ON K-IMPERFECT NUMBERS

Weiyi Zhou ${ }^{1}$
Department of Mathematics, Anhui Normal University, Wuhu 241000, China
zhwy822@163.com
Long Zhu
Department of Mathematics, Anhui Normal University, Wuhu 241000, China

Received: 5/30/08, Accepted: 12/22/08, Published: 1/5/09

Abstract

A positive integer n is called a k-imperfect number if $k \rho(n)=n$ for some integer $k \geqslant 2$, where ρ is a multiplicative arithmetic function defined by $\rho\left(p^{a}\right)=p^{a}-p^{a-1}+p^{a-2}-\cdots+$ $(-1)^{a}$ for a prime power p^{a}. In this paper, we prove that every odd k-imperfect number greater than 1 must be divisible by a prime greater than 10^{2}, give all k-imperfect numbers less than $2^{32}=4294967296$, and give several necessary conditions for the existence of an odd k-imperfect number.

1. Introduction

Let $\sigma(n)$ be the sum of the positive divisors of a natural number n. Then n is said to be perfect if and only if $\sigma(n)=2 n$. Iannucci [4] defines a multiplicative arithmetic function ρ by $\rho(1)=1$ and

$$
\begin{equation*}
\rho\left(p^{a}\right)=p^{a}-p^{a-1}+p^{a-2}-\cdots+(-1)^{a} \tag{1}
\end{equation*}
$$

for a prime p and integer $a \geqslant 1$; it is a variation of the σ function. It follows that $\rho(n) \leqslant n$ with equality only for $n=1$. He says that n is imperfect if $2 \rho(n)=n$, and says n is k-imperfect if $k \rho(n)=n$ for a natural number k. He considers the function H, defined for natural numbers n, by

$$
\begin{equation*}
H(n)=\frac{n}{\rho(n)} \tag{2}
\end{equation*}
$$

Therefore n is a k-imperfect number if $H(n)=k$.
In fact, Martin [2] introduced the function ρ at the 1999 Western Number Theory Conference. He actually used the symbol $\widetilde{\sigma}$ by which to refer to ρ, and raised three questions (see Guy [3], p.72):
(1) Are there k-imperfect numbers with $k \geqslant 4$?
(2) Are there infinitely many k-imperfect numbers?
(3) Are there any odd 3 -imperfect numbers?

[^0]Iannucci gives several necessary conditions for odd 3-imperfect numbers and lists all k-imperfect numbers up to 10^{9}; these k-imperfect numbers are all even. If we can find an odd k-imperfect number, then Question (1) can be answered. In fact, if n is an odd k-imperfect number, since $H(2)=2$, then $H(2 n)=2 k \geqslant 4$.

In this paper, we prove that every odd k-imperfect number greater than 1 must be divisible by a prime greater than 10^{2} and give all k-imperfect numbers less than $2^{32}=4294967296$. We also give several necessary conditions for the existence of odd k-imperfect numbers.

2. Lemmas

For the remainder of this paper, p, q, and b, with or without subscripts, shall represent odd primes. We shall use a, d, d^{\prime}, r, e, and m to represent positive integers.

If $p \nmid a$ we let $\operatorname{ord}_{p} a$ denote the order of $a \in(\mathbb{Z} / p \mathbb{Z})^{*}$. We write $p^{a} \| n$ if $p^{a} \mid n$ and $p^{a+1} \nmid n$. We denote the $n^{\text {th }}$ cyclotomic polynomial, evaluated at x, by $\Phi_{n}(x)$. From (1), we have

$$
\rho\left(p^{2 a}\right)=\frac{p^{2 a+1}+1}{p+1}, \quad \rho\left(p^{2 a+1}\right)=\frac{p^{2(a+1)}-1}{p+1}
$$

and from the cyclotomic identity [5, Proposition 13.2.2]

$$
\begin{equation*}
x^{n}-1=\prod_{d \mid n} \Phi_{d}(x) \tag{3}
\end{equation*}
$$

we have

$$
\begin{equation*}
\rho\left(p^{2 a}\right)=\prod_{\substack{d \mid 2 a+1 \\ d>1}} \Phi_{2 d}(p), \quad \rho\left(p^{2 a+1}\right)=\prod_{\substack{d \mid 2(a+1) \\ d \neq 2}} \Phi_{d}(p) \tag{4}
\end{equation*}
$$

From Theorems 94 and 95 in Nagell [7], we have the following lemma.

Lemma 1. Let $h=\operatorname{ord}_{q}(a)$. Then $q \mid \Phi_{m}(a)$ if and only if $m=h q^{r}$. If $r>0$ then $q \| \Phi_{h q^{r}}(a)$.

