A NOTE ON THE Q-BINOMIAL RATIONAL ROOT THEOREM

Ying-Jie Lin ${ }^{1}$
Department of Mathematics, East China Normal University, Shanghai 200062, People's Republic of China
yingjie6183032@163.com

Abstract

We show that a theorem obtained by K. R. Slavin can be easily deduced from the q-Lucas theorem.

Received: 11/19/08, Revised: 2/23/09, Accepted: 3/3/09

1. The Main Result

The q-binomial coefficient $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}= \begin{cases}\prod_{j=1}^{k} \frac{1-q^{n-j+1}}{1-q^{j}}, & \text { if } 0 \leq k \leq n \\
0, & \text { otherwise }\end{cases}
$$

Slavin [3] proved the following q-binomial rational root theorem and used it to derive other new product theorems.

Theorem 1 (q-binomial rational root). For $k, m, n \in \mathbb{Z}, n>0$ and $0 \leq k \leq n$, we have

$$
\left[\begin{array}{ll}
n \\
k
\end{array}\right]_{e^{-2 i \pi m / n}}= \begin{cases}\binom{(m, n)}{(m, n) k / n} & \text { if } n \mid k m \\
0, & \text { otherwise }\end{cases}
$$

where $i^{2}=-1$ and (m, n) is the greatest common divisor of m and n.
Slavin's proof of Theorem 1 is quite long. In this note, we give a very short proof of Theorem 1 by using the q-Lucas theorem (see [4, Eq.(1.2.4)] or [1, 2]).

Theorem 2 (q-Lucas). Let n, k, d be positive integers, and write $n=a d+b$ and $k=r d+s$, where $0 \leq b, s \leq d-1$. Let ω be a primitive d-th root of unity. Then

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\omega}=\binom{a}{r}\left[\begin{array}{l}
b \\
s
\end{array}\right]_{\omega}
$$

[^0]Proof of Theorem 1. Let $\omega=e^{-2 i \pi m / n}$. Suppose that ω is a primitive d-th root of unity. Then

$$
d=\frac{n}{(m, n)}
$$

By the q-Lucas theorem, we have

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{\omega}=\binom{(m, n)}{r}\left[\begin{array}{l}
0 \\
s
\end{array}\right]_{\omega},
$$

where $k=r d+s$ and $0 \leq s \leq d-1$.
If $n \mid k m$ then $n \mid k(m, n)$ and $d=n /(m, n) \mid k$, so

$$
r=\frac{k}{d}=\frac{(m, n) k}{n}, \quad \text { and } \quad s=0
$$

Otherwise, $d \nmid k$ and $s>0$. Since $\left[\begin{array}{l}0 \\ s\end{array}\right]_{\omega}$ is equal to 1 if $s=0$ and 0 if $s>0$, this completes the proof.

References

[1] J. Désarménien, Un analogue des congruences de Kummer pour les q-nombres d'Euler, European J. Combin. 3 (1982), 19-28.
[2] V.J.W. Guo, J. Zeng, Some arithmetric properties of the q-Euler numbers and q-Salie numbers, European. J. Combin 27 (2006), 884-895.
[3] K.R. Slavin, q-binomials and the greatest common divisor, Integers 8 (2008), \#A05.
[4] G. Olive, Generalized powers, Amer. Math. Monthly 72 (1965), 619-627.

[^0]: ${ }^{1}$ This work was sponsored by Shanghai Educational Development Foundation under the Chenguang Project 2007CG29.

