
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07

PROOF TREES FOR WEAK ACHIEVEMENT GAMES

Nándor Sieben
Department of Mathematics and Statistics, Northern Arizona University, Flagstaff AZ 86011-5717, USA

nandor.sieben@nau.edu

Received: 11/29/07, Revised: 9/6/08, Accepted: 9/9/08, Published: 10/7/08

Abstract

Proof number search and threat-space search are successful techniques for finding winning
strategies in achievement games such as go-moku. A version of proof number search can
be used effectively to analyze weak achievement games. In this version it is sufficient to
consider the defensive moves that are involved in the maker’s strategy after null moves. The
result of this restricted search is a proof tree. The proof tree can be translated into the usual
proof sequence of winning situations used to present winning strategies for weak achievement
games. Using this procedure, a proof sequence can be found for a handicap one strategy for
weakly achieving Snaky.

1. Introduction

A polyomino is a finite set of cells of the infinite chessboard that is connected through edges
[7]. Congruent polyominoes are considered to be the same, that is, a polyomino can be freely
translated, rotated and reflected. In a polyomino weak achievement game [6, 9], two players
alternately mark a previously unmarked cell using their own colors. The first player (the
maker) tries to mark a goal polyomino while the second player (the breaker) tries to prevent
the maker from achieving his goal. If the maker has a strategy for achieving a polyomino then
the polyomino is called a winner, otherwise it is called a loser. For all but one polyomino,
it is known whether it is a winner or a loser. The known winners are subsets of L, Y or Z
shown in Figure 1.1. Proof sequences describing winning strategies can be found for example
in [5]. Pairing strategies for losers can be found in [13].

The only undecided polyomino is Snaky shown in Figure 1.1. Snaky is believed [6, 4] to
be a winner but no winning strategy is known. A pairing strategy is the main tool to show
that a polyomino is a loser. We know from [13] that no pairing strategy exists for Snaky. We

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 2

L Y Z Snaky

Figure 1.1: Every known winner is a subset of polyomino L, Y or Z. Snaky is undecided.

know from [12] that Snaky is an edge-to-edge loser, that is, the maker cannot be successful
if he always marks next to his earlier marks. This suggests that finding a possible winning
strategy is hard.

A winning strategy with handicap k is a strategy for the maker that allows k additional
marks for the maker in his first turn. A handicap 2 winning strategy for Snaky was found
in [11]. Two descriptions of a handicap 1 winning strategy are found in [8, 15] but these
descriptions do not contain the usual proof sequence of situations as described in Section 3.
Translating these descriptions to proof sequences seems difficult. We present a proof sequence
for a handicap 1 strategy in Appendix B.

A proof sequence can be found by hand but this is very difficult if the goal polyomino
has more than a few cells. The main purpose of this paper is to describe a procedure that
can be used effectively in a computer program to find a proof sequence. The main tool is
a proof tree defined in Section 2. First we describe how to construct a proof sequence from
a proof tree. This has several steps. In Section 4, we convert the proof tree into a set of
situations. In Section 5, we use a dependency digraph to analyze the connections between
the situations. With the analysis we can greatly reduce the number of situations needed by
the proof sequence. The details of this simplification process is found in Section 6.

We find proof trees using proof number search and threat search. Proof number search
and threat-space search are designed for finding the game-theoretical value in game trees.
They have been used to solve Connect-Four, Qubic, and Go-Moku [2, 3, 16, 1]. We adapt
these techniques for weak achievement games. The main difference is that the breaker is only
trying to prevent the maker from achieving his goal polyomino, she is not trying to achieve
the goal polyomino on her own. So during the game tree analysis, it is sufficient to consider
those moves by the breaker which are later played by the maker. These moves can be found
by repeatedly using null moves for the breaker until a terminal position is found.

2. Proof Trees

To show that an animal is a winner, we can use a proof tree as shown in Figure 2.1. It
is a partial game tree with special properties as described below. The moves of the maker
are represented by solid arrows, the regular moves of the breaker are represented by dashed
arrows. We also consider null moves by the breaker, these are represented by dotted arrows.
A null move, when the breaker does not mark any cell, does not happen in real game play.
We still allow them in the proof tree. The meaning of a null move is that the actual move

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 3

!!
""!

!

##""
""
""

$$#
##

%%$
$

$

&&%
%

''&&
&&

%%
$$

$$
$

''&&& ((
'''

Figure 2.1: A proof tree for the size 3 skinny animal. The full squares are the marks of
the maker; the empty squares are the marks of the breaker. The empty cells belong to the
territory of the position. Solid arrows represent the moves of the maker. Dotted arrows
represent the null moves of the breaker. Dashed arrows represent the required other moves
of the breaker.

of the breaker has no effect on the maker’s strategy.

