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Abstract
The 3x+1 map T is defined on the 2-adic integers Z2 by T (x) = x/2 for even x and
T (x) = (3x+1)/2 for odd x. Under iteration of T , the sequence (T k(x) mod 2)∞k=0,
called the parity vector of x ∈ Z2, can be interpreted as an infinite word over the
alphabet {0, 1} or as the digits of the 2-adic integer Φ−1(x) =

∑∞
k=0(T

k(x) mod 2) ·
2k. For any v ∈ Z2 (or equivalently for the infinite word v), the inverse map Φ
(called the 3x + 1 conjugacy map) yields the unique x ∈ Z2 with parity vector v.
It is unknown if there exists any aperiodic v with an eventually periodic Φ(v). In
this paper we compute Φ(v) for a class of aperiodic infinite words v of minimal
complexity, the mechanical words with irrational slope and intercept 0. Our main
result is a generalized continued fraction expansion of −1/Φ(x), convergent under
the 2-adic metric of Z2. The given examples suggest that Φ always maps Sturmian
words to infinite words of full complexity.

1. Introduction

Let Z2 denote the ring of 2-adic integers. Each x ∈ Z2 can be expressed uniquely
as an infinite string x0x1x2 · · · of 1’s and 0’s, called the binary representation of x.
The xk are the digits of x, written from left to right. For instance, −1 = 1111 · · ·
and 1 = 1000 · · · . The 2-adic norm | · |2 in Z2 is given by |x|2 := 2−n if x #= 0
and |x|2 := 0 if x = 0, where xn is the first nonzero digit of x. The distance is
defined by d(x, y) = |x − y|2 for all x, y ∈ Z2. With this metric Z2 is a compact
and complete topological space. Let 0 ≤ d0 < d1 < d2 < · · · be a finite or infinite
sequence of nonnegative integers defined by di := k whenever xk = 1 for a 2-adic
integer x = x0x1 · · ·xk · · · . Then x can be written as the finite or infinite sum
x = 2d0 + 2d1 + 2d2 + · · · .

The 3x + 1 map T is defined on the 2-adic integers Z2 by T (x) = x/2 for even x
and T (x) = (3x + 1)/2 for odd x. The 2-adic shift map S is defined on the 2-adic
integers Z2 by S(x) = x/2 for even x and S(x) = (x− 1)/2 for odd x.

The maps T and S are conjugates (Bernstein, Lagarias [2]). There exists a unique
homeomorphism Φ : Z2 → Z2 (the 3x + 1 conjugacy map) with Φ(0) = 0 and

Φ ◦ S ◦ Φ−1 = T. (1)
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There are explicit formulas for Φ and Φ−1:

Φ(2d0 + 2d1 + 2d2 + · · · ) = −
∑

i

1
3i+1

2di (2)

(see [1]) and

Φ−1(x) =
∞∑

k=0

(T k(x) mod 2) · 2k (3)

(see ([2]), where T k(x) denotes the k-th iterate of T and T 0(x) := x.
Also, Φ is a 2-adic isometry ([2]):

|Φ(x)− Φ(y)|2 = |x− y|2 for all x, y ∈ Z2. (4)
Moreover ([2]),

Φ(x) ≡ x (mod 2) for all x ∈ Z2. (5)

The sequence
(T k(x) mod 2)∞k=0 (6)

is called the parity vector of x ∈ Z2 (Lagarias [6]). Its elements are the digits of the
2-adic integer Φ−1(x). The concatenation of these digits is an infinite word v over
the alphabet {0, 1}, written from left to right:

v = x0x1x2 · · · , where xk ≡ T k(x) (mod 2).

We define di := k whenever xk = 1. Then we can define Φ(v) := Φ(2d0 + 2d1 +
2d2 + · · · ) and refer to Φ, whether it is a 2-adic integer or an infinite word.

Let AN0 be the set of (right) infinite words over the alphabet A = {0, 1}:

AN0 := {x0x1x2 · · · : xk ∈ A, k = 0, 1, 2, . . .}.

The set AN0 is equipped with a distance defined as follows:

for x, y ∈ AN0 , d(x, y) := 2−n

with n = min{k ≥ 0 : xk #= yk},

and the convention that d(x, y) := 0 if and only if x = y. With this metric (es-
sentially the same as the metric of Z2) AN0 is a compact and complete topological
space (Lothaire [8], Chapter 1).

Note that AN0 and Z2 are homeomorphic spaces: both are homeomorphic to the
Cantor space. A sequence of words in AN0 converges to a limit x ∈ AN0 if and only if
the corresponding sequence of 2-adic integers converges to y ∈ Z2, and such that y is
the 2-adic integer corresponding to the word x. This fact simplifies the redaction and
the notation: If our interest is the digits structure of an x ∈ Z2, we use the language
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of words. We even use the same symbols for words and 2-adic integers when there
is no confusion in the context.

Let Qodd
1 denote the ring of rational numbers, having an odd denominator in

reduced fraction form. We know that Qodd is isomorphic to the subring Q2 ⊂ Z2 of
eventually periodic 2-adic integers (i.e., their word of digits is eventually periodic).
This isomorphism enables us to do arithmetic within Qodd instead of struggling
with the cumbersome elements of Q2. We take care that no fractions with even
denominator arise. The elements a/b ∈ Qodd (and also a/b ∈ Q) have a 2-adic
norm given by
∣∣∣
a

b

∣∣∣
2

:= 2−val2( a
b ) where val2

(a

b

)
:= max

{
r : 2r divides

a

b

}
≥ 0; val2(0) := ∞.

