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Abstract
In 1980, Carl Pomerance and J. L. Selfridge proved D. J. Newman’s coprime mapping con-

jecture: If n is a positive integer and I is a set of n consecutive integers, then there is
a bijection f :{1, 2, . . . , n}→ I such that gcd(i, f(i)) = 1 for 1 ≤ i ≤ n. The function

f described in their theorem is called a coprime mapping. Around the same time, Roger

Entringer conjectured that all trees are prime; that is, that if T is a tree with vertex set V ,

then there is a bijection L : V → {1, 2, . . . , |V |} such that gcd(L(x), L(y)) = 1 for all

adjacent vertices x and y in V. So far, little progress towards a proof of this conjecture has

been made. In this paper, we extend Pomerance and Selfridge’s theorem by replacing I with

a set S of n integers in arithmetic progression and determining when there exist coprime

mappings f : {1, 2, . . . , n} → S and g : {1, 3, . . . , 2n − 1} → S. We devote the rest

of the paper to using coprime mappings to prove that various families of trees are prime,

including palm trees, banana trees, binomial trees, and certain families of spider colonies.

1. Introduction
A bijection f : A → B on two sets of integers A and B is a coprime mapping
if gcd(a, f(a)) = 1 for all a ∈ A. Around 1960, D. J. Newman conjectured that
if n is a positive integer and I is a set of n consecutive integers (not necessarily
positive), then a coprime mapping f : {1, 2, . . . , n} → I always exists. In 1963,
D. E. Daykin and M. J. Baines [3] proved the special case of the conjecture where
I = {n+1, n+2, . . . , 2n}. In 1980, Carl Pomerance and J. L. Selfridge [8] proved the
complete Newman conjecture by algorithmically constructing the desired coprime
mapping f . Their construction relies on an interesting theorem on the distribution
of the values of the Euler phi function, which they devote most of their paper to
proving. More recently, a simple proof of Newman’s Conjecture was claimed in [10],
but the main identity used does not appear to be valid.

In Section2,we extend Pomerance and Selfridge’s theorem by considering coprime
mappings onto sets of integers in arithmetic progression. Specifically, we prove that
if n is a positive integer and S = {a + tb | 0 ≤ t ≤ n − 1} is a set of n integers in
arithmetic progression with leading term a and common difference b, then a coprime
mapping g : {1, 2, . . . , n}→ S exists if and only if every common prime divisor of a
and b is greater thann.We then replace the set{1, 2, . . . , n}with the set of the first n
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odd integers, and prove that a coprime mapping h : {1, 3, . . . , 2n− 1}→ S exists if
and only if every common odd prime divisor of a and b is greater than 2n− 1.

Section 3 is devoted to applying these three coprime mapping theorems once
or repeatedly to prove that various families of trees are prime. A prime labeling
of a tree T with vertex set V is a bijection L : V → {1, 2, . . . , |V |} that satisfies
gcd(L(x), L(y)) = 1 for all adjacent vertices x and y in V . If such a labeling exists,
then T is said to be prime. Around 1980, Entringer conjectured that all trees are
prime, but the conjecture remains open. Among the families of trees known to be
prime are paths, stars, caterpillars, perfect binary trees, spiders, and all trees with
at most 50 vertices [4, 6, 9]. For an up-to-date summary of known results on prime
trees, see the dynamic survey by Gallian [5], which contains a section on prime
labelings. We use coprime mappings to construct prime labelings of palm trees,
certain spider colonies (which we define), binomial trees, and banana trees.

2. Extending Newman’s Conjecture

As mentioned above, the following theorem was conjectured by D. J. Newman and
proven by Pomerance and Selfridge [8].

Theorem 1. If n is a positive integer and I is a set of n consecutive integers, then
there is a coprime mapping f : {1, 2, . . . , n}→ I.