From Lemma 1, we easily obtain the fact: if $q \mid \Phi_{m}(a)$, then $q \mid m$ or $q \equiv$ $1(\bmod m)$. In the former (resp. latter) case, we say that q is intrinsic (resp. primitive). These terms were used by Murata and Pomerance [6].

Assume $n=\prod_{i=1}^{t} p_{i}^{\alpha_{i}} \prod_{j=1}^{s-t} p_{j}^{\beta_{j}}$, where α_{i} is even and β_{j} is odd. From (2) and (3) we have

$$
\begin{equation*}
H(n) \cdot\left(\prod_{\substack{i=1}}^{t} \prod_{\substack{\mid \alpha_{i}+1 \\ d>1}} \Phi_{2 d}\left(p_{i}\right)\right) \cdot\left(\prod_{\substack{j=1 \\ d_{1} \mid \beta_{j}+1 \\ d^{\prime} \neq 2}} \Phi_{d^{\prime}}\left(p_{j}\right)\right)=\prod_{i=1}^{t} p_{i}^{\alpha_{i}} \cdot \prod_{j=1}^{s-t} p_{j}^{\beta_{j}} . \tag{5}
\end{equation*}
$$

By a result of Bang [1], we have the following lemma.

Lemma 2. $\Phi_{d}(a)$ has no primitive prime factors if and only if $d=2, a=2^{e}-1$, or $d=6, a=2$.

Lemma 3. If n is a squarefree k-imperfect number, then $n=2$ or 6 .
Proof. Let $n=\prod_{i=1}^{s} p_{i}\left(p_{1}<p_{2}<\cdots<p_{s}\right)$. Then $\rho(n)=\prod_{i=1}^{s}\left(p_{i}-1\right)$. If $p_{1}>2$, then n is odd and $\rho(n)$ is even; thus $\rho(n) \nmid n$, a contradiction. Thus $p_{1}=2$. If $s \geqslant 3$, then $4 \mid n$ and thus $2^{2} \mid n$, a contradiction. If $s=1$, then $n=p_{1}=2$. If $s=2$, since $\rho(n) \mid n$, we have $p_{2}-1 \mid 2 p_{2}$; thus $p_{2}=3$, so that $n=6$.

Lemma 4. Let p be a prime and $\Phi_{2 p}(x)$ denote the $2 p^{\text {th }}$ cyclostomic polynomial. We have $\Phi_{2 p}(x)=x^{p-1}-x^{p-2}+x^{p-3}-\cdots+1$.

Proof. By (3), we have

$$
\Phi_{p}(x)=\frac{x^{p}-1}{\Phi_{1}(x)}
$$

Then

$$
\Phi_{2 p}(x)=\frac{x^{2 p}-1}{\Phi_{1}(x) \Phi_{2}(x) \Phi_{p}(x)}=x^{p-1}-x^{p-2}+x^{p-3}-\cdots+1
$$

By Lemma 4, trial division, and the help of a computer, we easily obtain the following lemma and Table 1.

Lemma 5. Suppose that $3 \leqslant p \leqslant 97,3 \leqslant q \leqslant 41, b \leqslant 100$ and $b^{m} \| \Phi_{q}(p)$. All such prime powers b^{m} are given by the table below. If $3 \leqslant p \leqslant 97$ and $q=43,47$, then $\Phi_{2 q}(p)$ has no prime factors less than 100. Moreover, if

$$
(p, q) \in\{(3,3),(3,5),(5,3),(7,3),(11,3),(17,3),(19,3),(23,3),(31,3),(37,3)\}
$$

then all prime factors of $\Phi_{2 q}(p)$ are less than 100 .
Lemma 6. [4, Theorem 6] An odd 3-imperfect number contains at least 18 distinct prime divisors.

3. Main Results and Proofs

Let n denote an odd k-imperfect number. For an odd prime p, it is clear from (1) that $\rho\left(p^{a}\right)$ is odd if and only if a is even. Therefore n is a square, and we may assume

$$
n=p_{1}^{2 \alpha_{1}} p_{2}^{2 \alpha_{2}} \cdots p_{s}^{2 \alpha_{s}}
$$

p	$q=3$	$q=5$	$q=7$	$q=11$	$q=13$	$q=17$	$q=19$	$q=23$	$q=29$	$q=31$	$q=37$	$q=41$
3	7	61		67								
5	3, 7		29	23, 67				47				83
7	43	11		23	53							
11	3,37			23, 89	53			47	59			
13		11	7,29					47	59			83
17	3, 7, 13	11, 71		23	53, 79							
19	7^{3}	5,11		23				47				83
23	3, 13^{2}	31, 41	71					47	59			
29	3	5, 11, 31			53			47				
31	$7^{2}, 19$	41						47	59			
37	31, 43			23	53		19		59			
41	3	11, 61	7,71		79			47				
43	13			11, 23, 67	53			47	59			83
47	3, 7								59			83
53	3			23, 67								83
59	3, 7	5			53							
61	7	11		23	79				59	31		
67			29	23		17		47^{2}	59			83
71	3		29		79							83
73	7	11		89				47	59		37	83
79		5,11		23								83
83	3	11	7	23					59			
89	3, 7	5,31		23					59			83
97	67		7,71	23					59			83