If the parity vector (6) of some x ∈ Z2 is an eventually periodic infinite word v,
then x = Φ(v) is also eventually periodic. This follows from (2) by computing the
corresponding geometric series. Thus Φ(Qodd) ⊂ Qodd. The periodicity conjecture,
concerning the famous 3x + 1 problem, states that Φ(Qodd) = Qodd (Bernstein,
Lagarias [2]). If this conjecture is true, Φ maps each aperiodic parity vector v onto
an aperiodic 2-adic integer: Φ(v) /∈ Qodd.

The “nicest” aperiodic infinite words are the Sturmian words: infinite words over
the alphabet {0, 1} which have exactly (n+1) different factors2 of length n for each
n ≥ 0. Indeed, Sturmian words are aperiodic infinite words of minimal complexity
(see [8]). They can even be described explicitly in arithmetic form, known as lower
and upper mechanical words (see [8]):

+(j + 1)α + ρ, − +jα + ρ, or -(j + 1)α + ρ. − -jα + ρ. for j = 0, 1, 2, . . .

where α ∈ (0, 1) is an irrational number (the slope) and ρ ∈ [0, 1) (the intercept).
In this paper, we compute Φ(v) for mechanical words v with intercept 0. A

special word

cα := +(j + 1)α, − +jα, = -(j + 1)α. − -jα. for j = 1, 2, 3, . . .

is called the characteristic word. Note that here j #= 0. Then

0cα = +(j + 1)α, − +jα, and 1cα = -(j + 1)α. − -jα. for j = 0, 1, 2, . . . .

Let α = [0; a1, a2, . . .] be the simple continued fraction expansion of the irrational
number α with partial denominators (ak)k≥0,

α =
1

a1 +
1

a2 +
1

a3 + · · ·
1Monks, Yazinski [9]. Halbeisen, Hungerbűhler [5] use Q[(2)].
2A finite word w = w0w1 · · · wn−1 is a factor of an infinite word v if w = vivi+1 · · · vi+n−1 for

some integer i.
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and convergents (pk/qk)k≥0 defined by

p−2 := 0, q−2 := 1,
p−1 := 1, q−1 := 0,
pk = akpk−1 + pk−2,

qk = akqk−1 + qk−2.

Then always

p0 = 0, q0 = 1,
p1 = 1, q1 = a1.

For any irrational α ∈ (0, 1) given as a simple continued fraction, we obtain a 2-adic
convergent series expansion in terms of pk’s and qk’s for Φ(1cα) ∈ Z2 (Theorem 1).
From Φ(1cα) one easily gets by (1) and (5):

Φ(cα) =
3Φ(1cα) + 1

2
and Φ(0cα) = 3Φ(1cα) + 1.

As main result we get a convergent generalized continued fraction expansion of
−1/Φ(1cα) in Z2, formally with rational integers as partial denominators and nu-
merators (Corollary 2).

In Section 2 we summarize our results without proof. We give several examples
of Φ(1cα)’s for different α-values. The examples suggest the full complexity of the
infinite words, i.e., they have 2n different factors of length n for every n ≥ 0. We
show the exact number of digits, necessary for checking the claimed complexity up
to the bound n ≤ 5.

The proof of the main result, concerning 2-adic integers, is in Section 3. In
Section 4 we prove that an associated real-valued function ΦR(1cα) is a devil’s
staircase. This function with the same series expansion explains the underlying
idea when computing Φ(1cα).

2. Results

Theorem 1. Let α = [0; a1, a2, . . .] be the simple continued fraction expansion of
the irrational number α with convergents (pk/qk), 1cα = -(j + 1)α. − -jα. for
j = 0, 1, 2, . . . and 1cα ∈ Z2. Then it holds in Z2:

Φ(1cα) = −1
3
−

∞∑

j=0

(−1)j+1 2qj+1+qj−1

3(3pj+1 − 2qj+1)(3pj − 2qj )
.
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Corollary 2. Let α, (pk/qk) and 1cα be as in Theorem 1. Then it holds in Z2:

− 1
Φ(1cα)

= B0 +
A1

B1 +
A2

B2 +
A3

B3 + · · ·

,

where

B0 = 3,
B1 = −1, A1 = 2q1 = 2a1 ,

Bk+1 = 3(−1)k+1
· 3pk−1 · ck, Ak+1 = 2qk+1−qk−1 ,

and ck =
3pkak+1 − 2qkak+1

3pk − 2qk
for k = 1, 2, 3, . . . .

Example 3. (see also Example 7). Let (Fk)∞k=0 be the Fibonacci Sequence defined
by F0 := 0, F1 := 1 and Fk = Fk−1 + Fk−2 for k ≥ 2. Let γ denote the golden
ratio: γ = 1+

√
5

2 . For the irrational 1/γ = 0.6180 · · · , the following holds in Z2:

− 1
Φ(1c(1/γ))

= − 1
∑

i

2%iγ&

31+i

= 3 +
2F1

−1 +
2F2

3F0+1 +
2F3

3F1−1 +
2F4

3F2+1 +
2F5

3F3−1 +
2F6

3F4+1 + · · ·

.

This expansion is a new member of the family of remarkable sequences related
to the golden ratio, but now in the 2-adic world. For instance, there is the fa-
mous expansion of the Rabbit Constant

∑∞
i=1

1

2%iγ&
= [0; 2F0 , 2F1 , 2F2 , 2F3 , . . .] =

0.70980344 · · · (Davison [4]). Our expansion converges in Z2 but diverges in R.
However, the divergence is acceptable: it diverges by oscillation between two dis-
tinct irrational limit points ζ and (ζ − 1/6); the odd convergents approach ζ =
10.37012714 · · · and the even approach (ζ − 1/6). Defining a new map Φ∗ which is
dual to Φ, we get the following expansion, convergent in R, which proves the irra-
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tionality of ζ (relation (23)).