The vertices of a proof tree are positions of the game. A position P contains the marks
M(P) of the maker (full squares), the marks B(P) of the breaker (empty squares). A leaf
vertex must be a position won by the maker, that is, the marks of the maker must contain
a polyomino congruent to the goal polyomino.

A position created after a mark of the maker is called a maker position, the other positions
are called breaker positions. A proof tree shows one adequate move for the maker after each
possible defensive move of the breaker. So a maker position can have several outgoing arrows,
but a breaker position only needs a single (solid) outgoing arrow. We say that position Q
is a daughter of position P if there is an arrow in the proof tree from P to Q and that Q
is reachable from P if there is a directed path from P to Q. The set of daughters of P is
denoted by D(P).

The territory T (P) of a position P is the set of cells marked by the maker after position
P . More precisely,

T (P) :=
⋃

{M(Q) \ M(P) | Q is reachable from P}.

If P is a leaf vertex then T (P) is of course empty. The territory cells are shown as empty
cells on Figure 2.1.

There is an infinite number of possible defensive moves but not all of them are sensible.
The proof tree selects the required ones using the territories. We require that the intersection

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 4

!!
""!

!!

''))
(

(
(

''))
(

(

Figure 2.2: A condensed version of the proof tree of Figure 2.1. The lack of solid lines is a
reminder of the condensation. The territory cells of the top position tell us that after the
first null move of the breaker, the maker marked the cell above his first mark.

s0
0 s1

1

0

0 s2
2
1

1

1

1 1 1

Figure 3.1: A proof sequence for the proof tree of Figure 2.2.

of the territories of the daughters of a maker position is empty, that is
⋂

{T (Q) | Q ∈ D(P)} = ∅

for all maker position P . This condition guarantees that the proof tree considers all the
necessary moves for the breaker. The maker can win from any position since the breaker can
never mark a cell that ruins all possible winning lines for the maker.

Proof trees are quite large. We can condense them without losing any information by
deleting the breaker positions as shown in Figure 2.2. The only drawback is that checking
the territory requirements is harder. This is not a problem since every breaker position can
be easily recovered from its only daughter by replacing the new maker mark by a territory
cell.

3. Proof Sequence of Situations

Even a condensed proof tree becomes too large very quickly as the goal polyomino grows.
Figure 4.1 shows a partial condensed proof tree for the polyomino Z. Instead of the proof
tree a strategy can be captured by a proof sequence (s0, . . . , sn) of situations [5, 14, 18]. A
situation si = (Csi, Nsi) is an ordered pair of disjoint sets of cells. We think of the core
Csi as a set of cells marked by the maker and the neighborhood Nsi as a set of cells not
marked by the breaker. A situation is the part of the playing board that is important for
the maker. A situation does not contain any of the breaker’s marks. Those marks are not

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 5

important as long as the situation contains enough empty cells in the neighborhood. Just
like polyominoes, congruent situations are considered to be the same. If s is a situation then
we define s \ x := (Cs \ {x}, Ns \ {x}).

In the situations of a proof sequence, it is always the breaker who is about to mark a
cell. The game progresses from sn towards s0. We require that Cs0 is the goal polyomino
and Ns0 = ∅. This means that the maker already won by marking the cells in Cs0 and there
is no need for any free cells on the board in Ns0 . For each i ∈ {1, . . . , n} we also require that
if the breaker marks a cell in Nsi then the maker can mark another cell of Nsi and reach a
position sj closer to his goal, that is, satisfying j < i. More precisely, for all x ∈ Nsi there
must be an x̃ ∈ Nsi \ {x} and a j ∈ {0, . . . , i − 1} such that

Csj ⊆ Csi ∪ {x̃} and Nsj ⊆ Csi ∪ Nsi \ {x}.

This relationship between si and sj is denoted by si &x sj .

Figure 3.1 shows a proof sequence that captures the winning strategy of the proof tree
of Figure 2.2. In the figure the situations are denoted by sd

i where the upper index d is
the number of required additional marks by the maker until the goal polyomino is reached,
assuming optimal defense from the breaker. The numbers inside the neighborhood cells
denote the index j of the situation that can be reached if the breaker marks the given cell.
Note that the maker can win in 3 turns while the number of cells in the goal polyomino is
also 3. We call such a strategy economical.

The situations of the proof sequence of Figure 3.1 are simply built from the positions of
Figure 2.2. Given a position P the corresponding situation is (M(P), T (P)). This works
well if the strategy is economical. If the strategy is not economical then we can construct
simpler situations.

4. From Proof Tree to Situations

The proof tree of Figure 4.1 is not economical. The maker sometimes needs to mark 6 cells
even though the goal polyomino Z only has 5. It is clear that in these positions some of the
marks of the maker are not essential to build a corresponding situation. To decide what is
important we introduce the notion of essence of a position.

If P is a leaf position then M(P) must contain a copy of the goal polyomino. An essence
E(P) of P can be chosen to be one of these copies. If P is not a leaf position then the essence
of P is the union of the essences of the leaf positions that can be reached from P , that is,

E(P) :=
⋃

{E(Q) | Q is a leaf reachable from P}.