In this section, we use Theorem 1 to prove two new coprime mapping theorems
that extend Newman’s conjecture. Namely, in Theorem 2, we replace the set I
of n consecutive integers with a set S of n integers in arithmetic progression and
determine when a coprime mapping g : {1, 2, . . . , n} → S exists. In Theorem 3,
we replace the set {1, 2, . . . , n} with the set of the first n positive odd integers and
determine when a coprime mapping h : {1, 3, . . . , 2n− 1}→ S exists.

Theorem 2. Let n be a positive integer and S = {a+ tb | 0 ≤ t ≤ n− 1} be a set of
n integers in arithmetic progression with leading term a and common difference b.
Then there is a coprime mapping g : {1, 2, . . . , n}→ S if and only if every common
prime divisor of a and b is greater than n.

Proof. First suppose there is a prime p ≤ n that divides both a and b. Then p
divides every term of the arithmetic progression in S, and so gcd(p, g(p)) ≥ p for
every bijection g : {1, 2, . . . , n}→ S. Thus a coprime mapping does not exist.

For the converse, suppose that every common prime divisor of a and b is greater
than n. Let q be the product of all the primes less than or equal to n that do not
divide b. Then b and q are coprime, so there exist integers x and y such that bx+qy =
a. Let I = {x, x + 1, . . . , x + n− 1} be the set of n consecutive integers that begins
with x. By Theorem 1, there is a coprime mapping f :{1, 2, . . . , n} → I. To prove
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Theorem 2 we will show that the bijection g : {1, 2, . . . , n}→ S defined by

g(k) = a + (f(k)− x) b

is a coprime mapping.
We must show that gcd(k, g(k)) = 1 for all k ∈ {1, 2, . . . , n}. Suppose otherwise.

Then there is a prime p and an integer k ∈ {1, 2, . . . , n}, such that p divides both k
and g(k). Let f(k) = x + i. Then g(k) = a + ib. Now p ≤ n, so by the definition of
q, p divides either b or q, but not both. If p divides b, then p divides a = g(k)− ib,
and so p is a common divisor of a and b, which contradicts our assumption. Thus
p divides q and p does not divide b. Observe that

g(k) = bx + qy + ib = qy + f(k)b.

Since p divides g(k) and q, but does not divide b, it follows that p divides f(k).
Thus p is a common divisor of k and f(k), which contradicts the fact that f is a
coprime mapping. Thus no such prime p exists, and g is indeed a coprime mapping
from {1, 2, . . . , n} onto S. !

Theorem 3. Let n be a positive integer, O = {1 + 2t | 0 ≤ t ≤ n − 1} be the set
of the first n positive odd integers, and S = {a + tb | 0 ≤ t ≤ n− 1}. Then there is
a coprime mapping h : O → S if and only if every common odd prime divisor of a
and b is greater than 2n− 1.

Proof. As in the proof of Theorem 2, in order for a coprime mapping from O onto
S to exist it is necessary that there are no odd primes less than 2n that divide both
a and b, since otherwise that prime would be an element of O that divides every
element in S. To see that this is sufficient, suppose that every common odd prime
divisor of a and b is greater than 2n− 1. Let q be the product of all the odd primes
less than 2n that do not divide b. Again, b and q are coprime, so there exist integers
x and y such that bx + qy = a. Now let I = {2x, 2x + 1, . . . , 2x + 2n − 2} be the
set of 2n − 1 consecutive integers that begins with 2x. By Theorem 1, there is a
coprime mapping f : {1, 2, . . . , 2n− 1} → I. Notice that f must map odd integers
to even integers since {1, 2, . . . , 2n − 1} contains exactly n odd integers and n − 1
even integers and I contains exactly n−1 odd integers and n even integers. Thus if
we restrict f to the odd integers in {1, 2, . . . , 2n− 1} and divide every even integer
in I by two, we get a coprime mapping f∗ : O → {x, x + 1, . . . , x + n− 1}. Now, as
in the proof of Theorem 2, the bijection g : O → S defined by

g(k) = a + (f∗(k)− x) b

is a coprime mapping. We leave the verification to the reader, since essentially the
proof given for Theorem 2 will work, noting that any common prime divisor of k
and g(k) must be odd in this case. !
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3. Applications to Prime Trees

The rest of this paper is devoted to using the above three coprime mapping theorems
to prove that various families of trees are prime. Specifically, we use Theorem 1 to
prove that palm trees are prime; Theorem 2 to prove that certain families of spider
colonies, including binomial trees, are prime; and Theorem 3 to prove that banana
trees are prime.

