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Abstract
A positive integer n is called a k-imperfect number if kp(n) = n for some integer k > 2,
where p is a multiplicative arithmetic function defined by p(p®) = p* —p® 1 4+p*=2—.. .+
(—=1)® for a prime power p®. In this paper, we prove that every odd k-imperfect number
greater than 1 must be divisible by a prime greater than 102, give all k-imperfect numbers
less than 232 = 4294967 296, and give several necessary conditions for the existence of
an odd k-imperfect number.

1. Introduction

Let o(n) be the sum of the positive divisors of a natural number n. Then n is said to
be perfect if and only if o(n) = 2n. Iannucci [4] defines a multiplicative arithmetic
function p by p(1) =1 and

p(p?) =p® —p* TPt — e (1) 1)

for a prime p and integer a > 1; it is a variation of the ¢ function. It follows that
p(n) < n with equality only for n = 1. He says that n is imperfect if 2p(n) = n,
and says n is k-imperfect if kp(n) = n for a natural number k. He considers the
function H, defined for natural numbers n, by

H(n) = m (2)

Therefore n is a k-imperfect number if H(n) = k.

In fact, Martin [2] introduced the function p at the 1999 Western Number Theory
Conference. He actually used the symbol & by which to refer to p, and raised three
questions (see Guy [3], p.72):

(1) Are there k-imperfect numbers with k > 47

(2) Are there infinitely many k-imperfect numbers?

(3) Are there any odd 3-imperfect numbers?
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Tannucci gives several necessary conditions for odd 3-imperfect numbers and lists
all k-imperfect numbers up to 10%; these k-imperfect numbers are all even. If we
can find an odd k-imperfect number, then Question (1) can be answered. In fact,
if n is an odd k-imperfect number, since H(2) = 2, then H(2n) = 2k > 4.

In this paper, we prove that every odd k-imperfect number greater than 1 must
be divisible by a prime greater than 10 and give all k-imperfect numbers less than
232 = 4294 967296. We also give several necessary conditions for the existence of
odd k-imperfect numbers.

2. Lemmas

For the remainder of this paper, p, ¢, and b, with or without subscripts, shall rep-
resent odd primes. We shall use a,d,d’,r, e, and m to represent positive integers.

If p { a we let ord,a denote the order of a € (Z/pZ)*. We write p® || n if p* | n
and p*! { n. We denote the n'** cyclotomic polynomial, evaluated at z, by @, (z).
From (1), we have

2a) _ p2a+1 +1 ( 2at1y _ p2(a+1) -1
p+1 p+1

and from the cyclotomic identity [5, Proposition 13.2.2]

o — 1= ] @ala), 3)
d|n

p(p

)

we have

p(@®) = [ @), p@*™) = ] @b (4)
d|2a+1 d|2(a+1)
d>1 d£2

From Theorems 94 and 95 in Nagell [7], we have the following lemma.

Lemma 1. Let h = ordy(a). Then q | ®,,(a) if and only if m = hq". If r > 0 then
q || ngr(a).

From Lemma 1, we easily obtain the fact: if ¢ | ®,,(a), then ¢ | m or ¢ =
1(mod m). In the former (resp. latter) case, we say that ¢ is intrinsic (resp.
primitive). These terms were used by Murata and Pomerance [6].

Assume n = Hizl p;t H;;i pfj, where «; is even and §; is odd. From (2) and
(3) we have

t s—t

t s—t
H(n)- H H Poa(pi) | - H H P (ps) | = sza . Hpjj. (5)
izldls;ﬁl Jj=1 d’y;;ﬂ i=1 j=1

By a result of Bang [1], we have the following lemma.
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Lemma 2. ®;(a) has no primitive prime factors if and only if d = 2,a = 2¢ — 1,
ord="06,a=2.

Lemma 3. If n is a squarefree k-imperfect number, then n = 2 or 6.

Proof. Let n =T[_; pi (p1 <p2 <-+-<ps). Then p(n) =[[_,(pi — 1). If p1 > 2,
then n is odd and p(n) is even; thus p(n) { n, a contradiction. Thus p; = 2. If
s > 3, then 4 | n and thus 22 | n, a contradiction. If s = 1, then n = p; = 2. If
s =2, since p(n) | n, we have py — 1 | 2py; thus ps = 3, so that n = 6. O

Lemma 4. Let p be a prime and ®op(z) denote the 2™ cyclostomic polynomial.