A situation s(P) corresponding to position P is defined as

s(P) := (M(P) ∩ E(P), T (P) ∩ E(P)).

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 6

· · ·

· · ·

· · ·

· · ·

· · ·

**

)
)
)
*
*
*
*
*
*
+
+
+
+
+
+
,
,
,
,
,
,
-
-
-
-

++

,

,

-

-

.

.

/

/

0

0

1

,,

1
2
3
3
4
5
6
7
7

$$

8
9

:

--;;

..
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<
<

**

//
=

=
=

=
=

=

--;;;

00

**
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

**

//
=

=
=

=
=

=
=

//

--;;;

&&

--;;;;

&&

--;;;

&&

--;;;

&&

--;;;

&&

--;;;;

&&

--;;;

&&

--;;;

Figure 4.1: A partial condensed proof tree for the polyomino Z. The figure is rotated by 90◦.
Note that this winning strategy is not economical.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 7

Note that if P is a leaf position then s(P) = (G, ∅) where G is the goal polyomino. Since the
essence of a leaf position is not unique, we can get several situations from a position. This is
not a drawback. If we have more situations then it is easier to find a short proof sequence.

Applying this procedure to the maker positions of the proof tree of Figure 4.1, we can
build a 31-element set S = {s(P) | P is a maker position}. The situations in S could be
ordered into a proof sequence, but we do not need all of them.

5. Dependency Digraph of Situations

Let S be the set of situations gotten from the maker positions of a proof tree using the
procedure described in Section 4. Our goal is to use as few situations of S as possible to
build a proof sequence. To analyze the connections between the elements of S, we build a
dependency digraph D.

Let T := {s \ x | s ∈ S and x ∈ Ns} be the set of situations with one neighborhood
cell deleted. Note that T is the set of situations that can be reached from an element of S
applying a mark by the breaker. The vertex set of the dependency digraph is VD := S ∪ T .

To define the arrow set, we need to partition S into levels {L0, . . . ,Lm}. The levels are
chosen recursively. We let L0 := {(G, ∅)} where G is the goal polyomino. Given L0, . . . ,Li,
let Ki := ∪i

j=0Lj and define

Li+1 := {s ∈ S \ Ki | (∀x ∈ Ns)(∃t ∈ Ki) s &x t}.

The arrow set of the dependency digraph is

ED := {(s, s \ x) | s ∈ S, x ∈ Ns} ∪ {(s \ x, t) | 0 ≤ i < m, s ∈ Li+1, t ∈ Ki and s &x t}.

The dependency digraph shows the possible routes for the maker to win after each defensive
move of the breaker.

Figure 5.1 shows the dependency digraph of the situations of the proof sequence of
Figure 3.1. In this digraph each vertex in T has a single outgoing arrow, so the maker
never has a choice. This implies that the proof sequence cannot be simplified.

Figure 5.2 shows a partial dependency digraph of the situations gotten from the proof tree
shown in Figure 4.1. Note that there are two ways to continue towards the goal polyomino
from vertex s2

2 \ x. If we delete situation r1, the maker still can win from s2
2 \ x by picking

s0
0 instead of r1. So situation s2

2 does not depend on situation r1. It is possible that other
situations depend on r1 so we cannot delete r1 without looking at the whole dependency
digraph.

Even if we can delete a situation, it might not be the best choice to do so. If we delete a
situation, we cut some of the possible routes towards the goal polyomino, so other situations

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 8

s0
0

•• s1
1

••
•

•••
s2
2

11
22

33
44

55 66
11
22
7788

99
::
33
44
;;
!!

Figure 5.1: A dependency digraph of the situations gotten from the proof sequence of Fig-
ure 3.1. The vertices in T are denoted by bullets.

s0
0•• • •

s1
1

r1

• • • • • • s2
2 \ y • • s2

2 \ x

s2
3

s2
2

y

x · · ·

...

L2

L1

L0

<<>>
==????? >>@@

??AAAAA
@@AA BB CC

DD EE FF GG HH II

JJKK
==
LL
MMBBBBBB
@@CCC

BB
FF GG

@@

DD''

NN
D
D
D
D
D
DD
D
D
D
D
D
D
DD

OOE
E
EE
E
E
E
E
E
E
EE
E
E
E

PP----------------
IIFFFF

Figure 5.2: Partial dependency digraph of the situations gotten from the proof tree of Fig-
ure 4.1. Levels L0 and L1 are complete.

could become indispensable. Our goal is to find the largest set of situations that can be
deleted together.