Φ∗R(1c(1/γ)) = ζ

=
−3F0

2F0+1 +
−3F1

2F1−1 +
3F2

2F2+1 +
3F3

2F3−1 +
3F4

2F4+1 +
3F5

2F5−1 +
3F6

2F6+1 + · · ·

.

An infinite word w has full complexity if there are 2n different factors of length
n for every n > 0. Let D(n) denote the minimal number of digits such that the
prefix of w with length D(n) has 2n different factors of length n. In the following
examples we use prefixes of length D(5), i.e., D(5) digits are needed for finding all
of the 25 = 32 different factors of length 5 in Φ(1cα).

Example 4.

α =
ln(3)
27

= [0; 24, 1, 1, 2, 1, 3, 2, 1, . . .] = 0.0406 · · ·

(pk/qk)∞k=0 = (0, 1/24, 1/25, 2/49, 5/123, 7/172, 26/639, 59/1450, 85/2089, . . .);

(Ak)∞k=1 = (16777216, 16777216, 33554432,

316912650057057350374175801344, ...),

(Bk)∞k=0 = (3,−1, 3, 1, 5066549580791889, 3, ...),

1cα = 10000000000000000000000010000000000000000000000001

00000000000000000000000100000000000000000000000010

00000000000000000000001000000000000000000000000100

00000000000000000000001000000000000000000000001000

000000000000000,

Φ(1cα) = 10101010101010101010101000111000111000111000111001

10111101001000010110111001011101101011001111110010

00111110011100110010100100011000010100101010111100

00111010001000100001011111111010011001010001100110

110111001100000,

D(5) = 215.
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Example 5.

α =
π

6
= [0; 1, 1, 10, 10, 1, 1, 1, . . .] = 0.5235 · · · ,

(pk/qk)∞k=0 = (0, 1, 1/2, 11/21, 111/212, 122/233, 233/445, 355/678, . . .);

(Ak)∞k=1 = (2, 2, 1048576, 1645504557321206042154969182557350504982

735865633579863348609024, ...),

(Bk)∞k=0 = (3,−1, 3, 989527, 7713282525627257030267828369842165309

767865841972358429555, 59049, ...),

1cα = 11010101010101010101011010101010101010101011010101

01010101010101101010101010101010101101010101010101

01010110101,

Φ(1cα) = 11010101010101010101011001100110101100100100011100

01011000011011111110100111001100110100101110111100

11100100000,

D(5) = 111.

Example 6.

α =
1

ln(3)
= [0; 1, 10, 7, 9, 2, 2, . . .] = 0.9102 · · · ,

(pk/qk)∞k=0 = (0, 1, 10/11, 71/78, 649/713, 1369/1504, 3387/3721, . . .);

(Ak)∞k=1 = (2, 1024, 151115727451828646838272, ...),

(Bk)∞k=0 = (3,−1, 174075, 43914238431643758422900358577, ...),

1cα = 11111111111011111111110111111111101111111111011111

11111011111111110111111111101111111111101111111111

0111111111101111111111011111111110,

Φ(1cα) = 11111111111001100110001001111101001100101100111001

00100101011100100010010101001111000001110011111100

1011100001101001001101001010011011,

D(5) = 134.
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Example 7.

α =
2

1 +
√

5
= [0; 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . .] = 0.6180 · · · ,

(pk/qk)∞k=0 = (0, 1, 1/2, 2/3, 3/5, 5/8, 8/13, 13/21, 21/34, 34/55, 55/89,

89/144, 144/233, 233/377, 377/610, 610/987, . . .);

(Ak)∞k=1 = (2, 2, 4, 8, 32, 256, 8192, 2097152, 17179869184,

36028797018963968, 618970019642690137449562112, ...),

(Bk)∞k=0 = (3,−1, 3, 1, 9, 3, 81, 81, 19683, 531441, 31381059609,

5559060566555523, 523347633027360537213511521, ...),

1cα = 11011010110110101101011011010110110101101011011010

11010110110101101101011010110110101101101011010110

110101,

Φ(1cα) = 11011110111001000110011110100010010111011101011000

10000011011111110000100100111000001001011010001011

101010,

D(5) = 106.

Example 8.

α =
ln(2)
ln(3)

= [0; 1, 1, 1, 2, 2, 3, 1, 5, 2, . . .] = 0.6309 · · · ,

(pk/qk)∞k=0 = (0, 1, 1/2, 2/3, 5/8, 12/19, 41/65, 53/84, 306/485, 665/1054, . . .);

(Ak)∞k=1 = (2, 2, 4, 64, 65536, 144115188075855872,

36893488147419103232, ...),

(Bk)∞k=0 = (3,−1, 3, 1, 153, 1497, 609397039593657, 177147, ...),

1cα = 11011011010110110101101101101011011010110110110101

1011010110110110101101101011011010110110110101101,

Φ(1cα) = 11011111110110100111110110010011110101010000001010

0000001011010101111111001011101100010100001000110,

D(5) = 99.
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Example 9.

α = ln(2) = [0; 1, 2, 3, 1, 6, 3, 1, 1, 2, . . .] = 0.6931 · · · ,

(pk/qk)∞k=0 = (0, 1, 2/3, 7/10, 9/13, 61/88, 192/277, 253/365,

445/642, 1143/1649, . . .);

(Ak)∞k=1 = (2, 4, 512, 1024, 302231454903657293676544, ...),

(Bk)∞k=0 = (3,−1, 15, 217, 27, 3669900926341609724758875, ...),

1cα = 11101101101110110110110111011011011011101101101101

11011011011011101101101101110110110110111011011011

10110110110111011011011011101101101101110110110110

1110110110110111011011011011,

Φ(1cα) = 11100101010111010000101010000111110000011001110011

10010001110100100010010100101110101110011010011100

10000010010011111111001101001000111000000100011001

1101110101001110100000110110,

D(5) = 178.