3.1. Palm Trees

The palm tree PTn,k is the tree obtained from the concatenation of n stars with k
vertices each by linking one leaf from each star [4] (see Figure 1). In 1994, Fu and
Huang [4] proved that if n ≤ 16 then the palm tree PTn,k is prime for all k. Their
proof uses the fact due to Pillai [7] that every set of m ≤ 16 consecutive integers
contains at least one integer that is coprime to all the others in the set. When
m ≥ 17, however, Brauer [1] proved that there exists a set of m consecutive integers
that does not share this property, so Fu and Huang’s proof does not generalize to
arbitrary palm trees. Instead we use coprime mappings to prove that all palm trees
are prime. Note that palm trees are a family of firecrackers [2, 5].

Theorem 4. Palm trees are prime.

Proof. Let n and k be positive integers, and Sk be a star with k vertices. Then
Sk has a vertex of degree k − 1, which we take as the root, and all other vertices
have degree 1. For each j, 1 ≤ j ≤ k − 1, it follows from Theorem 1 that there is a
coprime mapping

fj : {1, 2, . . . , n}→ {jn + 1, jn + 2, . . . , (j + 1)n}.

To prove Theorem 4 we use the maps fj , 1 ≤ j ≤ k−1, to construct a prime labeling
of the palm tree PTn,k. First label the linked leaves consecutively from n + 1 to 2n
so that the vertex labeled n+ i, 1 ≤ i < n, is adjacent to the vertex labeled n+ i+1.
Then label the centers of the stars from 1 to n so that the linked leaf labeled n + i,
1 ≤ i ≤ n, is adjacent to the vertex labeled f−1

1 (n + i). Finally label the remaining
leaves from 2n + 1 to nk such that the vertex labeled i, 1 ≤ i ≤ n, is adjacent to
the leaf labeled fj(i), for 2 ≤ j ≤ k − 1. !

A prime labeling of the palm tree PT6,4 is given in Figure 1. The labeling follows
the construction given in the proof of Theorem 4.

3.2. Spider Colonies and Binomial Trees

In this section we define spider colonies and use Theorem 2 to prove that certain
families of spider colonies, including regular spider colonies and binomial trees, are
prime.
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Figure 1: A prime labeling of the palm tree PT6,4.

A spider is a tree with at most one vertex of degree greater than two. Some
authors require that there is a vertex of degree greater than two, but we do not
make this requirement so that spiders are a family of trees that includes paths and
the tree consisting of a single vertex. If a spider has a vertex of degree greater than
two, then we take this vertex to be the root. The paths from a spider’s leaves to its
root are called legs. A regular spider is a spider whose legs all have the same length.

In ecology, a group of spiders that lives together and builds its webs in a single
tree is called a spider colony. Thus we are inclined to make the following definitions.
Let T be a tree with vertex set V , W ⊆ V be a set of vertices of T , and S be a
spider. Then we call the tree obtained by identifying the root of a copy of the spider
S with each vertex in W the spider colony obtained by colonizing W by the spider
S, and we denote it by Col(T,W, S). In other words, if S has m legs of lengths
!1, !2, . . . , !m, then Col(T,W, S) is the tree obtained by connecting a leaf of a copy
of each of the m paths P!1 , P!2 , . . . , P!m to each of the vertices in W , where P!

denotes the path on ! vertices. If W = V we say that T has been colonized by
the spider S, and for ease of notation write Col(T, S) for Col(T, V, S) (see Figure
2). Also, we define regular spider colonies recursively as follows. The regular (k, !)-
spider colony SC1(k, !) of order 1 is the regular spider with k legs of length !; the
regular (k, !)-spider colony SCn(k, !) of order n is the tree obtained by colonizing
SCn−1(k, !) by SC1(k, !).

