}{\ln (3)}$ for all sufficiently large j, so that the relation (14) simply can be inverted, substituting $>$ by $<$. So Lemma 25 is still valid because $3^{p_{j+1}}<2^{q_{j+1}}$ implies that $g\left(\frac{p_{j}}{q_{j}}\right)$ and $g\left(\frac{p_{j+1}}{q_{j+1}}\right)$ are both negative. If

[^3]$j \rightarrow \infty$, then $g\left(\frac{p_{j}}{q_{j}}\right) \rightarrow(-1 / 6)$, so Lemma 24 is no longer valid. The real-valued sequence (9) no longer converges to $\Phi_{\mathbb{R}}\left(m_{\alpha}\right)$: the terms with odd index still converge to $\Phi_{\mathbb{R}}\left(m_{\alpha}\right)$, those with even index converge to $\Phi_{\mathbb{R}}\left(m_{\alpha}\right)-\frac{1}{6}$. The limit (in \mathbb{R}) of Lemma 17 does not exist. In fact, the real-valued sequence $\left(-P_{k} / Q_{k}\right)$ has exactly two limit points.

It is possible to extend F artificially to the left side of $\frac{\ln (2)}{\ln (3)}$. Since the limit in Definition 26 no longer exists, we define $F(\alpha)$ as the upper limit of $\left(-P_{k} / Q_{k}\right)$. The real-valued expansions of Theorem 1 and Corollary 2 remain still useful provided we use approximations that stop at an odd index. Note that $F(x)>0$ is at the left and $F(x)<0$ is at the right side of $\frac{\ln (2)}{\ln (3)}$. Furthermore, F diverges at $x=\frac{\ln (2)}{\ln (3)}$, the odd approximations in Theorem 1 approach $-\infty$ and the even $+\infty$, while in Corollary 2 both approximations approach 0 .

A plot of the artificially extended F shows a positive, strictly monotone increasing devil's staircase with gaps at the left side of the rationals, a very different behavior from the original F. So we abandon F and construct a new function F^{*}, specially for $0<x<\frac{\ln (2)}{\ln (3)}$, which will have a convergent series expansion.

First we define

$$
F^{*}\left(p_{k} / q_{k}\right):=\Phi_{\mathbb{R}}^{*}\left(m_{p_{k} / q_{k}}\right):=\Phi_{\mathbb{R}}^{*}\left(v_{k}\right):=\frac{\varphi\left(\bar{m}_{p_{k} / q_{k}}\right)}{2^{q_{k}}-3^{p_{k}}} .
$$

The last term is the same number as in Lemma 14, but this is no longer the same as $\Phi_{\mathbb{R}}\left(m_{p_{k} / q_{k}}\right)$ since Lemma 12 and Lemma 14 are false for $0<p_{k} / q_{k}<\frac{\ln (2)}{\ln (3)}$.

The sequence (9) is no longer appropriate. This time we get the best approximation of $F^{*}(\alpha)$ by

$$
\begin{equation*}
\Phi_{\mathbb{R}}^{*}\left(v_{0}\right), \quad \Phi_{\mathbb{R}}^{*}\left(v_{1}\right)+g^{\prime}\left(\frac{p_{1}}{q_{1}}\right), \quad \Phi_{\mathbb{R}}^{*}\left(v_{2}\right), \quad \Phi_{\mathbb{R}}^{*}\left(v_{3}\right)+g^{\prime}\left(\frac{p_{3}}{q_{3}}\right), \quad \Phi_{\mathbb{R}}^{*}\left(v_{4}\right), \ldots \tag{15}
\end{equation*}
$$

with the new left-gap $g^{\prime}\left(\frac{p_{k}}{q_{k}}\right):=g\left(\frac{p_{k}}{q_{k}}\right)+\frac{1}{6}=\frac{1}{2} \cdot \frac{3^{p_{k}-1}}{3^{p_{k}}-2^{q_{k}}}$, which now approaches 0 when $k \rightarrow \infty$.

