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Abstract
A positive integer n is called a k-imperfect number if kρ(n) = n for some integer k ! 2,

where ρ is a multiplicative arithmetic function defined by ρ(pa) = pa−pa−1+pa−2−· · ·+
(−1)a for a prime power pa. In this paper, we prove that every odd k-imperfect number

greater than 1 must be divisible by a prime greater than 102, give all k-imperfect numbers

less than 232 = 4294 967 296, and give several necessary conditions for the existence of

an odd k-imperfect number.

1. Introduction

Let σ(n) be the sum of the positive divisors of a natural number n. Then n is said to
be perfect if and only if σ(n) = 2n. Iannucci [4] defines a multiplicative arithmetic
function ρ by ρ(1) = 1 and

ρ(pa) = pa − pa−1 + pa−2 − · · · + (−1)a (1)

for a prime p and integer a ! 1; it is a variation of the σ function. It follows that
ρ(n) " n with equality only for n = 1. He says that n is imperfect if 2ρ(n) = n,
and says n is k-imperfect if kρ(n) = n for a natural number k. He considers the
function H, defined for natural numbers n, by

H(n) =
n

ρ(n)
. (2)

Therefore n is a k-imperfect number if H(n) = k.
In fact, Martin [2] introduced the function ρ at the 1999 Western Number Theory

Conference. He actually used the symbol σ̃ by which to refer to ρ, and raised three
questions (see Guy [3], p.72):

(1) Are there k-imperfect numbers with k ! 4?
(2) Are there infinitely many k-imperfect numbers?
(3) Are there any odd 3-imperfect numbers?
1Supported by NSF of China Grant(10726074).
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Iannucci gives several necessary conditions for odd 3-imperfect numbers and lists
all k-imperfect numbers up to 109; these k-imperfect numbers are all even. If we
can find an odd k-imperfect number, then Question (1) can be answered. In fact,
if n is an odd k-imperfect number, since H(2) = 2, then H(2n) = 2k ! 4.

In this paper, we prove that every odd k-imperfect number greater than 1 must
be divisible by a prime greater than 102 and give all k-imperfect numbers less than
232 = 4294 967 296. We also give several necessary conditions for the existence of
odd k-imperfect numbers.

2. Lemmas

For the remainder of this paper, p, q, and b, with or without subscripts, shall rep-
resent odd primes. We shall use a, d, d′, r, e, and m to represent positive integers.

If p ! a we let ordpa denote the order of a ∈ (Z/pZ)∗. We write pa ‖ n if pa | n
and pa+1 ! n. We denote the nth cyclotomic polynomial, evaluated at x, by Φn(x).
From (1), we have

ρ(p2a) =
p2a+1 + 1

p + 1
, ρ(p2a+1) =

p2(a+1) − 1
p + 1

,

and from the cyclotomic identity [5, Proposition 13.2.2]

xn − 1 =
∏

d|n

Φd(x), (3)

we have
ρ(p2a) =

∏

d|2a+1
d>1

Φ2d(p), ρ(p2a+1) =
∏

d|2(a+1)
d$=2

Φd(p). (4)

From Theorems 94 and 95 in Nagell [7], we have the following lemma.

Lemma 1. Let h = ordq(a). Then q | Φm(a) if and only if m = hqr. If r > 0 then
q ‖ Φhqr(a).

From Lemma 1, we easily obtain the fact: if q | Φm(a), then q | m or q ≡
1(mod m). In the former (resp. latter) case, we say that q is intrinsic (resp.
primitive). These terms were used by Murata and Pomerance [6].

Assume n =
∏t

i=1 pαi
i

∏s−t
j=1 p

βj

j , where αi is even and βj is odd. From (2) and
(3) we have

H(n) ·




t∏

i=1

∏

d|αi+1
d>1

Φ2d(pi)



 ·





s−t∏

j=1

∏

d′|βj+1
d′ $=2

Φd′(pj)




=

t∏

i=1

pαi
i ·

s−t∏

j=1

p
βj

j . (5)

By a result of Bang [1], we have the following lemma.
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Lemma 2. Φd(a) has no primitive prime factors if and only if d = 2, a = 2e − 1,
or d = 6, a = 2.

Lemma 3. If n is a squarefree k-imperfect number, then n = 2 or 6.

Proof. Let n =
∏s

i=1 pi (p1 < p2 < · · · < ps). Then ρ(n) =
∏s

i=1(pi − 1). If p1 > 2,
then n is odd and ρ(n) is even; thus ρ(n) ! n, a contradiction. Thus p1 = 2. If
s ! 3, then 4 | n and thus 22 | n, a contradiction. If s = 1, then n = p1 = 2. If
s = 2, since ρ(n) | n, we have p2 − 1 | 2p2; thus p2 = 3, so that n = 6. !

Lemma 4. Let p be a prime and Φ2p(x) denote the 2pth cyclostomic polynomial.
We have Φ2p(x) = xp−1 − xp−2 + xp−3 − · · · + 1.