Below we show that binomial trees are a family of regular spider colonies. In the
literature, the term “binomial tree” has two separate and unrelated meanings. For
this paper, we use the following recursive definition: The binomial tree B0 of order
0 consists of a single vertex; the binomial tree Bn of order n has a root vertex whose
children are the roots of the binomial trees of order 0, 1, 2, . . . , n− 1 (see Figure 3).
The name comes from the fact that Bn has height n and the number of vertices at
level i is equal to the binomial coefficient

(n
i

)
, i.e., the coefficient of x in (1 + x)n.

Similarly, the number of vertices at level i of the regular spider colony SCn(k, !) is
equal to the coefficient of x in (1 + kx + kx2 + · · · + kx!)n.

Lemma 5. For n ≥ 1, the binomial tree Bn can be obtained from Bn−1 by attaching
a child to every vertex of Bn−1, that is, Bn is equal to the regular spider colony
SCn(1, 1).
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Proof. We use induction on n. The assertion is immediate when n = 1, so assume
n ≥ 2 and the assertion holds for all binomial trees of order m < n. Attach a child
to every vertex of Bn−1. Then, by the induction hypothesis and the definition of B0,
the children of the root vertex become the binomial trees of orders 0, 1, 2, . . . , n−1,
and we get the binomial tree of order n as needed. !

At the end of this section we prove the following theorem.

Theorem 6. Regular spider colonies are prime, i.e., SCn(k, !) is prime for all
positive integers n, k, and !. In particular, all binomial trees are prime.

Theorem 6 is a consequence of the following lemma and its corollary, which
describe larger families of spider colonies that are prime.

Lemma 7. Let T be a prime tree with vertex set V , N = |V |, and L : V →
{1, 2, . . . , N} be a prime labeling of T . Let n ≤ N be a positive integer and W =
{L−1(1), L−1(2), . . . , L−1(n)} be the set of n vertices of T that are labeled from 1
to n. Let S be a spider with k ≥ 1 legs of lengths !1, !2, . . . , !k. Suppose

gcd(!1, N) = 1 or gcd(!1, N + 1) = 1,

and, for 2 ≤ i ≤ k, that either

gcd(!i, N + n(!1 + !2 + · · · + !i−1)) = 1

or
gcd(!i, N + 1 + n(!1 + !2 + · · · + !i−1)) = 1.

Then the spider colony Col(T,W, S) obtained by colonizing W by the spider S is
prime. Moreover, Col(T,W, S) has a prime labeling that agrees with L on the ver-
tices of T .

Proof. Let S be a spider with k ≥ 1 legs whose lengths satisfy the conditions given
in the statement of the lemma. We prove the lemma by induction on k. First
suppose k = 1. Label the vertices of T from 1 to N according to the prime labeling
L, then colonize W by S to obtain the tree Col(T,W, S). In this case, Col(T,W, S)
is the tree obtained by attaching a leaf of a copy of the path P!1 on !1 vertices
to each of the vertices of T that are labeled from 1 to n. We use Theorem 2 to
construct a coprime labeling of the n!1 vertices just added.

First suppose gcd(!1, N + 1) = 1. Let A = {N + 1 + !1t | 0 ≤ t ≤ n− 1} be the
set of n integers in arithmetic progression with leading term N + 1 and common
difference !1. Then, by Theorem 2, there is a coprime mapping g : {1, 2, . . . , n}→ A.
Label the n!1 vertices of the n copies of P!1 consecutively along each path (i.e., so
that adjacent vertices have consecutive labels) from N + 1 to N + n!1 such that
for i = 1, 2, . . . , n, the vertex labeled g(i) is adjacent to the vertex labeled i. This
results in a prime labeling of Col(T,W, S).
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Now suppose gcd(!1, N) = 1. Let B = {N + !1 + !1t | 0 ≤ t ≤ n − 1} be the
set of n integers in arithmetic progression with leading term N + !1 and common
difference !1. Then, by Theorem 2, there is a coprime mapping h : {1, 2, . . . , n}→
B. Again, label the n!1 added vertices consecutively along each path, but this time
in decreasing order from N + n!1 to N + 1 such that for i = 1, 2, . . . , n, the vertex
labeled i is adjacent to the vertex labeled h(i). This results in a prime labeling of
Col(T,W, S), and the assertion holds when k = 1.