Here are some additional values of the function D(n):

n ln(3)
27

π
6

1
ln(3)

2
1+
√

5

ln(2)
ln(3) ln(2)

0.0406... 0.5235... 0.9102... 0.6180... 0.6309... 0.6931...

1 2 3 12 3 3 4
2 28 25 14 13 17 6
3 30 48 32 17 43 19
4 65 66 86 55 47 42
5 215 111 134 106 99 178
6 252 335 263 211 304 448
7 715 629 896 909 614 553
8 1105 1615 1832 1644 1579 1806

3. Proofs of Theorem 1 and Corollary 2

In this section, if not otherwise stated, p/q denotes any rational number in reduced
fraction form with 0 < p/q ≤ 1 (the denominator can be even), α denotes any
irrational number with 0 < α < 1, and pk/qk are its convergents. We denote by A∗
the set of finite words over A, by ε the empty word, by '(w) the length of the word
w, and by h(w) its height, i.e., the number of 1’s in w. A word (finite or infinite) is



INTEGERS: 9 (2009) 150

called balanced if the height of any two factors of the same length differ by at most
1. Sturmian words are aperiodic, balanced, infinite words (see [8]).

Definition 10. Let M2 denote the set of the 2-adic integers having a rational or
irrational upper mechanical word as digits structure:

M2 := {mx ∈ Z2 : mx = -(j + 1)x. − -jx. for j = 0, 1, 2, . . . and 0 < x ≤ 1}.

If x = α, then mα = 1cα. We have to compute Φ(mα) in terms of convergents
pk/qk. Note that x #= 0 because Φ(0) := 0 (an infinite word of 0’s).

If x = p/q, then mp/q is a purely periodic balanced infinite word. The period
mp/q, a finite word, has length q and height p. This word is known as the Christoffel
word ([8]). It always starts with 1 and ends with 0, and thus mp/q = 1z0. The
central word z is a palindromic word with '(z) = q − 2 and h(z) = p − 1. For
example, m5/7 = 111011011101101110110111011011101 · · · and m5/7 = 1110110.

Lemma 11. For all x ∈ M2,

di =
⌊

i

x

⌋
(i = 0, 1, 2, . . .).

Proof. The di are those j ∈ N0 for which -(j + 1)x. − -jx. = 1.

a) Let 0 < x < 1. Fix any i ∈ N0. There exists a j such that jx ≤ i < (j + 1)x;
thus j ≤ i/x < j + 1. So j = + i

x,.

b) If x = 1, then j = di = i. !

Lemma 12. For all mp/q ∈ M2,

Φ(mp/q) =
3p

2q − 3p

p−1∑

i=0

1
31+i

· 2%i·
q
p &.

Proof. Let i = r + np and 0 ≤ r < p. Then by (2) and Lemma 11,

Φ(mp/q) = −
∞∑

i=0

1
31+i

· 2%i·
q
p & = −

∞∑

n=0

2nq

3np

p−1∑

r=0

2%r· q
p &

31+r

=
3p

(2q − 3p)

p−1∑

r=0

1
31+r

· 2%r· q
p &

since
∣∣∣ 2q

3p

∣∣∣
2

< 1. !
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Definition 13. (Halbeisen, Hungerbühler [5]). The function ϕ : A∗ → N0 is defined
recursively by

ϕ(ε) = 0;
ϕ(w0) = ϕ(w);
ϕ(w1) = 3ϕ(w) + 2$(w).

Using the pointer notation di, we get ([5])

ϕ(w) =
h(w)−1∑

i=0

3h(w)−1−i2di . (7)

Further ([5]), for all u, v ∈ A∗,

ϕ(uv) = 3h(v)ϕ(u) + 2$(u)ϕ(v). (8)

Lemma 14. For all mp/q ∈ M2,

Φ(mp/q) =
ϕ(mp/q)
2q − 3p

. 3

Proof. Apply Lemma 12 and (7). !

Clearly Φ(mp/q) ∈ Qodd.
It is a main fact in the theory of words that the Christoffel words mpk/qk

(pk/qk

are the convergents of α) converge to the word 1cα:

Lemma 15. Let vk := mpk/qk
for k ≥ 2 and v0 := 0, v1 := 1(0)a1−1 . 4

Then mα = 1cα = limk→∞ vk. In addition, for k ≥ 1,

vk+1 =

{
v

ak+1
k vk−1 if k odd;

vk−1v
ak+1
k if k even.

Proof. The statement is part of Exercise 2.2.10 in Lothaire [8]. !

If vk → mα then we have Φ(vk) → Φ(mα). We now construct a new se-
quence (−Pk/Qk)∞k=0, slightly different from Φ(vk), but with the same property:
(−Pk/Qk) → Φ(mα).

The following function g has its origin in a devil’s staircase (see Section 4).
3It is easy to prove that ϕ(mp/q) is the same quantity as M!,n in [5], Corollary 1 (with " =

q, n = p).
4(0)a1−1 means (a1 − 1) times 0.
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Definition 16. (The function “right-gap”). Let g := Q ∩ [0, 1] → Qodd be defined
by

g

(
p

q

)
:=

1
3

· 2q−1

3p − 2q
.