Proof. By (3), we have

Φp(x) =
xp − 1
Φ1(x)

.

Then
Φ2p(x) =

x2p − 1
Φ1(x)Φ2(x)Φp(x)

= xp−1 − xp−2 + xp−3 − · · · + 1. !

By Lemma 4, trial division, and the help of a computer, we easily obtain the
following lemma and Table 1.

Lemma 5. Suppose that 3 " p " 97, 3 " q " 41, b " 100 and bm ‖ Φq(p). All such
prime powers bm are given by the table below. If 3 " p " 97 and q = 43, 47, then
Φ2q(p) has no prime factors less than 100. Moreover, if

(p, q) ∈
{
(3, 3), (3, 5), (5, 3), (7, 3), (11, 3), (17, 3), (19, 3), (23, 3), (31, 3), (37, 3)

}
,

then all prime factors of Φ2q(p) are less than 100.

Lemma 6. [4, Theorem 6] An odd 3-imperfect number contains at least 18 distinct
prime divisors.

3. Main Results and Proofs

Let n denote an odd k-imperfect number. For an odd prime p, it is clear from (1)
that ρ(pa) is odd if and only if a is even. Therefore n is a square, and we may
assume

n = p2α1
1 p2α2

2 · · · p2αs
s .
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p q = 3 q = 5 q = 7 q = 11 q = 13 q = 17 q = 19 q = 23 q = 29 q = 31 q = 37 q = 41
3 7 61 67
5 3, 7 29 23, 67 47 83
7 43 11 23 53

11 3, 37 23, 89 53 47 59
13 11 7, 29 47 59 83
17 3, 7, 13 11, 71 23 53, 79
19 73 5, 11 23 47 83
23 3, 132 31, 41 71 47 59
29 3 5, 11, 31 53 47
31 72, 19 41 47 59
37 31, 43 23 53 19 59
41 3 11, 61 7, 71 79 47
43 13 11, 23, 67 53 47 59 83
47 3, 7 59 83
53 3 23, 67 83
59 3, 7 5 53
61 7 11 23 79 59 31
67 29 23 17 472 59 83
71 3 29 79 83
73 7 11 89 47 59 37 83
79 5, 11 23 83
83 3 11 7 23 59
89 3, 7 5, 31 23 59 83
97 67 7, 71 23 59 83

Table 1: All Prime Powers bm of Φ2q(p) with bm ‖ Φ2q(p)

where α1,α2, . . . ,αs are positive integers. From (4) we have

H(n) ·
s∏

i=1

∏

d|2αi+1
d>1

Φ2d(pi) =
s∏

i=1

p2αi
i . (6)

Proposition 7. Let n =
∏r

i=1 pαi
i be a k-imperfect number greater than 6, and

p = max(pi). Then max(αi) " p− 1. Moreover, if n is odd then max(αi) " p−3
2 .

Proof. Let α = max(αi). Lemma 3 implies α > 1. Assume that α = 5 and that the
required inequality does not hold. Then it is necessary that n = 2α13α25α3 with
0 " αi " 5 (i = 1, 2, 3), max(αi) = 5. Thus n " 253555 < 109. But we find no
such k-imperfect numbers n in [4, Table 1]. Hence we can assume that α %= 1, 5, so
Φα+1(pj) or Φ2(α+1)(pj) has a primitive prime divisor b from Lemma 2 (Φ6(2) = 3).
Assume that α > p− 1; then b ! α+2 > p, a contradiction. For odd n, if α > p−3

2 ,
then b ! 2(α + 1) + 1 > p, a contradiction. !

Theorem 8. Every odd k-imperfect number greater than 1 must be divisible by a
prime greater than 100.
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Proof. Suppose that n =
∏r

i=1 pei
i is an odd k-imperfect number and pi < 100 (i =

1, 2, . . . , r). Then the left-hand side of (6) has no prime factors greater than 100 and
ei (i = 1, 2, . . . , r) are even. From Proposition 1, we have max(ei) " max(pi)−3

2 " 47.
Therefore, it is necessary that the largest prime factor of ei + 1 (i = 1, 2, . . . , r) is
at most 5 from Lemma 5.

By Lemma 5, we know that pi ∈ P = {3, 5, 7, 11, 17, 19, 23, 31, 37} for all i ∈
{1, 2, . . . , r}. If pi = 3, then by Lemma 5 and Table 1, we have 7 | n, then 43 | n.
Thus n has a prime factor greater than 100 from Lemma 5, a contradiction. In this
way, we have pi /∈ P and thus n = 1, a contradiction. !

Theorem 9. An odd k-imperfect number (k ! 3) contains at least 18 distinct prime
divisors.

Proof. Suppose n is an odd k-imperfect number (k ! 3). Then we may assume

n = q2α1
1 q2α2

2 · · · q2αs
s .