For the inductive step, suppose k ≥ 2 and that the assertion holds if W is col-
onized by a spider with m < k legs whose lengths satisfy the conditions given in
the statement of the lemma. Note that Col(T,W, S) has a subtree Col(T,W, S′)
obtained by colonizing W by the spider S′ with k−1 legs of lengths !1, !2, . . . , !k−1.
By the induction hypothesis, there is a prime labeling of Col(T,W, S′) that agrees
with L on the vertices of T . Label the subtree Col(T,W, S′) of Col(T,W, S) accord-
ing to this labeling. Now, Col(T,W, S) is obtained from Col(T,W, S′) by attaching
a copy of the path P!k on !k vertices to the vertices of Col(T,W, S′) labeled from 1
to n. Notice that Col(T,W, S′) has N ′ = N + n(!1 + !2 + · · · + !k−1) vertices. By
hypothesis, either gcd(!k, N ′) = 1 or gcd(!k, N ′ + 1) = 1, so the case k = 1 of the
lemma applies. Thus Col(T,W, S) has a prime labeling that agrees with L on the
vertices of T . !

Figure 2 provides an example of a spider colony with a prime labeling constructed
as in the proof of Lemma 7. The tree in the figure is the spider colony Col(T, S),
where T is the tree that consists of the larger vertices labeled from 1 to 8, and S is
the spider with two legs of length two and one leg of length one.

Corollary 8. Let T be a prime tree with N vertices and S be a regular spider whose
legs have length !. If gcd(!, N) = 1 or gcd(!, N + 1) = 1 then the tree Col(T, S)
obtained by colonizing T by the spider S is prime. In particular, Col(T, S) is prime
if ! = 1 or ! is a power of a prime.

Proof. The assertion follows from Lemma 7 with n = N and !i = !, 1 ≤ i ≤ k,
since for any integer t, gcd(!, N) = 1 implies that gcd(!, N(1 + t!)) = 1, and
gcd(!, N + 1) = 1 implies gcd(!, N(1 + t!) + 1) = 1. !

We are now ready to prove Theorem 6.

Proof of Theorem 6. We use induction on n. The assertion holds when n = 1 since
all spiders are prime. So assume n ≥ 2 and that the assertion holds for SCn−1(k, !).
The number of vertices of SCn−1(k, !) is (k! + 1)n−1, which is coprime to !. Thus,
by Corollary 8, the tree obtained by colonizing SCn−1(k, !) by the spider SC1(k, !),
i.e., the regular spider colony SCn(k, !), is prime. !

A prime labeling of the binomial tree B4 is given in Figure 3. The labeling follows
the construction given above. Namely, it arises by labeling the single vertex on the
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Figure 2: A prime labeling of a spider colony.

binomial tree B0 with 1, and, for i from 1 to 4, constructing Bi by colonizing
Bi−1 by the spider consisting of a path of length one and labeling Bi following the
construction given in the proof of Lemma 7.

Figure 3: A prime labeling of the binomial tree B4.

3.3. Banana Trees

A banana tree is a tree obtained by joining one leaf of each of any number of stars
to a new root vertex [2, 5] (see Figure 4). If all the stars have the same number
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of vertices, then the banana tree is said to be regular. In this section we prove the
following theorem.

Theorem 9. Banana trees are prime.

Our proof of Theorem 9 relies of the following extension of Lemma 7.