Table 1: All Prime Powers b^{m} of $\Phi_{2 q}(p)$ with $b^{m} \| \Phi_{2 q}(p)$
where $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}$ are positive integers. From (4) we have

$$
\begin{equation*}
H(n) \cdot \prod_{i=1}^{s} \prod_{\substack{d \mid 2 \alpha_{i}+1 \\ d>1}} \Phi_{2 d}\left(p_{i}\right)=\prod_{i=1}^{s} p_{i}^{2 \alpha_{i}} \tag{6}
\end{equation*}
$$

Proposition 7. Let $n=\prod_{i=1}^{r} p_{i}^{\alpha_{i}}$ be a k-imperfect number greater than 6 , and $p=\max \left(p_{i}\right)$. Then $\max \left(\alpha_{i}\right) \leqslant p-1$. Moreover, if n is odd then $\max \left(\alpha_{i}\right) \leqslant \frac{p-3}{2}$.

Proof. Let $\alpha=\max \left(\alpha_{i}\right)$. Lemma 3 implies $\alpha>1$. Assume that $\alpha=5$ and that the required inequality does not hold. Then it is necessary that $n=2^{\alpha_{1}} 3^{\alpha_{2}} 5^{\alpha_{3}}$ with $0 \leqslant \alpha_{i} \leqslant 5(i=1,2,3), \max \left(\alpha_{i}\right)=5$. Thus $n \leqslant 2^{5} 3^{5} 5^{5}<10^{9}$. But we find no such k-imperfect numbers n in [4, Table 1]. Hence we can assume that $\alpha \neq 1,5$, so $\Phi_{\alpha+1}\left(p_{j}\right)$ or $\Phi_{2(\alpha+1)}\left(p_{j}\right)$ has a primitive prime divisor b from Lemma $2\left(\Phi_{6}(2)=3\right)$. Assume that $\alpha>p-1$; then $b \geqslant \alpha+2>p$, a contradiction. For odd n, if $\alpha>\frac{p-3}{2}$, then $b \geqslant 2(\alpha+1)+1>p$, a contradiction.

Theorem 8. Every odd k-imperfect number greater than 1 must be divisible by a prime greater than 100.

Proof. Suppose that $n=\prod_{i=1}^{r} p_{i}^{e_{i}}$ is an odd k-imperfect number and $p_{i}<100(i=$ $1,2, \ldots, r)$. Then the left-hand side of (6) has no prime factors greater than 100 and $e_{i}(i=1,2, \ldots, r)$ are even. From Proposition 1, we have $\max \left(e_{i}\right) \leqslant \frac{\max \left(p_{i}\right)-3}{2} \leqslant 47$. Therefore, it is necessary that the largest prime factor of $e_{i}+1(i=1,2, \ldots, r)$ is at most 5 from Lemma 5 .

By Lemma 5, we know that $p_{i} \in P=\{3,5,7,11,17,19,23,31,37\}$ for all $i \in$ $\{1,2, \ldots, r\}$. If $p_{i}=3$, then by Lemma 5 and Table 1 , we have $7 \mid n$, then $43 \mid n$. Thus n has a prime factor greater than 100 from Lemma 5, a contradiction. In this way, we have $p_{i} \notin P$ and thus $n=1$, a contradiction.

Theorem 9. An odd k-imperfect number $(k \geqslant 3)$ contains at least 18 distinct prime divisors.