6. Simplification of the Dependency Digraph

Let S, T , {L0, . . . ,Lm} and D be defined as in the previous section. We know that L0 =
{(G, ∅)} = {s0

0} where G is the goal polyomino. We also know that Lm = {sm
n } is also

a singleton set containing the initial situation sm
n . The most important property of the

dependency digraph is that every directed path starting at sm
n can be continued until it

reaches s0
0. Our goal is to delete as many situations from S as possible while keeping this

property alive. Of course if we delete a situation from S then all of its daughters can be
deleted from T .

Some of the situations in S are indispensable, we collect these situations in the set I.
Here are the simplification rules we use to build I and to delete some vertices or edges.

1. We have s0
0, s

m
n ∈ I. The starting and goal positions are clearly indispensable.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 9

t !

s \ x •

s "

QQ

QQ "

•

"

QQ

QQ

#

" ! · · · !

s \ x •
QQ

EE22222

QQ RR&&&&&&

" ! · · · !

•QQ

EE222222

#
!

! !

#

rule (2) rule (3) rule (4)

Figure 6.1: Schematic rules for simplifying a dependency digraph of situations. The black
squares represent the indispensable situations. White squares represent undecided situations.
The bullets represent the situations in T .

2. Let s ∈ I and s \ x ∈ T . If t is the only element of S with (s \ x, t) ∈ ED then t ∈ I.
If s is indispensable and the maker has only one possible answer t for a defensive move
x of the breaker then t must also be indispensable.

3. If t ∈ I and (s\x, t), (s\x, t1), . . . , (s\x, tk) ∈ ED then (s\x, t1), . . . , (s\x, tk) should
be deleted. If the maker can continue the game through an already indispensable
situation t then he should do so and avoid any other choices.

4. If a situation in S has no incoming arrows then the situation should be deleted, since
clearly no other situation is dependent on it.

Figure 6.1 shows a schematic representation of these rules.

The use of the simplification rules help each other, so we use them while any of them is
applicable. If the digraph still has a vertex s \ x ∈ T such that s is indispensable and s \ x
has more than one outgoing arrows then further simplifications are possible. Then we find
one such s \ x with the smallest number of outgoing arrows (s \ x, t1), . . . , (s \ x, tn) and we
make one of t1, . . . , tn indispensable artificially and apply the simplification rules again. At
this point we have to use a backtracking algorithm to find the smallest dependency digraph
that still has the path continuation property.

There is still another possibility for simplification. If (s, s \ x), (s \ x, t1), (s \ x, t2) ∈ ED

and we delete t2 from the digraph then it possible that the situation s itself can be reduced.
It is possible that a core cell or a neighborhood cell of s was needed to guarantee that
situation t2 is reachable. Since t2 is no longer an option, these cells could be deleted form s.
In theory we could check for this possibility every time we delete a situation and recalculate
the dependency digraph. This would make the backtracking quite a bit more complicated
and also much slower. To avoid this difficulty we only check for this possibility after the
backtracking part is done.

After these simplification processes, the remaining situations in S can be ordered into
a proof sequence. Figure 6.2 shows the result of the algorithm applied to the proof tree of

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 10

s0
0 s1

1
0

0

s2
2

0 0

1

0

s2
3

1 1

1

1

1

1

s3
4

2

1

2

1

1 1

2

1

s4
5

3 3

3

3

3

3

3

3

4

3

3

3

3

3

3

s5
6

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

Figure 6.2: A proof sequence for Z.

Figure 4.1. Every situation in this proof sequence can be gotten from the positions shown on
the partial proof tree of Figure 4.1. Note that the starting position s5

6 of the proof sequence
is a reduced version of the situation that corresponds to the initial position of Figure 4.1.

7. Proof Number Search

To find a proof tree we use a standard proof number search combined with a variation of
threat-space search [1]. Proof number search is an algorithm to evaluate an AND/OR tree
containing AND-nodes and OR-nodes. A node can have three possible values: true (1),
unknown (1

2) or false (0). The value of node P is denoted by v(P). If the values of the
leaf nodes are known, then the value of an internal node is determined by the values of its
children using the following truth tables:

∨ 1 1
2 0

1 1 1 1
1
2 1 1

2
1
2

0 1 1
2 0

∧ 1 1
2 0

1 1 1
2 0

1
2

1
2

1
2 0

0 0 0 0

Note that ∨ takes the maximum and ∧ takes the minimum of the arguments. This is why
OR-nodes and AND-nodes are also called MAX-nodes and MIN-nodes.

Our AND/OR trees correspond to game trees. The AND-nodes correspond to maker
position and the OR-nodes to breaker positions. This means that at an AND-node the
breaker can try several defensive moves. At an OR-node, the maker only needs to find one
good move. The value of a node is true if the maker wins from that position. We make the
value of a node false if the node seems hopeless for the maker. To determine the value of
the root node, the search expands as many leaf nodes with unknown value as needed.