Lemma 10. Let T be a prime tree with vertex set V , N = |V |, and L : V →
{1, 2, . . . , N} be a prime labeling of T . Let n be a positive integer such that 2n−1 ≤
N , and W = {L−1(1), L−1(3), . . . , L−1(2n − 1)} be the set of n vertices of T that
are labeled with the n odd integers from 1 to 2n − 1. Let S be a spider with k ≥ 1
legs of lengths !1, !2, . . . , !k. Suppose

gcd(!1, N) = 1 or gcd(!1, N + 1) = 1,

and, for 2 ≤ i ≤ k, that either

gcd(!i, N + n(!1 + !2 + · · · + !i−1)) = 1

or
gcd(!i, N + 1 + n(!1 + !2 + · · · + !i−1)) = 1.

Then the spider colony Col(T,W, S) obtained by colonizing W by the spider S is
prime. Moreover, Col(T,W, S) has a prime labeling that agrees with L on the ver-
tices of T .

Proof. We use the induction proof given for Lemma 7 with the following three
modifications: (1) attach the paths to the vertices of T labeled with the odd integers
from 1 to 2n−1 instead to those labeled with the integers from 1 to n; (2) replace the
set {1, 2, . . . , n} with the set {1, 3, . . . , 2n− 1}; and (3) use Theorem 3 throughout
instead of Theorem 2. The details are left to the reader. !

Proof of Theorem 9. Let BT be a banana tree. Then there are disjoint stars
Sk1 , Sk2 , . . . , Skn on k1, k2, . . . , kn vertices, respectively, such that BT is obtained
by joining one leaf of each of Sk1 , Sk2 , . . . , Skn to a new root vertex r. Without loss
of generality assume k1 ≥ k2 ≥ · · · ≥ kn ≥ 1. For i = 1, 2, . . . , n, let ci denote the
vertex of BT that is the center of the star Ski .

If k1 ≤ 3, then BT is a spider, which is known to be prime. If k1 ≥ 4 but k2 ≤ 3,
then label the root r of BT with 1 and the vertices on Sk1 from 2 to k1 + 1 such
that the center c1 is labeled with the largest prime not exceeding k1 + 1. In this
case, the stars Sk1 , Sk2 , . . . , Skn are all paths, so we label the remaining vertices of
BT from k1 + 2 to k1 + k2 + · · · + kn + 1 consecutively along each path. One easily
checks that this is a prime labeling of BT , so BT is prime in this case as well. Thus
to prove the theorem it remains to construct a prime labeling of BT in the case
where k2 ≥ 4.
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Assume k2 ≥ 4. Let t ≤ n be the largest integer such that kt ≥ 4. Then the
regular banana tree BTt,4, obtained by joining one leaf of t copies of the star with
4 vertices to a new root vertex, is a subtree of BT , with the centers of the joined
stars of BTt,4 being the vertices c1, c2, . . . , ct of BT . To describe a prime labeling of
BT we first label the vertices of its subtree BTt,4 from 1 to 4t + 1 as follows. Label
the root vertex r with 2 and, for 1 ≤ i ≤ t, label ci with the odd integer 2i − 1.
Label the vertex of the star Skt that is on the first level of BTt,4 with 2t + 1, and
one of the vertices of Skt on the third level with 2t + 3. Now, by Theorem 3, there
is a coprime mapping

g1 : {1, 3, . . . , 2t− 3}→ {2t + 5, 2t + 7, . . . , 4t + 1}.

Label the remaining vertices on the first level of BTt,4 with the odd integers from
2t + 5 to 4t + 1 such that for i = 1, 3, . . . , 2t − 3, the vertex on the second level
labeled i is adjacent to the vertex on the first level labeled g1(i) (i.e., the vertex on
the first level that is a leaf of Ski is labeled g1(i)). Similarly, by Theorem 3, there
are coprime mappings

g2 : {1, 3, . . . , 2t− 3}→ {4, 6, . . . , 2t}

and
g3 : {1, 3, . . . , 2t− 1}→ {2t + 2, 2t + 4, . . . , 4t}.

Thus we can label the remaining vertices on the third level of BTt,4 with the even
integers 4, 6, . . . , 4t such that for i = 1, 3, . . . , 2t − 3, the two vertices on the third
level that are adjacent to the vertex on the second level labeled i, are labeled g2(i)
and g3(i), and the remaining vertex on the third level is labeled g3(2t − 1). This
completes a prime labeling of BTt,4.