The sequences (15) and $\left(\Phi_{\mathbb{R}}^{*}\left(v_{k}\right)\right)_{k=0}^{\infty}$ converge to the same limit, if such a limit exists. The new terms are

$$
\begin{equation*}
\frac{\varphi\left(v_{0}\right)}{2^{q_{0}}-3^{p_{0}}}, \frac{2 \varphi\left(v_{1}\right)-3^{p_{1}-1}}{2\left(2^{q_{1}}-3^{p_{1}}\right)}, \frac{\varphi\left(v_{2}\right)}{2^{q_{2}}-3^{p_{2}}}, \frac{2 \varphi\left(v_{3}\right)-3^{p_{3}-1}}{2\left(2^{q_{3}}-3^{p_{3}}\right)}, \frac{\varphi\left(v_{4}\right)}{2^{q_{4}}-3^{p_{4}}}, \ldots \tag{16}
\end{equation*}
$$

We write P_{k}^{\prime} for the numerators and Q_{k}^{\prime} for the denominators:

$$
\frac{P_{0}^{\prime}}{Q_{0}^{\prime}}=\frac{0}{1}, \quad \frac{P_{1}^{\prime}}{Q_{1}^{\prime}}=\frac{1}{2\left(2^{q_{1}}-3\right)}, \quad \frac{P_{2}^{\prime}}{Q_{2}^{\prime}}, \frac{P_{3}^{\prime}}{Q_{3}^{\prime}}, \frac{P_{4}^{\prime}}{Q_{4}^{\prime}}, \ldots
$$

Compare the sequence (16) with (10). There is a duality: the substitutions

$$
\begin{equation*}
2 \longleftrightarrow 3, \quad p_{k} \longleftrightarrow q_{k} \tag{17}
\end{equation*}
$$

and $k \longrightarrow k+1$ map (16) to (10) for $k \geq 0$; only the first term $-\frac{-1}{-3}$ in (10) is left out. Hence we can expect that our new series expansion is dual to the one given in Theorem 1 with the same substitutions (17).

In fact, the Lemmas 18 and 19 interpreted in \mathbb{R} now have a dual version with the same substitutions. Lemma 18' will be as follows:

For $k \geq 1$,

$$
\begin{aligned}
P_{k+1}^{\prime} & =2^{(-1)^{k}} 2^{q_{k-1}} c_{k} P_{k}^{\prime}+3^{p_{k+1}-p_{k-1}} P_{k-1}^{\prime} \\
Q_{k+1}^{\prime} & =2^{(-1)^{k}} 2^{q_{k-1}} c_{k} Q_{k}^{\prime}+3^{p_{k+1}-p_{k-1}} Q_{k-1}^{\prime}, \\
\text { where } \quad c_{k} & :=\frac{2^{q_{k} a_{k+1}}-3^{p_{k} a_{k+1}}}{2^{q_{k}}-3^{p_{k}}} .
\end{aligned}
$$

Note that $(-1)^{k}$ instead of $(-1)^{k+1}$. The proof has four parts as in Lemma 18: sections (a) and (b) do not change; the easy section (c) now will be for k even; the harder section (d) will be for k odd, using

$$
v_{k+1}=1 z_{k-1}\left(10 z_{k}\right)^{a_{k+1}} 0 \quad \text { instead of } \quad v_{k+1}=1\left(z_{k} 01\right)^{a_{k+1}} z_{k-1} 0 .^{7}
$$

Instead of (11), we define

$$
\begin{equation*}
B_{k+1}^{\prime}:=2^{(-1)^{k}} 2^{q_{k-1}} c_{k} \quad \text { and } \quad A_{k+1}^{\prime}:=3^{p_{k+1}-p_{k-1}} \tag{18}
\end{equation*}
$$