The order of expansion has a great effect on the number of required expansions. We use
proof and disproof numbers to pick the most proving leaf node to expand. The proof number
is roughly the minimum number of nodes we need to evaluate to conclude that the value of
the node is true. The disproof number is roughly the minimum number of nodes we need to

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 11

1-2

0.∞ 1.2

0-∞
win

1-1
?

∞-0
loss

1-1
??

1-1
?

SS? ? ? ?

TTA
AAA

''&&
&&
&

))
((

((
(

UU''&&
&&
&

))
((

((
(

Figure 7.1: An AND/OR tree with proof and disproof numbers. The AND-nodes are rep-
resented by -, the OR-nodes by .. Unknown leaf nodes are denoted by a question mark.
The most proving node is denoted by two question marks. The proof numbers are on the
left, the disproof numbers are on the right.

evaluate to conclude that the value of the node is false. If P is a leaf node then the proof
number p(P) and disproof number d(P) of P is defined by

p(P) :=

0 if v(P) = 1

∞ if v(P) = 0

i(P) if v(P) = 1
2

, d(P) :=

∞ if v(P) = 1

0 if v(P) = 0

i(P) if v(P) = 1
2

.

In the simplest implementation i(P) = 1. If i(P) is defined to be the depth of P then
expanding deeper nodes is more expensive and the search tree becomes shallower. If the
OR-node P̌ and the AND-node P̂ are interior nodes then

p(P̌) := min{p(Q) | Q ∈ D(P̌)}, d(P̌) :=
∑

Q∈D(P̌)

d(Q),

p(P̂) :=
∑

Q∈D(P̂)

p(Q), d(P̂) := min{d(Q) | Q ∈ D(P̂)}.

The most proving node can be found by starting at the root node and following the first
daughter with the smallest proof number at OR-nodes, and with the smallest disproof number
at AND-nodes. Figure 7.1 shows an example.

After expanding the most proving node we update the proof and disproof numbers. After
this update we delete all nodes with a 0 disproof number.

8. Threat Sequences

Let s be a winning situation and let P be a breaker position, that is, a position when the
maker is on the move. If the maker can mark a cell and create a copy of s then he can win
from that position so the game is decided. Now suppose that the maker can mark a cell x
and almost create a position (C, N) that is almost the same as s except that one core cell
y missing, that is, (C ∪ {y}, N) = s. Then the outcome is not yet decided but he created a
threat for which the breaker has to respond. To avoid this threat the breaker needs to mark

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 12

y or a cell of N . Using the terminology of [1], cell x is a gain cell and the cells of N ∪ {y}
are cost cells of the threat.

A threat sequence is a sequence (P0, P1, . . . , Pn) of breaker positions such that Pi+1 can
be gotten from Pi by marking the gain cell of the threat with the maker’s color and marking
the cost cells with the breaker’s color. The threat sequence is called winning if the maker can
achieve an actual winning situation from Pn. Figure 8.1 shows two winning threat sequences
to achieve Z. It is clear that if there is a winning threat sequence starting at P0, the maker
can win from position P0 by marking the gain cells.

It is possible that the maker can win from a position even though there is no winning
threat sequence. Still it is useful to search for threat sequences since this is much faster than
a full game tree analysis. The search also helps deciding what moves should be considered
during the proof number search.

In our implementation we only consider dependent threat sequences. A threat sequence is
dependent if for each i ≥ 1 the threat used to create Pi+1 would not exist without the gain
cell of the threat used to create Pi. This means that we do not want to experiment with
using available threats in different orders. We only want to follow newly created threats.

To create a threat sequence we need to find threats and threats need winning situations.
We do not have a proof sequence, that is why we are interested in threat sequences in the first
place. So we need to create winning situations. It is possible to use only the goal polyomino.
This is, in fact, what we did to find the proof tree of Figure 4.1. For more difficult games
we can create winning positions by hand as in [18]. Another possibility is to use the winning
situations of a proof sequence for a handicap strategy.

Threat sequences simulate the tactical thinking of human players. Humans often find
winning lines in the game by disregarding the difficulties caused by the marks of the opponent.
This is successful because tactics are very important in achievement games. The long term
strategy that comes from experience and intuition of human players are simulated by the
proof number search.

9. Node Expansion

During the expansion of nodes in the proof number search we need to create possible moves.
The procedure depends on the type of the node.

If we expand an OR-node P̌ then we need to select our best candidates for the maker to
mark. Of course if P̌ has a copy of the goal polyomino marked by the maker then we can
assign v(P̌) := 1 and there is no need for further expansion. Otherwise we check whether
the depth of the node is beyond our limit. If it is then our search in this direction is hopeless
and we assign v(P̌) := 0. If we did not reach the depth limit then we search for a winning

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 13

s1
1 --;;;

s1
1 --;;;

s0
0 --;;;

s0
0 --;;;

s0
0 --

s1
1 --;;;

s1
1 --

Figure 8.1: Two winning threat sequences to achieve Z. In each position the maker is on
the move. The labels on the arrows show the name of the situation of Figure 6.2 used to
create the threat. Dashed arrows lead to defended threats while solid arrows lead to winning
situations.