If pk/qk → α, then qk → ∞. Thus g(pk/qk) converges to 0 since |g(pk/qk)|2 =
21−qk . Consequently, the sequence

Φ(v0) + g
(

p0
q0

)
, Φ(v1), Φ(v2) + g

(
p2
q2

)
, Φ(v3),

Φ(v4) + g
(

p4
q4

)
, Φ(v5), · · ·

(9)

converges to Φ(mα). The terms are

− 3ϕ(v0)− 2q0−1

3(3p0 − 2q0)
, − ϕ(v1)

3p1 − 2q1
, − 3ϕ(v2)− 2q2−1

3(3p2 − 2q2)
,

− ϕ(v3)
3p3 − 2q3

, − 3ϕ(v4)− 2q4−1

3(3p4 − 2q4)
, . . . .

(10)

We write Pk for the numerators and Qk for the denominators; the “-” sign remains:

− P0

Q0
= − −1

−3
, − P1

Q1
= − 1

3− 2q1
, − P2

Q2
, − P3

Q3
, − P4

Q4
, . . . .

In conclusion, we have the following lemma.

Lemma 17.
lim

k→∞
Φ(vk) = − lim

k→∞

Pk

Qk
= Φ(mα).

Proof. The statement follows from (9). !

Lemma 18. For k ≥ 1,

Pk+1 = 3(−1)k+1
3pk−1ckPk + 2qk+1−qk−1Pk−1,

Qk+1 = 3(−1)k+1
3pk−1ckQk + 2qk+1−qk−1Qk−1,

where ck :=
3pkak+1 − 2qkak+1

3pk − 2qk
.

Proof. We divide the proof in four parts.

(a) The relation for Qk+1 follows from the identity

3pk+1 − 2qk+1 = 3pk−1(3pkak+1 − 2qkak+1) + 2qkak+1(3pk−1 − 2qk−1).

Recall that pk+1 = ak+1pk + pk−1 and qk+1 = ak+1qk + qk−1.
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(b) By induction from (8),
ϕ(vak+1

k ) = ckϕ(vk).

(c) Let k be odd.

ϕ(vk+1) = ϕ(vak+1
k vk−1) = 3pk−1ckϕ(vk) + 2qkak+1ϕ(vk−1).

Then

Pk+1 = 3ϕ(vk+1)− 2qk+1−1

= 3 · 3pk−1ckϕ(vk) + 2qkak+1(3ϕ(vk−1)− 2qk−1−1).

(d) Let k be even. The word zk in vk = 1zk0 is central and, by (Proposition 2.2.15,
Lothaire [8]), the words sk := zk10 and s′k = zk01 are standard words . The standard
sequence is defined by s−1 := 1, s0 := 0 and sn = stn

n−1sn−2 for n ≥ 1 (Lothaire
[8]), where α = [0; 1 + t1, t2, . . .] is the continued fraction expansion.5 For k even,
there are the bijections

vk = 1zk0 ←→ sk = zk10,
vk+1 = 1zk+10 ←→ sk+1 = zk+101.

So we get

vk = 1zk0 −→ sk = zk10
⇓

vk+1 = 1(zk10)ak+1zk−10 ←− sk+1 = (zk10)ak+1zk−101,

and

Pk+1 = ϕ(vk+1) = ϕ(1(zk10)ak+1zk−10) = 3pk+1−1 + 2ϕ((zk10)ak+1zk−1)
= 2 · 3pk−1−1ck(3ϕ(zk) + 2qk−2) + 2qkak+1+1ϕ(zk−1) + 3pk+1−1.

But ϕ(vk) = ϕ(1zk0) = 3pk−1 + 2ϕ(zk), thus

3ϕ(zk) = 2−1 · 3ϕ(vk)− 2−1 · 3pk ,

2ϕ(zk−1) = ϕ(vk−1)− 3pk−1−1.

Hence,

Pk+1 = 3pk−1−1ck(3ϕ(vk) + 2qk−1) + 2qkak+1ϕ(vk−1)− 3pk−1−1ck3pk

−2qkak+13pk−1−1 + 3pk+1−1.

Using the obvious identity 3pk−1−1ck2qk−1 = 3pk−1−1ck2qk − 3pk−1−1ck2qk−1, we
get Pk+1 = 3pk−1−1ck(3ϕ(vk) − 2qk−1) + 2qk+1−qk−1ϕ(vk−1) = 3(−1)k+1

3pk−1ckPk

+ 2qk+1−qk−1Pk−1. !

5We use tn instead of dn
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For k ≥ 1, let

Bk+1 := 3(−1)k+1
3pk−1ck and Ak+1 := 2qk+1−qk−1 , (11)

so Lemma 18 can be written as

Pk+1 = Bk+1Pk + Ak+1Pk−1,

Qk+1 = Bk+1Qk + Ak+1Qk−1. (12)

Lemma 19.

Pk+1Qk − PkQk+1 = (−1)k+12qk+1+qk−1 (k ≥ 0).

Proof. (a) For k = 0: P1Q0 − P0Q1 = −2q1 = (−1)0+12q1+q0−1.

(b) For k ≥ 1: Pk+1Qk − PkQk+1 = −Ak+1(PkQk−1 − Pk−1Qk) by (12).

Therefore, P2Q1 − P1Q2 = −A2(P1Q0 − P0Q1) = −2q2−q0(−2q1) = 2q2+q1−1,

P3Q2 − P2Q3 = −A3(P2Q1 − P1Q2) = −2q3−q12q2+q1−1 = −2q3+q2−1,
...

We omit the induction. !

Lemma 20.

Pk+1

Qk+1
=

P0

Q0
+

k∑

j=0

(−1)j+1 2qj+1+qj−1

3(3pj+1 − 2qj+1)(3pj − 2qj )
(k ≥ 0).

Proof. By Lemma 19, the difference between consecutive terms is

Pk+1

Qk+1
− Pk

Qk
= (−1)k+1 2qk+1+qk−1

Qk+1Qk
(k ≥ 0). !

We now complete the proof of Theorem 1.