Now let BT ′ be the banana tree obtained by attaching one leaf of each of the t
stars Sk1 , Sk2 , . . . , Skt to a root vertex. Then, BTt,4 is a subtree of BT ′, which in
turn is a subtree of BT . We now construct a prime labeling of BT ′, and so complete
a prime labeling of the vertices on BT that lie on Sk1 , Sk2 , . . . , Skt . First, label BTt,4

as described above. Then, for 1 ≤ i ≤ t, the center vertex ci has been labeled with
the odd integer 2i − 1. Colonize the set of center vertices {c1, c2, . . . , ct} of BTt,4

by the regular spider with kt − 4 legs of length 1. By Lemma 10, the resulting
tree is prime and the added vertices can be labeled accordingly, finishing a prime
labeling of Skt . Next colonize {c1, c2, . . . , ct−1} on this new tree by the regular
spider with kt−1 − kt legs of length 1. Again, by Lemma 10, the resulting tree is
prime and the added vertices can be labeled accordingly, finishing a prime labeling
of Skt−1 . Continue in this fashion until the set {c1} has been colonized by the
regular spider with k1 − k2 legs of length 1. This results in a prime labeling from 1
to k1 + k2 + · · · + kt + 1 of the subtree BT ′ of BT .

If t = n we have found a prime labeling of BT as needed. Otherwise, it re-
mains to label the vertices of BT on the stars Skt+1 , Skt+2 , . . . , Skn . In this case,
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let s be the number of stars among Skt+1 , Skt+2 , . . . , Skn that consist of exactly one
vertex (the others consist of exactly two or three vertices). If s > 0, then the s stars
Skn−s+1 , . . . , Skn consist only of the s center vertices cn−s+1, . . . , cn. To finish the
coprime labeling of BT , we first relabel the root vertex of BT and, if s > 0, label
the s center vertices cn−s+1, . . . , cn. Let k = k1 +k2 + · · ·+kt +1 be the number of
previously labeled vertices of BT . Let p be the largest prime not exceeding k + s.
Relabel the root r of BT with the prime p. Recall that the root vertex was previ-
ously labeled with 2, so we need to reassign the label 2 and, if p ≤ k, relabel the
vertex that was previously labeled with p. If p ≤ k then, since k ≥ 4t+1, it follows
from Bertrand’s Postulate that p ≥ 2t + 1, so there is a vertex on the first or third
level of BT that was previously labeled p. All the vertices adjacent to this vertex
have odd labels, so relabel it with 2. If s > 0, also label the vertices cn−s+1, . . . , cn

from k + 1 to k + s. This is a coprime labeling since the vertices cn−s+1, . . . , cn

are only adjacent to the root r, which was assigned the label p, and the integers
from k + 1 to k + s are coprime to p by Bertrand’s Postulate and our choice of p.
If p ≥ k + 1 then the label p was not previously assigned. In this case, s ≥ 1 and
we label one of the s vertices cn−s+1, . . . , cn with 2 and the others with the s − 1
unassigned integers from k + 1 to k + s, since again these labels are all coprime to
p.

It remains to label the vertices on the stars Skt+1 , Skt+2 , . . . , Skn−s from k + s+1
to k + s + kt+1 + kt+2 + · · · + kn−s. Each of these stars is a path on two or three
vertices, a leaf of which is connected to the root r that is labeled with the prime
p ≥ 3. The stars can thus be labeled consecutively along each path, in decreasing
order where necessary, since at least one of the endpoints of every interval of two
or three consecutive integers is coprime to p. This completes a prime labeling of
BT . !

A prime labeling of the banana tree obtained by joining seven stars with 7, 5,
4, 3, 3, 1, 1 vertices, respectively, is given in Figure 4. The labeling follows the
construction given in the proof of Theorem 9.

Figure 4: A prime labeling of a banana tree.
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