We have ®op(z) = 2P~ — P2 4 2P73 — .. 4+ 1.
Proof. By (3), we have
®,(x) P —1
) = )
? P4 ()
Then
P (JU) = J:Zp —1 — J/-p71 _ :CP*Q + xp73 _ + 1
T 0 (2) o (), () ' b

By Lemma 4, trial division, and the help of a computer, we easily obtain the
following lemma and Table 1.

Lemma 5. Suppose that 3 < p < 97,3 < ¢ < 41,b < 100 and b™ || ®4(p). All such
prime powers b™ are given by the table below. If 3 < p < 97 and q = 43,47, then
Do, (p) has no prime factors less than 100. Moreover, if

(r.) € {(3.:3)(3,5).(5,3), (7.3), (11,3), (17,3), (19,3), 23,3, (31,3), (37.3) }.

then all prime factors of ®a4(p) are less than 100.

Lemma 6. [/, Theorem 6/ An odd 3-imperfect number contains at least 18 distinct
prime divisors.

3. Main Results and Proofs

Let n denote an odd k-imperfect number. For an odd prime p, it is clear from (1)
that p(p®) is odd if and only if a is even. Therefore n is a square, and we may
assume

20&1 20{2 2045

n:pl p2 ps
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p|l q= q=5|q=T7| q=11|q=13|q=17|q=19|q=23|q=29|q=31|q=37|q =41
3 7 61 67
5 3,7 29 23,67 47 83
7 43 11 23 53
11| 3,37 23,89 53 47 59
13 11| 7,29 47 59 83
17/3,7,13| 11,71 23| 53,79
19 73 5,11 23 47 83
23| 3,13%2| 31,41 71 47 59
29 3(5,11,31 53 a7
31| 72,19 41 47 59
37| 31,43 23 53 19 59
41 3| 11,61 7,71 79 47
43 13 11,23,67 53 47 59 83
47 3,7 59 83
53 3 23,67 83
59 3,7 5 53
61 7 11 23 79 59 31
67 29 23 17 472 59 83
71 3 29 79 83
73 7 11 89 47 59 37 83
79 5,11 23 83
83 3 11 7 23 59
89 3,7 5,31 23 59 83
97 67 7,71 23 59 83
Table 1: All Prime Powers b™ of ®94(p) with 0™ || ®o4(p)
where aq, @, ..., a, are positive integers. From (4) we have
S S
Hn) [T T] ®2al) =[] w (6)
i=1d|20;+1 i=1
d>1

Proposition 7. Let n = H§=1 pit be a k-imperfect number greater than 6, and

p = max(p;). Then max(a;) < p—1. Moreover, if n is odd then max(a;) < £5=.

Proof. Let a = max(«;). Lemma 3 implies o > 1. Assume that o = 5 and that the
required inequality does not hold. Then it is necessary that n = 2%13*25%3 with
0<a; <5 (i=1,23), max(e;) = 5. Thus n < 2°3°5° < 10°. But we find no
such k-imperfect numbers n in [4, Table 1]. Hence we can assume that o # 1,5, so
®or1(ps) or Po(a41)(pj) has a primitive prime divisor b from Lemma 2 (®¢(2) = 3).
Assume that a > p—1; then b > a4+ 2 > p, a contradiction. For odd n, if a > %,
then b > 2(a+ 1) + 1 > p, a contradiction. |

Theorem 8. Fvery odd k-imperfect number greater than 1 must be divisible by a
prime greater than 100.
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Proof. Suppose that n = []._, p{* is an odd k-imperfect number and p; < 100 (i =
1,2,...,7). Then the left-hand side of (6) has no prime factors greater than 100 and
e; (i=1,2,...,7) are even. From Proposition 1, we have max(e;) < % < 47.
Therefore, it is necessary that the largest prime factor of e; +1 (i = 1,2,...,r) is
at most 5 from Lemma 5.

By Lemma 5, we know that p; € P = {3,5,7,11,17,19,23,31,37} for all i €
{1,2,...,r}. If p; = 3, then by Lemma 5 and Table 1, we have 7 | n, then 43 | n.
Thus n has a prime factor greater than 100 from Lemma 5, a contradiction. In this
way, we have p; ¢ P and thus n = 1, a contradiction. O

Theorem 9. An odd k-imperfect number (k = 3) contains at least 18 distinct prime
divisors.