Proof of Theorem 1. For k → ∞ the sum in Lemma 20 converges, since the terms
added have 2-adic norm 21−qj+1−qj which converges to 0 for increasing j. This
fact is sufficient to guarantee the convergence of a series in Z2. The statement of
Theorem 1 follows immediately from Lemma 17. !

Lemma 21. For k ≥ 0, there holds

Φ(mα) = − Pk

Qk
− (−1)k

∞∑

j=0

(−1)j+1 2qk+j+1+qk+j−1

3(3pk+j+1 − 2qk+j+1)(3pk+j − 2qk+j )
.

Proof. The statement follows from Lemma 20 and Lemma 17. !
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Proof of Corollary 2. We show that Q0
P0

, Q1
P1

, Q2
P2

, Q3
P3

, . . . are the convergents of a
generalized continued fraction expansion for −1

Φ(mα) . Indeed, Lemma 19 is the de-
terminant formula for this expansion. Ak, Bk are defined for k ≥ 2 in (11). We
define Q0

P0
:= B0, so B0 = 3. From Lemma 19 we get P1Q0 − P0Q1 = −2q1 = −A1,

so A1 = 2q1 . Finally, Q1
P1

= B1B0+A1
B1

and Q1
P1

= 3− 2q1 yield B1 = −1. !

4. A Devil’s Staircase

In this section we leave the 2-adic world and consider Φ as a real-valued function,
now called ΦR. It is in this context where the right-gap function actually appears
(Definition 16).

Using the absolute value as the norm, the proof of Lemma 12 fails. The series∑∞
n=0

2nq

3np converges if and only if (2q/3p) < 1 or equivalently, if and only if ln(2)
ln(3) <

p/q ≤ 1.

Definition 22. Let f := Q ∩
(

ln(2)
ln(3) , 1

]
→ R be defined by

f

(
p

q

)
:= ΦR(mp/q) =

ϕ(mp/q)
2q − 3p

(p, q coprime).

Note that ΦR(mp/q) = −
∑

i
1

3i+1 2di is now a negative rational number when cal-
culated over the infinite word mp/q.

A plot of the function f reveals the structure of a devil’s staircase. There is a
gap associated with any rational of the domain.

Lemma 23. For p′

q′ ,
p
q ∈ Q ∩ ( ln(2)

ln(3) , 1] and g as in Definition 16,

if
p′

q′
>

p

q
, then f(

p′

q′
) > f(

p

q
) + g(

p

q
).

Proof. Fix p
q . We choose a Farey sequence of any order N ≥ q and suppose that p

q

and p′

q′ are a Farey pair: p′

q′ is the right neighbor of p
q . Hence, pq′ − p′q = −1. By

(2) and Lemma 11, we have

f(
p

q
) = −

∞∑

i=0

1
31+i

2%i
q
p & = −

∞∑

j=1

1
31+jp

2jq −
∑

i*=jp

1
31+i

2%i
q
p &.

f(
p′

q′
) = −

∞∑

j=1

1
31+jp

2%jp· q′
p′ & −

∑

i*=jp

1
31+i

2%i
q′
p′ &.
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As +i q
p, ≥ +i

q′

p′ ,,

f(
p′

q′
)− f(

p

q
) ≥

∞∑

j=1

1
31+jp

(2jq − 2%jp· q′
p′ &).

Since pq′ − p′q = −1, jp · q′

p′ = jq − j
p′ . Hence,

+jp · q′

p′
, ≤ jq − 1 if j ≤ p′;

+jp · q′

p′
, < jq − 1 if j > p′.

Consequently,

f(
p′

q′
)− f(

p

q
) >

1
2

∞∑

j=1

1
31+jp

2jq =
1
3

· 2q−1

3p − 2q
= g(

p

q
). !

Lemma 23 proves that f is strictly increasing over the rationals.

Lemma 24. Let (xi)∞i=0 be a sequence of rationals converging to α, and let g be as
in Definition 16. Then

lim
i→∞

g(xi) = 0.

Proof. We have α > ln(2)
ln(3) . Let c ∈ (0,α− ln(2)

ln(3)). There exists an index i0 such that

xi > ln(2)
ln(3) + c for all i ≥ i0. We assume i ≥ i0 and xi := ai/bi, written in reduced

fraction form. The convergents pk/qk are the best approximation of α:

if
∣∣∣∣α−

ai

bi

∣∣∣∣ <

∣∣∣∣α−
pk

qk

∣∣∣∣ for some k, then bi ≥ qk.

For increasing k, qk → ∞. So bi → ∞. Note that ai/bi > ln(2)
ln(3) + c. Hence

ai > bi
ln(2)
ln(3) + bic. Then

2bi

3ai
<

2bi

3bi· ln(2)
ln(3)

· 1
3bic

=
( 1
3c

)bi .

Since bi →∞ and 1/3c < 1, limbi→∞
2bi

3ai
= 0. Now,

g
(ai

bi

)
=

1
6

·
2bi

3ai

1− 2bi

3ai

and lim
i→∞

g(
ai

bi
) = 0 as claimed.

!
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We show that the series expansion of Theorem 1 converges also in R. We see
that the series of Theorem 1 can be written formally as

∞∑

j=0

(−1)j+1 2qj+1+qj−1

3(3pj+1 − 2qj+1)(3pj − 2qj )
=

∞∑

j=0

(−1)j+1 · 6 · g(
pj

qj
)g(

pj+1

qj+1
). (13)

Lemma 25. The following limit exists:

lim
k→∞

k∑

j=0

(−1)j+1 · 6 · g(
pj

qj
)g(

pj+1

qj+1
).