P̂

Q0

UU

P̂

Q0 Q1 · · · Qn

VV

x1
WWG
G
G xn

XX
H

H
H

H P̂

Q0 Q1 Q2 Q3

##
x1

YYI
I
I

x2
++
1
1
1

x3
$$J

J
J

J P̂

Q1 Q2

x1
YYI
I
I

x2

++
1
1
1

stage 1 stage 2 stage 3 stage 4

Figure 9.1: Four stages of the life of an AND-node. A label on a dashed arrow shows the
cell marked by the maker for his move. There are no labels on the dotted arrows since those
represent null moves. In stage 3, T (Q0) ∩ T (Q2) = {x1, x3}.

threat sequence. If we can find one then the maker should mark the gain cell of the first
position of the winning threat sequence, so P̌ has only one daughter after the expansion. If
we cannot find a winning threat sequence or the search for it reaches our depth limit then
we need to use some heuristics to select a few promising moves. During this selection we
use an evaluation function that measures the potential of a move to create new threats in
the future and we pick the moves with the highest values. The evaluation function finds the
possible placements of the winning situations on the board with as few missing core cells as
possible. We try to avoid picking moves that create immediate threats since those moves are
already analyzed by the search for a winning threat sequence. We also try to avoid moves
that do not create threat moves after a null move of the breaker.

If we expand an AND-node P̂ then our main concern is to satisfy the territory intersection
property of proof trees. When we expand P̂ we simply create a null move for the breaker.
This is shown as stage 1 on Figure 9.1. The resulting position is denoted by Q0. If Q0

is expanded further and evaluates to true, then we need to create additional daughters
{Q1, . . . , Qn} for P̂ . If T (Q0) = {x1, . . . , xn} then we let M(Qi) := M(P̂) ∪ {xi} and
B(Qi) := B(P̂). This is stage 2. Whenever an additional daughter evaluates to true we can
erase some of the daughters to satisfy

{xi | v(Qi) = 1
2} =

⋂
{T (Qi) | v(Qi) = 1}.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 14

This is stage 3. At the end we reach stage 4 when
⋂
{T (Qi) | v(Qi) = 1} = ∅ so the value

of P̂ becomes true and we do not need to consider any more daughters. It is possible that
the intersection of the territories is empty even if we delete some of the daughters. Node Q0

can be deleted frequently this way because the other daughters require more sophisticated
play from the maker and so their territories are likely smaller. Of course it is possible that a
daughter evaluates to false which makes the value of P̂ false as well. Then node P̂ is deleted
from the tree.

10. The Art of Finding Proof Trees

If the goal polyomino is relatively simple then the procedure we described works automat-
ically even if the initial set of situations used in the threat sequence search and the move
selection contains only the goal polyomino or a few more situations that can be easily cre-
ated by hand. For more complicated goals this is not so easy because the search takes too
long. We need to watch how the search progresses and adjust some parameters like the
depth limits, the number of considered moves for the maker, the evaluation function to se-
lect promising moves. Occasionally cutting a few branches that are clearly hopeless by hand
speeds up the search significantly.

We need to be more sophisticated with the initial set of situations as well. First we use
only a few initial situations and a starting board position that has a large handicap number.
This starting board position could contain for example a couple of cells marked by the maker.
The proof number search finishes quickly and the proof sequence gotten from the resulting
proof tree becomes the new initial set of situations for the next search.

To gain something from this next search we need to make the starting board position
harder to win. This can be done by adding a few cells marked by the breaker. The closer
these cells are to the action the harder it is to finish the proof number search and the more
useful the resulting proof sequence. Another way to make the starting board position harder
is to decrease the handicap, that is, to add fewer cells marked by the maker.

It would be possible to automate this process by extending the initial set of situations
with new winning situations discovered during the proof number search. Every time the
value of and AND-node becomes true, we could add the corresponding situation s(P) to the
initial set of situations. Of course this burden of knowledge slows down the move selection
and the threat sequence search. Implementing this would perhaps help to settle the fate of
Snaky.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 15

References

[1] L. V. Allis, H. J. van den Herik, and M. P. H. Huntjens. Go-moku and threat-space search. (Preprint)
http://citeseer.ist.psu.edu/170657.html.

[2] L. Victor Allis. Searching for Solutions in Games and Artificial Intelligence. PhD thesis, Computer
Science Department Rijksuniversiteit Limburg, 1994.

[3] L. Victor Allis, Maarten van der Meulen, and H. Jaap van den Herik. Proof-number search. Artif.
Intell., 66(1):91–124, 1994.

[4] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning ways for your mathematical
plays. Vol. 2. 2nd ed. Natick, MA: A K Peters. xvii, 277–473 , 2003.