Proof. Suppose n is an odd k-imperfect number $(k \geqslant 3)$. Then we may assume

$$
n=q_{1}^{2 \alpha_{1}} q_{2}^{2 \alpha_{2}} \cdots q_{s}^{2 \alpha_{s}}
$$

From (2), we have

$$
H\left(p^{2 a}\right)=\frac{p^{2 a}(p+1)}{p^{2 a+1}+1}=\frac{p+1}{p+\frac{1}{p^{2 a}}}<\frac{p+1}{p}
$$

and

$$
\begin{aligned}
H\left(p^{2 a}\right)= & \frac{p^{2 a}}{p^{2 a}-p^{2 a-1}+p^{2 a-2}-\cdots+1}=\frac{1}{1-\frac{1}{p}+\frac{1}{p^{2}}-\cdots+\frac{1}{p^{2 a}}} \\
& \geqslant \frac{1}{1-\frac{1}{p}+\frac{1}{p^{2}}}=\frac{p^{2}}{p^{2}-p+1} .
\end{aligned}
$$

On the other hand, if $p<q$, then $\frac{q+1}{q}<\frac{p^{2}}{p^{2}-p+1}$, and so for any positive integers a, b, from (7), we have

$$
\begin{equation*}
H\left(q^{2 b}\right)<H\left(p^{2 a}\right) \tag{7}
\end{equation*}
$$

Therefore

$$
H(n)=\prod_{i=1}^{s} H\left(q_{i}^{2 \alpha_{i}}\right)<\prod_{i=1}^{s} H\left(p_{i}^{2 a}\right)<\prod_{i=1}^{s} \frac{p_{i}+1}{p_{i}}
$$

where p_{i} is the $(i+1)^{\text {th }}$ prime. Since

$$
\frac{4}{3} \cdot \frac{6}{5} \cdot \frac{8}{7} \cdot \frac{12}{11} \cdot \frac{14}{13} \cdot \frac{18}{17} \cdot \frac{20}{19} \cdot \frac{24}{23} \cdot \frac{30}{29} \cdot \frac{32}{31} \cdot \frac{38}{37} \cdot \frac{42}{41} \cdot \frac{44}{43} \cdot \frac{48}{47} \cdot \frac{54}{53} \cdot \frac{60}{59} \cdot \frac{62}{61} \cdot \frac{68}{67}<5
$$

and by Lemma 6 , we have $s \geqslant 18$.

Corollary 10. If n is an odd k-imperfect number $(k \geqslant 3)$, then $n>3.4391411 \times 10^{49}$.
Proof. From Theorems 1 and 2 and inequality (8), we have

$$
\begin{aligned}
n & \geqslant(3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 29 \cdot 31 \cdot 37 \cdot 41 \cdot 43 \cdot 47 \cdot 53 \cdot 59 \cdot 61)^{2} \cdot 10^{4} \\
& >3.4391411 \times 10^{49}
\end{aligned}
$$

Clearly, if n is a k-imperfect number then, writing $n=2^{a} m(a>0)$, we have $\rho\left(2^{a}\right) \mid m$. From Corollary 1, if n is a k-imperfect number and $n<3.4391411 \times 10^{49}$, then n must be even. Therefore if we want to find all k-imperfect numbers less than 3.4391411×10^{49}, we check only even numbers. A computer search produced all k-imperfect numbers less than $2^{32}=4294967296$, there are in thirty-eight such numbers, including the thirty-three numbers less than 10^{9} found in [4]; the five new numbers found by us are:

$$
\begin{array}{ll}
1665709920=2^{5} \cdot 3^{4} \cdot 5 \cdot 7^{2} \cdot 43 \cdot 61, & H(n)=3 \\
1881532800=2^{7} \cdot 3^{4} \cdot 5^{2} \cdot 7 \cdot 17 \cdot 61, & H(n)=3 \\
2082137400=2^{3} \cdot 3^{4} \cdot 5^{2} \cdot 7^{2} \cdot 43 \cdot 61, & H(n)=3 \\
2147450880=2^{15} \cdot 3 \cdot 5 \cdot 17 \cdot 257, & H(n)=3 \\
3094761600=2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7^{2} \cdot 17 \cdot 43, & H(n)=3
\end{array}
$$

Proposition 11. If n is a k-imperfect number, then $\omega(n) \geqslant k-1$, where $\omega(n)$ denotes the number of distinct prime factors of n.

Proof. Write

$$
n=\prod_{\substack{i=1 \\ 2 \nmid \alpha_{i}}}^{t} p_{i}^{\alpha_{i}} \cdot \prod_{\substack{j=1 \\ 2 \mid \beta_{j}}}^{\omega(n)-t} p_{j}^{\beta_{j}}
$$

where α_{i}, β_{j} are positive integers and p_{i}, p_{j} are primes. Since

$$
\frac{p^{\alpha}(p+1)}{p^{\alpha+1}+1}<\frac{p^{\alpha}(p+1)}{p^{\alpha+1}-1}=\frac{p+1}{p-\frac{1}{p^{\alpha}}} \leqslant \frac{p+1}{p-\frac{1}{p}}=\frac{p}{p-1},
$$