Proof. The pj

qj
are the convergents of α > ln(2)

ln(3) . There exists an index j0 such that
pj

qj
> ln(2)

ln(3) and consequently, 3pj > 2qj for all j ≥ j0.

We show that limk→∞
∑k

j=j0
(−1)j+1g(pj

qj
)g(pj+1

qj+1
) exists.

By the criterion of Leibniz for alternating series, it is sufficient that the absolute
terms

∣∣(−1)j+1g(pj

qj
)g(pj+1

qj+1
)
∣∣ = g(pj

qj
)g(pj+1

qj+1
) decrease strictly monotone to 0. In

fact, it is an easy check that for j ≥ j0:

g(
pj

qj
) > g(

pj+2

qj+2
) ⇐⇒ 2qj 3pj+2 > 2qj+23pj ⇐⇒ pj+1

qj+1
>

ln(2)
ln(3)

. (14)

The last term is equivalent to 3pj+1 > 2qj+1 . !

By Lemma 24, the gi’s approach 0. The real-valued sequence (9) and (ΦR(vk))∞k=0

converge to the same limit ΦR(mα). It follows that Lemma 17 also holds for real
numbers. The number (-1/ΦR(mα)) can be calculated with the real-valued contin-
ued fraction of Corollary 2. So ΦR(mα) is irrational. We extend f to a function F
over the whole interval ( ln(2)

ln(3) , 1].

Definition 26. Let F := ( ln(2)
ln(3) , 1] → R be defined by

F (x) := ΦR(mx) = − lim
k→∞

Pk

Qk
if x is irrational;

F (p/q) := ΦR(mp/q) =
ϕ(mp/q)
2q − 3p

(p, q coprime).

Lemma 27. F (x) is a strictly monotone increasing function. Furthermore, F (x)
is continuous at x = α.
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Proof. By Lemma 25 and (13), Lemma 21 holds in R:

ΦR(mα) − (− Pk

Qk
)

= −(−1)k
∞∑

j=0

(−1)j+1 2qk+j+1+qk+j−1

3(3pk+j+1 − 2qk+j+1)(3pk+j − 2qk+j )
(k ≥ 0).

By (14), there exists a sufficiently large k0 such that (pk/qk) > ln(2)
ln(3) for all k > k0.

For k > k0, the absolute values of the terms added converge strictly monotone to
0, and (−Pk/Qk) approaches ΦR(mα) = F (α). Therefore, −P2k/Q2k < F (α) <
−P2k+1/Q2k+1 for all 2k > k0. This inequality and Lemma 23 prove that F (x) is
strictly monotone everywhere.

Recall that −P2k/Q2k = F (p2k/q2k) + g(p2k/q2k) and −P2k+1/Q2k+1 =
F (p2k+1/q2k+1). Choose p/q such that p2k/q2k < p/q < p2k+2/q2k+2. Then
−P2k/Q2k < F (p/q) < F (α). Consequently, we have F ([p/q, p2k+1/q2k+1]) ⊂
[−P2k/Q2k,−P2k+1/Q2k+1]. For any given ε > 0, there is a sufficiently large k
such that [−P2k/Q2k,−P2k+1/Q2k+1] lies entirely inside an ε-neighborhood of F (α).
This proves the continuity at x = α. !

The previous lemmas prove that the function F :=
(

ln(2)
ln(3) , 1

]
→ R

• has range F
(
( ln(2)
ln(3) , 1]

)
⊂ (−∞,−1]; 6

• is strictly monotone increasing

• maps rationals to rationals;

• maps irrationals to irrationals;

• is discontinuous at every rational;

• is continuous at every irrational.

The function is similar to other devil’s staircases. Perhaps the first one of this
type was given by Bőhmer [3], proving the transcendence of certain dyadic fractions.
It seems that F additionally maps irrationals to transcendental numbers. We have
no proof.

What happens when 0 < α < ln(2)
ln(3)?

First of all, Lemma 12, interpreted in R, is no longer true. But all is not lost.
Let (pj/qj) be the convergents of α. Then pj

qj
< ln(2)

ln(3) for all sufficiently large j, so
that the relation (14) simply can be inverted, substituting > by <. So Lemma 25 is
still valid because 3pj+1 < 2qj+1 implies that g(pj

qj
) and g(pj+1

qj+1
) are both negative. If

6The range is an uncountable, nowhere dense null set.
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j → ∞, then g(pj

qj
) → (−1/6), so Lemma 24 is no longer valid. The real-valued

sequence (9) no longer converges to ΦR(mα): the terms with odd index still converge
to ΦR(mα), those with even index converge to ΦR(mα) − 1

6 . The limit (in R) of
Lemma 17 does not exist. In fact, the real-valued sequence (−Pk/Qk) has exactly
two limit points.

It is possible to extend F artificially to the left side of ln(2)
ln(3) . Since the limit in

Definition 26 no longer exists, we define F (α) as the upper limit of (−Pk/Qk). The
real-valued expansions of Theorem 1 and Corollary 2 remain still useful provided
we use approximations that stop at an odd index. Note that F (x) > 0 is at the left
and F (x) < 0 is at the right side of ln(2)

ln(3) . Furthermore, F diverges at x = ln(2)
ln(3) ,

the odd approximations in Theorem 1 approach −∞ and the even +∞, while in
Corollary 2 both approximations approach 0.

A plot of the artificially extended F shows a positive, strictly monotone increasing
devil’s staircase with gaps at the left side of the rationals, a very different behavior
from the original F . So we abandon F and construct a new function F ∗, specially
for 0 < x < ln(2)

ln(3) , which will have a convergent series expansion.
First we define

F ∗(pk/qk) := Φ∗R(mpk/qk
) := Φ∗R(vk) :=

ϕ(mpk/qk
)

2qk − 3pk
.