[5] Jens-P. Bode and Heiko Harborth. Hexagonal polyomino achievement. Discrete Math., 212(1–2):5–18,
2000. Graph theory (Dörnfeld, 1997).

[6] Martin Gardner. Mathematical games. Sci. Amer., 240:18–26, 1979.

[7] Solomon G. Golomb. Polyominoes: Puzzles, Patterns, Problem and Packings. Princeton University
Press, 1965.

[8] Immanuel Halupczok and Jan-Christoph Schlage-Puchta. Achieving snaky. Integers, 7:G02, 28 pp.
(electronic), 2007.

[9] Frank Harary. Achievement and avoidance games on finite configurations. J. Recreational Math.,
16(3):182–187, 1983/84.

[10] Frank Harary. Is Snaky a winner? Geombinatorics, 2(4):79–82, 1993.

[11] Frank Harary, Heiko Harborth, and Markus Seemann. Handicap achievement for polyominoes. In
Proceedings of the Thirty-first Southeastern International Conference on Combinatorics, Graph Theory
and Computing (Boca Raton, FL, 2000), volume 145, pages 65–80, 2000.

[12] Heiko Harborth and Markus Seemann. Snaky is an edge-to-edge looser. Geombinatorics, 5(4):132–136,
1996.

[13] Heiko Harborth and Markus Seemann. Snaky is a paving winner. Bull. Inst. Combin. Appl., 19:71–78,
1997.

[14] Heiko Harborth and Markus Seemann. Handicap achievement for squares. J. Combin. Math. Combin.
Comput., 46:47–52, 2003. 15th MCCCC (Las Vegas, NV, 2001).

[15] Hiro Ito and Hiromitsu Miyagawa. Snaky is a winner with one handicap. 8th Hellenic European
Conference on Computer Mathematics and its Applications, 2007.

[16] M. P. H. Huntjens L. V. Alus, H. J. van den Herik. Go-moku solved by new search techniques. Com-
putational Intelligence, 12(1):7–23, 1996.

[17] Nándor Sieben. Snaky is a 41-dimensional winner. Integers, 4:G5, 6 pp. (electronic), 2004.

[18] Nándor Sieben and Elaina Deabay. Polyomino weak achievement games on 3-dimensional rectangular
boards. Discrete Mathematics, 290:61–78, 2005.

A. A Proof Sequence for L

The winning strategy for L published in [5] contains 33 situations. We managed to cut the
number of situations in the proof sequence into half. The initial set of winning situations
contained s0

0, s1
2, s1

3, s1
4 and s2

6.

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 16

s0
0 s1

1
0

0

s1
2
0

0

s1
3
0 0 s1

4
0

0

s2
5
0

0

0

4

s2
6
3

3

3

3

3

3

s2
7
3

2

3

2

2

3

s3
8
1

1

5

5

5

1

1 1

s3
9
1

1

5

5

5

1

1 1

s4
10

2

4

2

8 2

2

3

2

2

2

s4
11

0

0 9

0

0

0

0

0

0

0

s5
12

5

5

5

5

5

6

5

5

7

5

10

10

6

5

5

5

s5
13

11

11

5

5

5

5

5

5

5

5

11

11

5

5

11

5

s6
14

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

12

13

6

6

6

6

6

6

6

6

s7
15

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

B. A Handicap 1 Proof Sequence for Snaky

Snaky has a long history [10, 14, 12, 13, 17, 8, 15]. It is believed to be a winner. Our
procedure found a handicap 1 proof sequence. For initial set of winning situations we used
the handicap two proof sequence of [11]. The last situation in our proof sequence is s10

73, so
using this strategy the maker can win in 11 turns.