where α is a positive integer, we have

$$
\begin{aligned}
k & =H(n)=\prod_{\substack{i=1 \\
2 \nmid \alpha_{i}}}^{t} \frac{p_{i}^{\alpha_{i}}\left(p_{i}+1\right)}{p_{i}^{\alpha_{i}+1}-1} \cdot \prod_{\substack{j=1 \\
2 \mid \beta_{j}}}^{\omega(n)-t} \frac{p_{j}^{\beta_{j}}\left(p_{j}+1\right)}{p_{j}^{\beta_{j}+1}+1} \leqslant \prod_{r=1}^{\omega(n)} \frac{p_{r}}{p_{r}-1} \\
& \leqslant \prod_{i=2}^{\omega(n)+1} \frac{i}{i-1}=\omega(n)+1
\end{aligned}
$$

and thus $\omega(n) \geqslant k-1$.

Theorem 12. Suppose n is k_{1}-imperfect and $n \cdot q_{1} q_{2} \cdots q_{t}$ is k_{2}-imperfect, where $q_{1}<q_{2}<\cdots<q_{t}$ are primes not dividing n and $k_{1}, k_{2} \geqslant 2$. Then $n \cdot q_{1}$ is k_{3} imperfect with $k_{3} \geqslant 2$, except when $t \geqslant 2$ and $q_{1} q_{2}=6$, in which case $n \cdot q_{1} q_{2}$ is $3 k_{1}$-imperfect . Furthermore, if $n \cdot q_{1}$ is k-imperfect, then $q_{1} \leqslant H(n)+1$.

Proof. We may assume $t \geqslant 2$. Suppose $q_{1} \geqslant 3$. Since $n \cdot q_{1} q_{2} \cdots q_{t}$ is k_{2}-imperfect and H is multiplicative, we have

$$
H\left(n \cdot q_{1} q_{2} \cdots q_{t}\right)=H(n) \prod_{i=1}^{t} H\left(q_{i}\right)=H(n) \prod_{i=1}^{t} \frac{q_{i}}{q_{i}-1}=k_{2}
$$

Then

$$
H(n) \prod_{i=1}^{t} q_{i}=k_{2} \prod_{i=1}^{t}\left(q_{i}-1\right)
$$

Since $q_{1}-1<q_{2}-1<\cdots<q_{t}$, we have $q_{t} \mid k_{2}$, and then

$$
H\left(n \cdot q_{1} q_{2} \cdots q_{t-1}\right)=H(n) \prod_{i=1}^{t-1} \frac{q_{i}}{q_{i}-1}=\frac{k_{2}}{q_{t}} \cdot\left(q_{t}-1\right)
$$

Let $\frac{k_{2}}{q_{t}} \cdot\left(q_{t}-1\right)=k_{4}\left(k_{4} \geqslant 2\right)$. Applying the same argument to the k_{4}-imperfect number $n \cdot q_{1} q_{2} \cdots q_{t-1}$, and repeating it as necessary, leads to our result in this case. If $q_{1} q_{2}=6$, then $H\left(n \cdot q_{1} q_{2}\right)=3 k_{1}$. Thus $n \cdot q_{1} q_{2}$ is $3 k_{1}$-imperfect. If $n \cdot q_{1}$ is k-imperfect then $H\left(n q_{1}\right)=H(n) \frac{q_{1}}{q_{1}-1}$. Then we have $q_{1}-1 \mid H(n)$ and so $q_{1} \leqslant H(n)+1$.

Acknowledgement. We thank the referee for kind and helpful comments that improved the presentation of the paper.

Reference

[1] A. Bang, Taltheoretiske Undersøgelser, Tidsskrift Math. 5 (1886), no. IV, 70-80, 130-137.
[2] Compiled by G. Myerson, Macquarie University, Sydney, Problem 99:08 from the Western Number Theory Conference.
[3] R. K. Guy, Unsolved Problems in Number Theory (3rd edition), Springer-Verlag, New York, 2004.
[4] D. Iannucci, On a variation of perfect numbers, Integers: Electronic J. of Combinatorial Number Theory, 6 (2006), \#A41.
[5] K. Ireland and M. Rosen , A Classical Introduction to Modern Number Theory, 2nd edition, Graduate Texts in Mathematics 84, Springer-Verlag, New York, 1970.
[6] L. Murata and C. Pomerance, On the largest prime factor of a Mersenne number, Number Theory, 209-218, CRM Proc. Lecture Notes, 36, Amer. Math. Soc, 2004.
[7] T. Nagell, Introduction to Number Theory, AMS Chelsea Publishing, Providence, RI, 1981.

[^0]: ${ }^{1}$ Supported by NSF of China Grant(10726074).