Proof. Suppose n is an odd k-imperfect number (k > 3). Then we may assume

21 2an 205

n=q; 'q ceeqs

From (2), we have

p*(p+1)  p+1 <p+1

H 2a — — ,
(™) Pl pt L D
and
2a
p 1
H(p*) = S5 a3 = T, 1 I
p=t —p +p e+l l—s 4t o
1 2
S :p2—pp+1'
p | p?
On the other hand, if p < ¢, then %1 < ﬁ, and so for any positive integers
a, b, from (7), we have
H(q*) < H(p*). (7)
Therefore
S S S p + 1
Hn)=[[H@) <[[HE" <] #’
i=1 i=1 i=1 v

where p; is the (i + 1) prime. Since

468 12 14 18 20 24 30 32 33 42 44 48 5 60 62 68
3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67

<d

and by Lemma 6, we have s > 18. |



INTEGERS: 9 (2009) 6

Corollary 10. If n is an odd k-imperfect number (k > 3), thenn > 3.4391411x10%9.
Proof. From Theorems 1 and 2 and inequality (8), we have
n >(3-5-7-11-13-17-19-23-29-31-37-41.43-47-53 59 - 61)2 - 10*

> 3.4391411 x 10%°. O

Clearly, if n is a k-imperfect number then, writing n = 2%m (a > 0), we have
p(2%) | m. From Corollary 1, if n is a k-imperfect number and n < 3.4391411 x 1049,
then n must be even. Therefore if we want to find all k-imperfect numbers less than
3.4391411 x 10*°, we check only even numbers. A computer search produced all
k-imperfect numbers less than 232 = 4294967296, there are in thirty-eight such
numbers, including the thirty-three numbers less than 10° found in [4]; the five new
numbers found by us are:

1665709920 = 2°-3%.5.72.43.61, H(n)=3
1881532800 =27-34.52.7.17-61, H(n)=3
2082137400 = 23 -3%.52.72.43.61, H(n) = 3;
2147450880 = 215.3.5. 17 257, H(n)=3
3094761600 =27 -3%.52.72.17-43, H(n) =3

Proposition 11.If n is a k-imperfect number, then w(n) > k— 1, where w(n)
denotes the number of distinct prime factors of n.

Proof. Write
w(n)—t

n= Hp : H Py
2)[047 2‘[3]
where «aj, 3; are positive integers and p;, p; are primes. Since

prp+1) _pp+1) _ pH1 p+1 p
pa+1+1 pa+171 pfpi p* p717

where « is a positive integer, we have

w(n)—t BJ

w(n)

H pi(pi 1) 1) [ 2wt -
=1 p;x +1 j:1 pﬂ]-i—l + ]. r=1 pT - 1
2*0‘1 218;
w(n)+1 ;
< = L
Il ;=5=wm+

and thus w(n) > k — 1. |
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Theorem 12. Suppose n is ki-imperfect and n - q1qz -+ - q: is ko-imperfect, where
q < g2 < .-+ < q are primes not dividing n and ki,ks = 2. Then n - q is kz-
imperfect with ks > 2, except when t > 2 and qi1q2 = 6, in which case n - q1q2 is
3k1-imperfect . Furthermore, if n - qp is k-imperfect, then g1 < H(n) + 1.

Proof. We may assume t > 2. Suppose q; = 3. Since n - qi1qz - - q; is ko-imperfect
and H is multiplicative, we have

t t
q;
H(n-qga--q) = H(n) [[ H(g:) = H(n) -1 ks.
i=1 i=1 1"
Then
t t
Hn)[[a =k [J(a: = 1)
1=1 =1

Since 1 —1 < g2 —1<--- < ¢, we have ¢; | ko, and then

t—1
; k
H(n-q1q2- - qi-1) =H(n)H—q.qi 1= q—j (g —1).
i=1 1

Let ];—f (gt — 1) = kg (kg > 2). Applying the same argument to the ks-imperfect
number n - q1g2 - - - ¢;—1, and repeating it as necessary, leads to our result in this
case. If g1g2 = 6, then H(n - q1q2) = 3k;. Thus n - q1g2 is 3k;-imperfect. If n - ¢
is k-imperfect then H(ng;) = H(n) qlqil. Then we have ¢ — 1 | H(n) and so
¢1 < H(n) + 1. m|
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