s0
0 s1

1
0

0

s1
2
0

0

s1
3

0

0

s1
4
0

0

s1
5

0

0 s2
6
0

0

1

0 s2
7

5

0

0

0 s2
8
2

2

2

2

2

2

s2
9

2

0

0

0

s2
10

0

0

0 2

s2
11
0

0

0 2

s2
12

2

0

0

0

s2
13

5

3

3

3

5 5

s2
14
4

0

0

0

s2
15
2

2

2

2

2

2

s2
16
2

2

2

2

2

2

s3
17

0 0

0

0

7

0

s3
18
5

5

5

5

9

5

5

10

5

5

s3
19

0 0

0

0

7

0

s3
20

1 1 1

1

1

3

13

1

5

1

s3
21
0

6

0

0

0

0 s3
22

14

0

0

0

0

0

s3
23

14

0

0

0

0

0

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 17

s3
24
5

5

5

5

5

10

10

10

s3
25
10

10

10

10

10

10

10

10

10

10

s3
26
11

12

12

12

11

16

16

11

11

11

11

s3
27
0

0

0

0

0

0

0

15 s3
28
8

8

8

8

16

16

16

8

16

8

15

15

15

s3
29
15

16

16

8

8

8

8

8

15

8

15

15

15

s3
30
8

16

16

8

8

8

8

8

8

8

15

15

8

s4
31

0

0

21

0

0

0

0

0

s4
32

0 0

0

0

0

17

0 0

s4
33
0

0

0

18

0

0

0

0

0

0

0

0

s4
34

5 5

5

5

22

17

9

5

5

5

5 5

s4
35

21

21

21

21

21

21

21

21

21

21

21

21

21

21

s4
36

8 8

9

9

9

8

19

10

10

10

8

s4
37

10 10

10

10

10

23

23

23

23

15

10 10

s4
38
0

0

0

29

0

0

0

0

0

0

0

0

0

0

s5
39

0

0

0

0

0

0

0

31

0

0

s5
40

0

0

0

0

0

0

0

33 0

0

0

0

0

0

s5
41

0 0

0

0

0

32

0

0

0 0

s5
42

0 0 0

0

0

32

0

0

0

0

s5
43

5 5

5

5

5

5

5

5

5

5

5

37

37

37

5 5

s5
44

5 5 5

5

5

5

5

5

34

14

5

5

24

5

5 5

s5
45

5 5

5

5

5

5

5

5

5

5

5

36

14

5

5

25

5

s5
46

0

0

0

0

0

0

38

0

0

0

0

0

0

0

0

0

s6
47

0

0

0

0

0

0

0

0

0

0

0 46

0

0

0

0

0

0

s6
48

21 21

20

41

21

21

21

21

21

21

20

21

41

20

20

20

20

20

20

20

20

s6
49

8

8

8

8

9

9

9

8

8

39

10

10

10 8

8

s6
50

8

8

8

8

9

9

9

8

8

40

10

10

10

8

8

8

8

8

8

s6
51

5

5

5

5

5

5

5

40

16

16

5

5

5

5

5

5

5

5

5

s6
52

8

8

8

8

15

15

15

8

40

16

16

16

8

8

8

8

8

8

8

8

8

s6
53
8

8

8

8

8

8

8

8

15

15

15

46

16

16

16

8

8

8

8

8 8

s6
54

8

8

8

8

8

8

8

8

16

16

16

8

8

8

8

46

15

15

15

8

8

8 8

s6
55

43

43

43

43

43

43

43

44

43

43

43

43

45

44

44

43

43

44

44

44

43

43

43

43

43

43

45

43

43

43

45

43

43

43

s6
56
8

8

8

8

8

8

8

8

15

15

15

46

16

16

16

8

8

8

8

8 8

INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #G07 18

s6
57
8

8

8

8

8

8

8

8

16

16

16

8

8

8

46

15

15

15

8

8 8

s7
58

24

24

24

24

24

24

24

24

24

42

35

35

35

35

47

48

48

41

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

24

s7
59

5

5

5

5

5

5

5

5

5

5

5

49

14

5

5

13 5

5

s7
60

5

5

5

5

5

5

5

5

5

5

5

5

5

5

50

14

5

5

25

5

5

5

5

5

5

s7
61

14

14

14

14

14

14

14

14

14

14

14

14

14

52

28

28

28

51

14

14

14

14

14

14

14

14

14

s7
62

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

14

53

57

57

57

28

14

14

14

14

14

s7
63

14

14

14

14

14

14

14

14

14

14

14

52

14

26

26

26

28

14

14

14

14

14

14

14

14

14

14

s7
64

26 26

26

26

27

30

30

28

26

26

26

26

26

27

53

28

26

27

27

27

27

27

26

26

26

26

26

26

26

26

s7
65

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

51

51

30

28

28

51

54

28

28

29

29

29

28

28

28

28

28

28

28

28

28

s7
66

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

28

53

53

30

28

28

53

54

28

28

29

29

29

28

28

28

28

28

28

28

28

28

s7
67

28

28

28

28

28

28

28

28

28

28

57

57

28

28

30

30

30

28

28

57

53

28

28

53

53

29

28

28

28

28

28

28

28

28

28

28

28

28

s8
68
43

43

43

43

43

43

43

43

43

43

43

45

43

43

43

45

58

45

43

43

45

45

45

43

43

43

43

43

43

43

43

45

43

43

43

43

43

43

45

43

43

43

43

s8
69

43

43

43

43

43

43

59

43

43

43

60

43

43

43

45

45

45

59

45

45

45

45

45

45

43

59

59

59

43

43

43

43

59

43

43

43

59

s9
70

55

55

55

55

55

55

55

62

61

61

55

55

55

55

55

55

62

61

61

55

55

55

55

55

55

62

61

63

63

63

55

55

55

69

68

68

61

55

64

64

65

65

69

69

62

55

61

62

62

61

61

61

61

55

62

61

61

55

55

62

61

61

55

s10
71

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

67

67

66

66

66

66

67

67

66

66

70

70

70

70

66

66

67

67

66

66

66

66

67

67

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

66