Then

$$
\begin{align*}
P_{k+1}^{\prime} & =B_{k+1}^{\prime} P_{k}^{\prime}+A_{k+1}^{\prime} P_{k-1}^{\prime} \\
Q_{k+1}^{\prime} & =B_{k+1}^{\prime} Q_{k}^{\prime}+A_{k+1}^{\prime} Q_{k-1}^{\prime} \tag{19}
\end{align*}
$$

Further, Lemma 19' will say

$$
\begin{equation*}
P_{k+1}^{\prime} Q_{k}^{\prime}-P_{k}^{\prime} Q_{k+1}^{\prime}=(-1)^{k} 3^{p_{k+1}+p_{k}-1} \quad(k \geq 0) \tag{20}
\end{equation*}
$$

Finally, there holds Lemma 20':

$$
\begin{equation*}
\frac{P_{k+1}^{\prime}}{Q_{k+1}^{\prime}}=\sum_{j=0}^{k}(-1)^{j} \frac{3^{p_{j+1}+p_{j}-1}}{2\left(2^{q_{j+1}}-3^{p_{j+1}}\right)\left(2^{q_{j}}-3^{p_{j}}\right)} \quad(k \geq 0) \tag{21}
\end{equation*}
$$

Note that $P_{0}^{\prime} / Q_{0}^{\prime}=0$ by (16). For $k \rightarrow \infty$ the sum (21) converges, since

$$
\begin{aligned}
& \sum_{j=0}^{k}(-1)^{j} \frac{3^{p_{j+1}+p_{j}-1}}{2\left(2^{q_{j+1}}-3^{p_{j+1}}\right)\left(2^{q_{j}}-3^{p_{j}}\right)} \\
&=\sum_{j=0}^{k}(-1)^{j} \cdot 6 \cdot g^{\prime}\left(\frac{p_{j}}{q_{j}}\right) g^{\prime}\left(\frac{p_{j+1}}{q_{j+1}}\right) \quad(k \geq 0)
\end{aligned}
$$

[^4]Consequently, if $0<\alpha<\frac{\ln (2)}{\ln (3)}$, then

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{P_{k}^{\prime}}{Q_{k}^{\prime}}=\sum_{j=0}^{\infty}(-1)^{j} \frac{3^{p_{j+1}+p_{j}-1}}{2\left(2^{q_{j+1}}-3^{p_{j+1}}\right)\left(2^{q_{j}}-3^{p_{j}}\right)} \tag{22}
\end{equation*}
$$

This series can be written as a generalized continued fraction with convergents $P_{k}^{\prime} / Q_{k}^{\prime}$. Define $\frac{P_{0}^{\prime}}{Q_{0}^{\prime}}:=B_{0}^{\prime}=0$. By (20), we get $P_{1}^{\prime} Q_{0}^{\prime}-P_{0}^{\prime} Q_{1}^{\prime}=3^{p_{1}+p_{0}-1}=1=-A_{1}^{\prime}$, so $A_{1}^{\prime}=-1$. Finally, $\frac{P_{1}^{\prime}}{Q_{1}^{\prime}}=\frac{B_{1}^{\prime} B_{0}^{\prime}+A_{1}^{\prime}}{B_{1}^{\prime}}$ and $\frac{P_{1}^{\prime}}{Q_{1}^{\prime}}=\frac{1}{2\left(2^{q_{1}}-3\right)}$ yield $B_{1}^{\prime}=-2\left(2^{q_{1}}-3\right)$. These start values, together with (18) and (19), give the expansion

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \frac{P_{k}^{\prime}}{Q_{k}^{\prime}}=\frac{-1}{-2\left(2^{q_{1}}-3\right)+\frac{-3^{p_{2}}}{B_{2}^{\prime}+\frac{A_{3}^{\prime}}{B_{3}^{\prime}+\frac{A_{4}^{\prime}}{B_{4}^{\prime}+\cdots}}} .} \tag{23}
\end{equation*}
$$