The last term is the same number as in Lemma 14, but this is no longer the same
as ΦR(mpk/qk

) since Lemma 12 and Lemma 14 are false for 0 < pk/qk < ln(2)
ln(3) .

The sequence (9) is no longer appropriate. This time we get the best approxi-
mation of F ∗(α) by

Φ∗R(v0), Φ∗R(v1) + g′(
p1

q1
), Φ∗R(v2), Φ∗R(v3) + g′(

p3

q3
), Φ∗R(v4), . . . (15)

with the new left-gap g′(pk

qk
) := g(pk

qk
) + 1

6 = 1
2 · 3pk−1

3pk−2qk
, which now approaches 0

when k →∞.
The sequences (15) and (Φ∗R(vk))∞k=0 converge to the same limit, if such a limit

exists. The new terms are

ϕ(v0)
2q0 − 3p0

,
2ϕ(v1)− 3p1−1

2(2q1 − 3p1)
,

ϕ(v2)
2q2 − 3p2

,
2ϕ(v3)− 3p3−1

2(2q3 − 3p3)
,

ϕ(v4)
2q4 − 3p4

, . . . . (16)

We write P ′
k for the numerators and Q′

k for the denominators:

P ′
0

Q′
0

=
0
1
,

P ′
1

Q′
1

=
1

2(2q1 − 3)
,

P ′
2

Q′
2

,
P ′

3

Q′
3

,
P ′

4

Q′
4

, . . . .

Compare the sequence (16) with (10). There is a duality: the substitutions

2 ←→ 3, pk ←→ qk (17)
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and k −→ k + 1 map (16) to (10) for k ≥ 0; only the first term −−1
−3 in (10) is left

out. Hence we can expect that our new series expansion is dual to the one given in
Theorem 1 with the same substitutions (17).

In fact, the Lemmas 18 and 19 interpreted in R now have a dual version with
the same substitutions. Lemma 18’ will be as follows:

For k ≥ 1,

P ′
k+1 = 2(−1)k

2qk−1ckP ′
k + 3pk+1−pk−1P ′

k−1,

Q′
k+1 = 2(−1)k

2qk−1ckQ′
k + 3pk+1−pk−1Q′

k−1,

where ck :=
2qkak+1 − 3pkak+1

2qk − 3pk
.

Note that (−1)k instead of (−1)k+1. The proof has four parts as in Lemma 18:
sections (a) and (b) do not change; the easy section (c) now will be for k even; the
harder section (d) will be for k odd, using

vk+1 = 1zk−1(10zk)ak+10 instead of vk+1 = 1(zk01)ak+1zk−10. 7

Instead of (11), we define

B′
k+1 := 2(−1)k

2qk−1ck and A′k+1 := 3pk+1−pk−1 . (18)

Then

P ′
k+1 = B′

k+1P
′
k + A′k+1P

′
k−1,

Q′
k+1 = B′

k+1Q
′
k + A′k+1Q

′
k−1. (19)

Further, Lemma 19’ will say

P ′
k+1Q

′
k − P ′

kQ′
k+1 = (−1)k3pk+1+pk−1 (k ≥ 0). (20)

Finally, there holds Lemma 20’:

P ′
k+1

Q′
k+1

=
k∑

j=0

(−1)j 3pj+1+pj−1

2(2qj+1 − 3pj+1)(2qj − 3pj )
(k ≥ 0). (21)

Note that P ′
0/Q′

0 = 0 by (16). For k →∞ the sum (21) converges, since

k∑

j=0

(−1)j 3pj+1+pj−1

2(2qj+1 − 3pj+1)(2qj − 3pj )

=
k∑

j=0

(−1)j · 6 · g′
(

pj

qj

)
g′

(
pj+1

qj+1

)
(k ≥ 0).

7See Exercise 2.2.10 in [8]
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Consequently, if 0 < α < ln(2)
ln(3) , then

lim
k→∞

P ′
k

Q′
k

=
∞∑

j=0

(−1)j 3pj+1+pj−1

2(2qj+1 − 3pj+1)(2qj − 3pj )
. (22)

This series can be written as a generalized continued fraction with convergents
P ′

k/Q′
k. Define P ′

0
Q′

0
:= B′

0 = 0. By (20), we get P ′
1Q

′
0−P ′

0Q
′
1 = 3p1+p0−1 = 1 = −A′1,

so A′1 = −1. Finally, P ′
1

Q′
1

= B′
1B′

0+A′
1

B′
1

and P ′
1

Q′
1

= 1
2(2q1−3) yield B′

1 = −2(2q1 − 3).
These start values, together with (18) and (19), give the expansion

lim
k→∞

P ′
k

Q′
k

=
−1

−2(2q1 − 3) +
−3p2

B′
2 +

A′3

B′
3 +

A′4
B′

4 + · · ·

. (23)

Here is the new function we were looking for:

Definition 28. Let F ∗ :=
[
0, ln(2)

ln(3)

)
→ R be defined by

F ∗(x) := Φ∗R(mx) = lim
k→∞

P ′
k

Q′
k

if x is irrational;

F ∗(p/q) := Φ∗R(mp/q) =
ϕ(mp/q)
2q − 3p

(p, q coprime).

The function F ∗ :=
[
0, ln(2)

ln(3)

)
→ R (a devil’s staircase)

• has range F ∗
([

0, ln(2)
ln(3)

))
⊂ [0,+∞); 8

• is strictly monotone increasing;

• maps rationals to rationals;

• maps irrationals to irrationals;

• is discontinuous at every rational;

• is continuous at every irrational.

The proof of monotony and continuity is similar to the one of Lemma 27. So we
omit the details.

8The range is an uncountable, nowhere dense null set.
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