From (2), we have

H(p2a) =
p2a(p + 1)
p2a+1 + 1

=
p + 1

p + 1
p2a

<
p + 1

p
,

and

H(p2a) =
p2a

p2a − p2a−1 + p2a−2 − · · · + 1
=

1
1− 1

p + 1
p2 − · · · + 1

p2a

! 1
1− 1

p + 1
p2

=
p2

p2 − p + 1
.

On the other hand, if p < q, then q+1
q < p2

p2−p+1 , and so for any positive integers
a, b, from (7), we have

H(q2b) < H(p2a). (7)

Therefore

H(n) =
s∏

i=1

H(q2αi
i ) <

s∏

i=1

H(p2a
i ) <

s∏

i=1

pi + 1
pi

,

where pi is the (i + 1)th prime. Since

4
3

· 6
5

· 8
7

· 12
11

· 14
13

· 18
17

· 20
19

· 24
23

· 30
29

· 32
31

· 38
37

· 42
41

· 44
43

· 48
47

· 54
53

· 60
59

· 62
61

· 68
67

< 5

and by Lemma 6, we have s ! 18. !
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Corollary 10. If n is an odd k-imperfect number (k ! 3), then n > 3.4391411×1049.

Proof. From Theorems 1 and 2 and inequality (8), we have

n ! (3 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61)2 · 104

> 3.4391411× 1049. !

Clearly, if n is a k-imperfect number then, writing n = 2am (a > 0), we have
ρ(2a) | m. From Corollary 1, if n is a k-imperfect number and n < 3.4391411×1049,
then n must be even. Therefore if we want to find all k-imperfect numbers less than
3.4391411 × 1049, we check only even numbers. A computer search produced all
k-imperfect numbers less than 232 = 4294 967 296, there are in thirty-eight such
numbers, including the thirty-three numbers less than 109 found in [4]; the five new
numbers found by us are:

1665709920 = 25 · 34 · 5 · 72 · 43 · 61, H(n) = 3;

1881532800 = 27 · 34 · 52 · 7 · 17 · 61, H(n) = 3;

2082137400 = 23 · 34 · 52 · 72 · 43 · 61, H(n) = 3;

2147450880 = 215 · 3 · 5 · 17 · 257, H(n) = 3;

3094761600 = 27 · 33 · 52 · 72 · 17 · 43, H(n) = 3.

Proposition 11. If n is a k-imperfect number, then ω(n) ! k − 1, where ω(n)
denotes the number of distinct prime factors of n.

Proof. Write

n =
t∏

i=1
2!αi

pαi
i ·

ω(n)−t∏

j=1
2|βj

p
βj

j ,

where αi,βj are positive integers and pi, pj are primes. Since

pα(p + 1)
pα+1 + 1

<
pα(p + 1)
pα+1 − 1

=
p + 1
p− 1

pα

" p + 1
p− 1

p

=
p

p− 1
,

where α is a positive integer, we have

k = H(n) =
t∏

i=1
2!αi

pαi
i (pi + 1)
pαi+1

i − 1
·

ω(n)−t∏

j=1
2|βj

p
βj

j (pj + 1)

p
βj+1
j + 1

"
ω(n)∏

r=1

pr

pr − 1

"
ω(n)+1∏

i=2

i

i− 1
= ω(n) + 1,

and thus ω(n) ! k − 1. !
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Theorem 12. Suppose n is k1-imperfect and n · q1q2 · · · qt is k2-imperfect, where
q1 < q2 < · · · < qt are primes not dividing n and k1, k2 ! 2. Then n · q1 is k3-
imperfect with k3 ! 2, except when t ! 2 and q1q2 = 6, in which case n · q1q2 is
3k1-imperfect . Furthermore, if n · q1 is k-imperfect, then q1 " H(n) + 1.

Proof. We may assume t ! 2. Suppose q1 ! 3. Since n · q1q2 · · · qt is k2-imperfect
and H is multiplicative, we have

H(n · q1q2 · · · qt) = H(n)
t∏

i=1

H(qi) = H(n)
t∏

i=1

qi

qi − 1
= k2.

Then

H(n)
t∏

i=1

qi = k2

t∏

i=1

(qi − 1).

Since q1 − 1 < q2 − 1 < · · · < qt, we have qt | k2, and then

H(n · q1q2 · · · qt−1) = H(n)
t−1∏

i=1

qi

qi − 1
=

k2

qt
· (qt − 1).

Let k2
qt

· (qt − 1) = k4 (k4 ! 2). Applying the same argument to the k4-imperfect
number n · q1q2 · · · qt−1, and repeating it as necessary, leads to our result in this
case. If q1q2 = 6, then H(n · q1q2) = 3k1. Thus n · q1q2 is 3k1-imperfect. If n · q1

is k-imperfect then H(nq1) = H(n) q1
q1−1 . Then we have q1 − 1 | H(n) and so

q1 " H(n) + 1. !
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