Here is the new function we were looking for:
Definition 28. Let $F^{*}:=\left[0, \frac{\ln (2)}{\ln (3)}\right) \rightarrow \mathbb{R}$ be defined by

$$
\begin{aligned}
F^{*}(x) & :=\Phi_{\mathbb{R}}^{*}\left(m_{x}\right)=\lim _{k \rightarrow \infty} \frac{P_{k}^{\prime}}{Q_{k}^{\prime}} \quad \text { if } x \text { is irrational } ; \\
F^{*}(p / q) & :=\Phi_{\mathbb{R}}^{*}\left(m_{p / q}\right)=\frac{\varphi\left(\bar{m}_{p / q}\right)}{2^{q}-3^{p}} \quad(p, q \text { coprime }) .
\end{aligned}
$$

The function $F^{*}:=\left[0, \frac{\ln (2)}{\ln (3)}\right) \rightarrow \mathbb{R}$ (a devil's staircase)

- has range $F^{*}\left(\left[0, \frac{\ln (2)}{\ln (3)}\right)\right) \subset[0,+\infty) ;^{8}$
- is strictly monotone increasing;
- maps rationals to rationals;
- maps irrationals to irrationals;
- is discontinuous at every rational;
- is continuous at every irrational.

The proof of monotony and continuity is similar to the one of Lemma 27. So we omit the details.

[^5]
References

[1] D. J. Bernstein, A non-iterative 2-adic statement of the $3 x+1$ conjecture, Proc. Amer. Math. Soc. 121 (1994), 405-408. Also available at http://cr.yp.to/mathmisc.html.
[2] D. J. Bernstein and J. C. Lagarias, The $3 x+1$ conjugacy map, Canadian Journal of Mathematics 48 (1996), 1154-1169. Also available at http://www.math.lsa.umich.edu/~lagarias.
[3] P. E. Bőhmer, Über die Transzendenz gewisser dyadischer Brüche, Mathematische Annalen 96 (1927), 367-377, 735. Also available at http://www.digizeitschriften.de.
[4] J. L. Davison, A series and its associated continued fraction, Proc. Amer. Math. Soc. 63 (1977), 29-32.
[5] L. Halbeisen and N. Hungerbűhler, Optimal bounds for the length of rational Collatz cycles, Acta Arithmetica 78 (1997), 227-239. Also available at http://www.iam.unibe.ch/~halbeis.
[6] J. C. Lagarias, The $3 x+1$ problem and its generalizations, Amer. Math. Monthly 92 (1985), 3-23. Also available at http://www.math.lsa.umich.edu/~lagarias.
[7] J. C. Lagarias, $3 x+1$ problem and related problems, http://www.math.lsa.umich. edu/~lagarias.
[8] M. Lothaire. Algebraic Combinatorics on Words, volume 90 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, (2002). Also available at http://en.wikipedia.org/wiki/Sturmian_word.
[9] K. G. Monks and J. Yazinski, The autoconjugacy of the $3 x+1$ function, Discrete Mathematics 275 (2004), 219-236. Also available at http://www.scranton.edu/~monks.

[^0]: ${ }^{1}$ Monks, Yazinski [9]. Halbeisen, Hungerbúhler [5] use $\mathbb{Q}[(2)]$.
 ${ }^{2}$ A finite word $w=w_{0} w_{1} \cdots w_{n-1}$ is a factor of an infinite word v if $w=v_{i} v_{i+1} \cdots v_{i+n-1}$ for some integer i.

[^1]: ${ }^{3}$ It is easy to prove that $\varphi\left(\bar{m}_{p / q}\right)$ is the same quantity as $M_{\ell, n}$ in [5], Corollary 1 (with $\ell=$ $q, n=p$).
 ${ }^{4}(0)^{a_{1}-1}$ means $\left(a_{1}-1\right)$ times 0.

[^2]: ${ }^{5}$ We use t_{n} instead of d_{n}

[^3]: ${ }^{6}$ The range is an uncountable, nowhere dense null set.

[^4]: ${ }^{7}$ See Exercise 2.2.10 in [8]

[^5]: ${ }^{8}$ The range is an uncountable, nowhere dense null set.

